
158

Logistic Regression, AdaBoost and Bregman Distances

Michael Collins
AT&T Labs� Research

Shannon Laboratory
180 Park Avenue, Room A253

Florham Park, NJ 07932
mcollins@research.att.com

Robert E. Schapire
AT&T Labs� Research

Shannon Laboratory
180 Park Avenue, Room A203

Florham Park, NJ 07932
schapire@research.att.com

Yoram Singer
School of Computer Science & Engineering
Hebrew University, Jerusalem 91904, Israel

singer@cs.huji.ac.il

Abstract. We give a unified account of boosting and logistic
regression in which each learning problem is cast in terms ofop-
timization of Bregman distances. The striking similarity of the
two problems in this framework allows us to design and analyze
algorithms for both simultaneously, and to easily adapt algorithms
designed for one problem to the other. For both problems, we give
new algorithms and explain their potential advantages overexisting
methods. These algorithms can be divided into two types based
on whether the parameters are iteratively updated sequentially (one
at a time) or in parallel (all at once). We also describe a parame-
terized family of algorithms which interpolates smoothly between
these two extremes. For all of the algorithms, we give convergence
proofs using a general formalization of the auxiliary-function proof
technique. As one of our sequential-update algorithms is equivalent
to AdaBoost, this provides the first general proof of convergence for
AdaBoost. We show that all of our algorithms generalize easily to
the multiclass case, and we contrast the new algorithms withitera-
tive scaling. We conclude with preliminary experimental results.

1 INTRODUCTION

We give a unified account of boosting and logistic regression
in which we show that both learning problems can be cast in
terms of optimization of Bregman distances. In our frame-
work, the two problems become extremely similar, the only
real difference being in the choice of Bregman distance: un-
normalized relative entropy for boosting, and binary relative
entropy for logistic regression.

The fact that the two problems are so similar in our frame-
work allows us to design and analyze algorithms for both si-
multaneously. We are now able to borrow methods from the
maximum-entropy literature for logistic regression and apply
them to the exponential loss used by AdaBoost, especially
convergence-proof techniques. Conversely, we can now eas-
ily adapt boosting methods to the problem of minimizing the
logistic loss used in logistic regression. The result is a family
of new algorithms for both problems together with conver-
gence proofs for the new algorithms as well as AdaBoost.

For both AdaBoost and logistic regression, we attempt
to choose the parameters or weights associated with a given
family of functions calledfeatures or weak hypotheses. Ada-
Boost works by sequentially updating these parameters one
by one, whereas methods for logistic regression,most notably
iterative scaling [9, 10], are iterative but update all parameters
in parallel on each iteration.

Our first new algorithm is a method for optimizing the
exponential loss using parallel updates. It seems plausible
that a parallel-update method will often converge faster than

a sequential-update method, provided that the number of
features is not so large as to make parallel updates infeasible.
Some preliminary experiments suggest that this is the case.

Our second algorithm is a parallel-update method for the
logistic loss. Although parallel-update algorithms are well
known for this function, the updates that we derive are new,
and preliminary experiments indicate that these new updates
may also be much faster. Because of the unified treatment
we give to the exponential and logistic loss functions, we are
able to present and prove the convergence of the algorithms
for these two losses simultaneously. The same is true for the
other algorithms presented in this paper as well.

We next describe and analyze sequential-update algo-
rithms for the two loss functions. For exponential loss, this
algorithm is equivalent to the AdaBoost algorithm of Freund
and Schapire [13]. By viewing the algorithm in our frame-
work, we are able to prove that AdaBoost correctly converges
to the minimum of the exponential loss function. This is a
new result: Although Kivinen and Warmuth [16] and Ma-
son et al. [19] have given convergence proofs for AdaBoost,
their proofs depend on assumptions about the given mini-
mization problem which may not hold in all cases. Our proof
holds in general without assumptions.

Our unified view leads instantly to a sequential-update
algorithm for logistic regression that is only a minor modifi-
cation of AdaBoost and which is very similar to one proposed
by Duffy and Helmbold [12]. Like AdaBoost, this algorithm
can be used in conjunction with any classification algorithm,
usually called the weak learning algorithm, that can accept
a distribution over examples and return a weak hypothesis
with low error rate with respect to the distribution. How-
ever, this new algorithm provably minimizes the logistic loss
rather than the arguably less natural exponential loss used by
AdaBoost.

Another potentially important advantage of this new al-
gorithm is that the weights that it places on examples are
bounded in[0; 1]. This suggests that it may be possible to use
the new algorithm in a setting in which the boosting algorithm
selects examples to present to the weak learning algorithm by
filtering a stream of examples (such as a very large dataset).
As pointed out by Watanabe [22] and Domingo and Watan-
abe [11], this is not possible with AdaBoost since its weights
may become extremely large. They provide a modification
of AdaBoost for this purpose in which the weights are trun-
cated at 1. The new algorithm may be a viable and cleaner
alternative.

159

We next describe a parameterized family of iterative al-
gorithms that includes both parallel- and sequential-update
algorithms and that also interpolates smoothly between the
two extremes. The convergence proof that we give holds for
this entire family of algorithms.

Although most of this paper considers only the binary
case in which there are just two possible labels associated
with each example, it turns out that the multiclass case re-
quires no additional work. That is, all of the algorithms
and convergence proofs that we give for the binary case turn
out to be directly applicable to the multiclass case without
modification.

For comparison,we also describe the generalized iterative
scaling algorithm of Darroch and Ratcliff [9]. In rederiving
this procedure in our setting, we are able to relax one of the
main assumptions usually required by this algorithm.

The paper is organized as follows: Section 2 describes
the boosting and logistic regression models as they are usu-
ally formulated. Section 3 gives background on optimiza-
tion using Bregman distances, and Section 4 then describes
how boosting and logistic regression can be cast within this
framework. Section 5 gives our parallel-update algorithms
and proofs of their convergence, while Section 6 gives the
sequential-update algorithms and convergence proofs. The
parameterized family of iterative algorithms is described in
Section 7. The extension to multiclass problems is given
in Section 8. In Section 9, we contrast our methods with
iterative scaling. In Section 10, we give some preliminary
experiments.

Previous work. Variants of our sequential-update algo-
rithms fit into the general family of “arcing” algorithms pre-
sented by Breiman [4, 3], as well as Mason et al.’s “AnyBoost”
family of algorithms [19]. The information-geometric view
that we take also shows that the algorithms we study, includ-
ing AdaBoost, fit into a family of algorithms described in
1967 by Bregman [2] for satisfying a set of constraints.

Our work is based directly on the general setting of Laf-
ferty, Della Pietra and Della Pietra [18] in which one attempts
to solve optimization problems based on general Bregman
distances. They gave a method for deriving and analyzing
parallel-update algorithms in this setting through the use of
auxilliary functions. All of our algorithms and convergence
proofs are based on this method.

Our work builds on several previous papers which have
compared boosting approaches to logistic regression. Fried-
man, Hastie and Tibshirani [14] first noted the similarity be-
tween the boosting and logistic regression loss functions, and
derived the sequential-update algorithm LogitBoost for the
logistic loss. However, unlike our algorithm, theirs requires
that the weak learner solve least-squares problems rather
than classification problems. Another sequential-update al-
gorithm for a different but related problem was proposed by
Cesa-Bianchi, Krogh and Warmuth [5].

Duffy and Helmbold [12] gave conditions under which a
loss function gives a boosting algorithm. They showed that
minimizing logistic loss does lead to a boosting algorithm
in the PAC sense, which suggests that our algorithm for this
problem, which is very close to theirs, may turn out also to
have the PAC boosting property.

Lafferty [17] went further in studying the relationship

between logistic regression and the exponential loss through
the use of a family of Bregman distances. However, the
setting described in his paper apparently cannot be extended
to precisely include the exponential loss. The use of Bregman
distances that we describe has important differences leading
to a natural treatment of the exponential loss and a new view
of logistic regression.

Our work builds heavily on that of Kivinen and War-
muth [16] who, along with Lafferty, were the first to make
a connection between AdaBoost and information geometry.
They showed that the update used by AdaBoost is a form of
“entropy projection.” However, the Bregman distance that
they used differed slightly from the one that we have chosen
(normalized relative entropy rather than unnormalized rela-
tive entropy) so that AdaBoost’s fit in this model was not quite
complete; in particular, their convergence proof depended on
assumptions that do not hold in general. Kivinen and War-
muth also described updates for general Bregman distances
including, as one of their examples, the Bregman distance
that we use to capture logistic regression.

2 BOOSTING, LOGISTIC MODELS AND

LOSS FUNCTIONS

Let S = h(x1; y1); : : : ; (xm; ym)i be a set of training exam-
ples where each instancex

i

belongs to a domain or instance
spaceX , and each labely

i

2 f�1;+1g.
We assume that we are also given a set of real-valued func-

tions onX , h1; : : : ; hn. Following convention in the MaxEnt
literature, we call these functionsfeatures; in the boosting
literature, these would be calledweak or base hypotheses.

We study the problem of approximating they
i

’s using a
linear combination of features. That is, we are interested in
the problem of finding a vector of parameters� 2 R

n such
thatf

�

(x

i

) =

P

n

j=1 �jhj(xi) is a “good approximation” of
y

i

. How we measure the goodness of such an approximation
varies with the task that we have in mind.

For classification problems, it is natural to try to match
the sign off

�

(x

i

) to y
i

, that is, to attempt to minimize

m

X

i=1

[[y

i

f

�

(x

i

) � 0]] (1)

where[[�]] is 1 if � is true and 0 otherwise. Although min-
imization of the number of classification errors may be a
worthwhile goal, in its most general form, the problem is
intractable (see, for instance, [15]). It is therefore often
advantageous to instead minimize some other nonnegative
loss function. For instance, the boosting algorithm Ada-
Boost [13, 20] is based on the exponential loss

m

X

i=1

exp
�

�y

i

f

�

(x

i

)

�

: (2)

It can be verified that Eq. (1) is upper bounded by Eq. (2);
however, the latter loss is much easier to work with as demon-
strated by AdaBoost. Briefly, on each of a series of rounds,
AdaBoost uses an oracle or subroutine called the weak learn-
ing algorithm to pick one feature (weak hypothesis)h

j

, and
the associated parameter�

j

is then updated. It has been noted
by Breiman [3, 4] and various later authors that both of these

160

steps are done in such a way as to (approximately) cause the
greatest decrease in the exponential loss. In this paper, we
show for the first time that AdaBoost is in fact a provably ef-
fective method for finding parameters� which minimize the
exponential loss (assuming the weak learner always chooses
the “best”h

j

).
We also give an entirely new algorithm for minimizing ex-

ponential loss in which, on each round,all of the parameters
�

j

are updated in parallel rather than one at a time. Our hope
is that this parallel-update algorithm will be faster than the
sequential-update algorithm; see Section 10 for preliminary
experiments in this regard.

Instead of usingf
�

as a classification rule, we might
instead postulate that they

i

’s were generated stochastically
as a function of thex

i

’s and attempt to usef
�

(x) to estimate
the probability of the associated labely. A very natural and
well-studied way of doing this is to passf

�

through a logistic
function, that is, to use the estimate

P̂r[y = +1 j x] =
1

1+ e

�f

�

(x)

:

The likelihood of the labels occuring in the sample then is

m

Y

i=1

1

1+ exp
�

�y

i

f

�

(x

i

)

�

:

Maximizing this likelihood then is equivalent to minimizing
the log loss of this model

m

X

i=1

ln
�

1+ exp
�

�y

i

f

�

(x

i

)

��

: (3)

Generalized and improved iterative scaling [9, 10] are
popular parallel-update methods for minimizing this loss. In
this paper, we give an alternative parallel-update algorithm
which we compare to iterative scaling techniques in prelimi-
nary experiments in Section 10.

3 BREGMAN­DISTANCE OPTIMIZATION

In this section, we give background on optimization using
Bregman distances. This will form the unifying basis for
our study of boosting and logistic regression. The particular
set-up that we follow is taken primarily from Lafferty, Della
Pietra and Della Pietra [18].

Let F : ∆ ! R be a continuously differentiable and
strictly convex function defined on a closed, convex set∆ �

R

m

+

. The Bregman distance associated withF is defined for
p;q 2 ∆ to be

B

F

�

p k q

�

:

= F (p)� F (q)�rF (q) � (p� q):

For instance, when

F (p) =

m

X

i=1

p

i

ln p
i

; (4)

B

F

is the (unnormalized) relative entropy

D
U

�

p k q

�

=

m

X

i=1

�

p

i

ln

�

p

i

q

i

�

+ q

i

� p

i

�

:

It can be shown that, in general, every Bregman distance
is nonnegative and is equal to zero if and only if its two
arguments are equal.

There is a natural optimization problem that can be as-
sociated with a Bregman distance, namely, to find the vector
p 2 ∆ that is closest to a given vectorq0 2 ∆ subject to a set
of linear constraints. These constraints are specified by an
m�nmatrixM and a vector ˜p 2 ∆. The vectorsp satisfying
these constraints are those for whichpT

M = p̃

T
M. Thus,

the problem is to find

arg min
p2P

B

F

�

p k q0
�

where
P

:

=

�

p 2 ∆ : pT
M = p̃

T
M

	

: (5)

The “convex dual” of this problem gives an alternative
formulation. Here, the problem is to find the vector of a
particular form that is closest to a given vector ˜p. The form
of such vectors is defined via theLegendre transform, written
v �

F

q (or simplyv � q whenF is clear from context):

v �

F

q

:

= arg min
p2∆

�

B

F

�

p k q

�

+ v � p

�

:

Using calculus, this can be seen to be equivalent to

rF (v � q) = rF (q)� v: (6)

For instance, whenB
F

is unnormalized relative entropy, it
can be verified using calculus that

(v � q)

i

= q

i

e

�v

i

: (7)

From Eq. (6), it is useful to note that

v � (w � q) = (v +w) � q: (8)

For a givenm � n matrix M and vectorq0 2 ∆, we
consider vectors obtained by taking the Legendre transform
of a linear combination of columns ofM with the vectorq0,
that is, vectors in the set

Q

:

= f(M�) � q0 j � 2 R
n

g: (9)

The dual optimization problem now can be stated to be the
problem of finding

arg min
q2Q

B

F

�

p̃ k q

�

whereQ is the closure ofQ.
The remarkable fact about these two optimization prob-

lems is that their solutions are the same, and, moreover, this
solution turns out to be the unique point at the intersection
of P andQ. We take the statement of this theorem from
Lafferty, Della Pietra and Della Pietra [18]. The result ap-
pears to be due to Csiszár [6, 7] and Topsoe [21]. A proof for
the case of (normalized) relative entropy is given by Della
Pietra, Della Pietra and Lafferty [10]. See also Csiszár’s
survey article [8].

Theorem 1 Let p̃, q0, M, ∆, F , B
F

, P and Q be as above.
Assume B

F

�

p̃ k q0
�

< 1. Then there exists a unique
q
?

2 ∆ satisfying:

1. q
?

2 P \ Q

161

2. B
F

�

p k q
�

= B

F

�

p k q
?

�

+B

F

�

q
?

k q
�

for any
p 2 P and q 2 Q

3. q
?

= arg min
q2Q

B

F

�

p̃ k q
�

4. q
?

= arg minp2P BF

�

p k q0
�

.

Moreover, any one of these four properties determines q
?

uniquely.

This theorem will be extremely useful in proving the
convergence of the algorithms described below. We will
show in the next section how boosting and logistic regression
can be viewed as optimization problems of the type given
in part 3 of the theorem. Then, to prove optimality, we only
need to show that our algorithms converge to a point inP\Q.

4 BOOSTING AND LOGISTIC

REGRESSION REVISITED

We return now to the boosting and logistic regression prob-
lems outlined in Section 2, and show how these can be cast
in the form of the optimization problems outlined above.

Recall that for boosting, our goal is to find� such that

m

X

i=1

exp

0

@

�y

i

n

X

j=1

�

j

h

j

(x

i

)

1

A

(10)

is minimized, or, more precisely, if the minimum is not at-
tained at a finite�, then we seek a procedure for finding a
sequence�1;�2; : : : which causes this function to converge
to its infimum. For shorthand, we call this theExpLoss prob-
lem.

To view this problem in the form given in Section 3, we
let p̃ = 0, q0 = 1 (the all 0’s and all 1’s vectors). We
let M

ij

= y

i

h

j

(x

i

), from which it follows that(M�)

i

=

P

n

j=1 �jyihj(xi). The space∆ = R

m

+

. Finally, we takeF
to be as in Eq. (4) so thatB

F

is the unnormalized relative
entropy.

As noted earlier, in this case,v � q is as given in Eq. (7).
In particular, this means that

Q =

8

<

:

q 2 R

m

+

�

�

�

�

�

�

q

i

= exp

0

@

�

n

X

j=1

�

j

y

i

h

j

(x

i

)

1

A

;� 2 R

n

9

=

;

:

Furthermore, it is trivial to see that

D
U

�

0 k q

�

=

m

X

i=1

q

i

(11)

so that D
U

�

0 k (M�) � q0
�

is equal to Eq. (10). Thus,
minimizing D

U

�

0 k q

�

overq 2 Q is equivalent to mini-
mizing Eq. (10). By Theorem 1, this is equivalent to finding
q 2 Q satisfying the constraints

m

X

i=1

q

i

M

ij

=

m

X

i=1

q

i

y

i

h

j

(x

i

) = 0 (12)

for j = 1; : : : ; n.

Logistic regression can be reduced to an optimization
problem of this form in nearly the same way. Recall that here
our goal is to find� (or a sequence of�’s) which minimize

m

X

i=1

ln

0

@1+ exp

0

@

�y

i

n

X

j=1

�

j

h

j

(x

i

)

1

A

1

A

: (13)

For shorthand, we call this theLogLoss problem. We define
p̃ andM exactly as for exponential loss. The vectorq0 is still
constant, but now is defined to be(1=2)1, and the space∆
is now restricted to be[0; 1]m. These are minor differences,
however. The only important difference is in the choice of
the functionF , namely,

F (p) =

m

X

i=1

�

p

i

ln p
i

+ (1� p

i

) ln(1� p

i

)

�

:

The resulting Bregman distance is

D
B

�

p k q

�

=

m

X

i=1

�

p

i

ln

�

p

i

q

i

�

+ (1� p

i

) ln

�

1� p

i

1� q

i

��

:

Trivially,

D
B

�

0 k q

�

= �

m

X

i=1

ln(1� q

i

): (14)

For this choice ofF , it can be verified using calculus that

(v � q)

i

=

q

i

e

�v

i

1� q

i

+ q

i

e

�v

i

(15)

so that

Q =

8

<

:

q 2 [0; 1]m

�

�

�

�

�

�

q

i

= �

0

@

n

X

j=1

�

j

y

i

h

j

(x

i

)

1

A

;� 2 R

n

9

=

;

:

where�(x) = (1+ e

x

)

�1. Thus, D
B

�

0 k (M�) � q0
�

is
equal to Eq. (13) so minimizing D

B

�

0 k q

�

overq 2 Q

is equivalent to minimizing Eq. (13). As before, this is the
same as findingq 2 Q satisfying the constraints in Eq. (12).

5 PARALLEL OPTIMIZATION METHODS

In this section, we describe a new algorithm for the
ExpLoss and LogLoss problems using an iterative method
in which all weights�

j

are updated on each iteration. The
algorithm is shown in Fig. 1. The algorithm can be used
with any functionF satisfying certain conditions described
below; in particular, we will see that it can be used with
the choices ofF given in Section 4. Thus, this is really a
single algorithm that can be used for both loss-minimization
problems by setting the parameters appropriately. Note that,
without loss of generality, we assume in this section that for
all instancesi,

P

n

j=1 jMij

j � 1.
The algorithm is very simple. On each iteration, the

vector�
t

is computed as shown and added to the parameter
vector�

t

. We assume for all our algorithms that the inputs
are such that infinite-valued updates never occur.

This algorithm is new for both minimization problems.
Optimization methods forExpLoss, notably AdaBoost, have

162

Parameters: ∆ � R

m

+

F : ∆ ! R satisfying Assumptions 1 and 2
q0 2 ∆ such thatB

F

�

0 k q0
�

<1

Input: Matrix M 2 [�1; 1]m�n where, for alli,
P

n

j=1 jMij

j � 1

Output: �1;�2; : : : such that

lim
t!1

B

F

�

0 k (M�

t

) � q0
�

= inf
�2R

n

B

F

�

0 k (M�) � q0
�

:

Let�1 = 0

For t = 1; 2; : : : :

� q

t

= (M�

t

) �

F

q0
� For j = 1; : : : ; n:

W

+

t;j

=

X

i:sign(M
ij

)=+1

q

t;i

jM

ij

j

W

�

t;j

=

X

i:sign(M
ij

)=�1

q

t;i

jM

ij

j

�

t;j

=

1
2

ln

W

+

t;j

W

�

t;j

!

� Update parameters:�
t+1 = �

t

+ �

t

Figure 1: The parallel-update optimization algorithm.

generally involved updates of one feature at a time. Parallel-
update methods forLogLoss are well known (see, for exam-
ple, [9, 10]). However, our updates take a different form from
the usual updates derived for logistic models.

A useful point is that the distributionq
t+1 is a simple

function of the previous distributionq
t

. By Eq. (8),

q

t+1 = (M(�

t

+ �

t

)) � q0 = (M�

t

) � ((M�

t

) � q0)

= (M�

t

) � q

t

: (16)

This gives

q

t+1;i =

8

<

:

q

t;i

exp
�

�

P

n

j=1 �t;jMij

�

q

t;i

h

(1� q

t;i

) exp
�

P

n

j=1 �t;jMij

�

+ q

t;i

i

�1

(17)
for ExpLoss andLogLoss respectively.

We will prove next that the algorithm given in Fig. 1 con-
verges to optimality for either loss. We prove this abstractly
for any matrixM and vectorq0, and for any functionF
satisfying the following assumptions:

Assumption 1 For any v 2 Rm, q 2 ∆,

B

F

�

0 k v � q
�

�B

F

�

0 k q
�

�

m

X

i=1

q

i

(e

�v

i

� 1):

Assumption 2 For any c <1, the set
�

q 2 ∆ j B

F

�

0 k q
�

� c

	

is bounded.

We will show later that the choices ofF given in Sec-
tion 4 satisfy these assumptions which will allow us to prove
convergence forExpLoss andLogLoss.

To prove convergence,we use the auxiliary-function tech-
nique of Della Pietra, Della Pietra and Lafferty [10]. Very
roughly, the idea of the proof is to derive a nonnegative lower
bound called an auxiliary function on how much the loss
decreases on each iteration. Since the loss never increases
and is lower bounded by zero, the auxiliary function must
converge to zero. The final step is to show that when the
auxiliary function is zero, the constraints defining the setP

must be satisfied, and therefore, by Theorem 1, we must have
converged to optimality.

More formally, we define anauxiliary function for a se-
quenceq1;q2; : : : and matrixM to be a continuous function
A : ∆ ! R satisfying the two conditions:

B

F

�

0 k q

t+1
�

�B

F

�

0 k q

t

�

� A(q

t

) � 0 (18)

and
A(q) = 0) q

T
M = 0: (19)

Before proving convergence of specific algorithms, we
prove the following lemma which shows, roughly, that if a
sequence has an auxiliary function, then the sequence con-
verges to the optimum pointq

?

. Thus, proving convergence
of a specific algorithm reduces to simply finding an auxiliary
function.

Lemma 2 Let A be an auxiliary function for q1; q2; : : : and
matrix M. Assume the q

t

’s lie in a compact subspace of Q
where Q is as in Eq. (9); in particular, this will be the case if
Assumption 2 holds and B

F

�

0 k q1
�

<1. Then

lim
t!1

q
t

= q
?

:

= arg min
q2Q

B

F

�

0 k q
�

:

Proof: By condition (18),B
F

�

0 k q

t

�

is a nonincreasing
sequence which is bounded below by zero. Therefore, the se-
quence of differencesB

F

�

0 k q

t+1
�

�B

F

�

0 k q

t

�

must
converge to zero. By condition (18), this means thatA(q

t

)

must also converge to zero. Because we assume that theq

t

’s
lie in a compact space, the sequence ofq

t

’s must have a sub-
sequence converging to some point ˆq 2 ∆. By continuity of
A, we haveA(q̂) = 0. Therefore, ˆq 2 P by condition (19),
whereP is as in Eq. (5). On the other hand, ˆq is the limit of
a sequence of points inQ so q̂ 2 Q. Thus,q̂ 2 P \ Q so
q̂ = q

?

by Theorem 1.
This argument and the uniqueness ofq

?

show that the
q

t

’s have only a single limit pointq
?

. Suppose that the entire
sequence did not converge toq

?

. Then we could find an
open setB containingq

?

such thatfq1;q2; : : :g�B contains
infinitely many points and therefore has a limit point which
must be in the closed set∆�B and so must be different from
q

?

. This, we have already argued, is impossible. Therefore,
the entire sequence converges toq

?

.
We can now apply this lemma to prove the convergence

of the algorithm of Fig. 1.

Theorem 3 Let F satisfy Assumptions 1 and 2, and assume
that B

F

�

0 k q0
�

< 1. Let the sequences �1;�2; : : : and
q1; q2; : : : be generated by the algorithm of Fig. 1. Then

lim
t!1

q
t

= arg min
q2Q

B

F

�

0 k q
�

163

where Q is as in Eq. (9). That is,

lim
t!1

B

F

�

0 k (M�

t

) � q0
�

= inf
�2R

n

B

F

�

0 k (M�) � q0
�

:

Proof: Let

W

+

j

(q) =

X

i:sign(M
ij

)=+1

q

i

jM

ij

j

W

�

j

(q) =

X

i:sign(M
ij

)=�1

q

i

jM

ij

j

so thatW+

t;j

= W

+

j

(q

t

) andW�

t;j

= W

�

j

(q

t

). We claim that
the function

A(q) = �

n

X

j=1

�

q

W

+

j

(q)�

q

W

�

j

(q)

�2

is an auxiliary function forq1;q2; : : :. Clearly,A is continu-
ous and nonpositive.

Let s
ij

:

= sign(M
ij

). We can upper bound the change in
B

F

�

0 k q

t

�

on roundt byA(q
t

) as follows:

B

F

�

0 k q

t+1
�

�B

F

�

0 k q

t

�

= B

F

�

0 k (M�

t

) � q

t

�

�B

F

�

0 k q

t

�

(20)

�

m

X

i=1

q

t;i

2

4exp

0

@

�

n

X

j=1

�

t;j

M

ij

1

A

� 1

3

5 (21)

=

m

X

i=1

q

t;i

2

4exp

0

@

�

n

X

j=1

�

t;j

s

ij

jM

ij

j

1

A

� 1

3

5

�

m

X

i=1

q

t;i

2

4

n

X

j=1

jM

ij

j(e

��

t;j

s

ij

� 1)

3

5 (22)

=

n

X

j=1

�

W

+

t;j

e

��

t;j

+W

�

t;j

e

�

t;j

�W

+

t;j

�W

�

t;j

�

(23)

= �

n

X

j=1

�

q

W

+

t;j

�

q

W

�

t;j

�2

= A(q

t

): (24)

Eqs. (20) and (21) follow from Eq. (16) and Assumption 1,
respectively. Eq. (22) uses the fact that, for anyx

j

’s and for
p

j

� 0 with
P

j

p

j

� 1, we have

exp

0

@

X

j

p

j

x

j

1

A

� 1

= exp

0

@

X

j

p

j

x

j

+ 0 �

0

@1�
X

j

p

j

1

A

1

A

� 1

�

X

j

p

j

e

x

i

+

0

@1�
X

j

p

j

1

A

� 1 =

X

j

p

j

(e

x

i

� 1)

(25)

by Jensen’s inequality applied to the convex functione

x.
Eq. (23) uses the definitions ofW+

t;j

andW�

t;j

, and Eq. (24)

uses our choice of�
t

(indeed,�
t

was chosen specifically to
minimize Eq. (23)).

If A(q) = 0 then for allj,W+

j

(q) = W

�

j

(q), that is,

0 = W

+

j

(q)�W

�

j

(q) =

m

X

i=1

q

i

s

ij

jM

ij

j =

m

X

i=1

q

i

M

ij

:

Thus,A is an auxiliary function forq1;q2; : : :. The theorem
now follows immediately from Lemma 2.

To apply this theorem to theExpLoss andLogLoss prob-
lems, we only need to verify that Assumptions 1 and 2 are
satisfied. ForExpLoss, Assumption 1 holds with equality.
For LogLoss,

D
B

�

0 k v � q

�

�D
B

�

0 k q

�

=

m

X

i=1

ln

�

1� q

i

1� (v � q)

i

�

=

m

X

i=1

ln
�

1� q

i

+ q

i

e

�v

i

�

�

m

X

i=1

�

�q

i

+ q

i

e

�v

i

�

:

The first and second equalities use Eqs. (14) and (15), respec-
tively. The final inequality uses 1+ x � e

x for all x.
Assumption 2 holds trivially forLogLoss since ∆ =

[0; 1]m is bounded. ForExpLoss, if D
U

�

0 k q

�

� c then

m

X

i=1

q

i

� c

which clearly defines a bounded subset ofR

m

+

.

6 SEQUENTIAL ALGORITHMS

In this section, we describe another algorithm for the same
minimization problems described in Section 4. However,
unlike the algorithm of Section 5, the one that we present
now only updates the weight of one feature at a time. While
the parallel-update algorithm may give faster convergence
when there are not too many features, the sequential-update
algorithm can be used when there are a very large number
of features using an oracle for selecting which feature to
update next. For instance, AdaBoost, which is essentially
equivalent to the sequential-update algorithm forExpLoss,
uses an assumed weak learning algorithm to select a weak
hypothesis, i.e., one of the features. The sequential algorithm
that we present forLogLoss can be used in exactly the same
way. The algorithm is shown in Fig. 2.

Theorem 4 Given the assumptions of Theorem 3, the al­
gorithm of Fig. 2 converges to optimality in the sense of
Theorem 3.

Proof: For this theorem, we use the auxiliary function

A(q) =

v

u

u

t

m

X

i=1

q

i

!2

�max
j

m

X

i=1

q

i

M

ij

!2

�

m

X

i=1

q

i

:

164

Parameters: (same as in Fig. 1)
Input: Matrix M 2 [�1; 1]m�n

Output: (same as in Fig. 1)
Let�1 = 0

For t = 1; 2; : : : :

� q

t

= (M�

t

) � q0

� j

t

= arg max
j

�

�

�

�

�

m

X

i=1

q

t;i

M

ij

�

�

�

�

�

� r

t

=

m

X

i=1

q

t;i

M

ij

t

� Z

t

=

m

X

i=1

q

t;i

� �

t

=

1
2

ln

�

Z

t

+ r

t

Z

t

� r

t

�

� �

t;j

=

�

�

t

if j = j

t

0 else
� Update parameters:�

t+1 = �

t

+ �

t

Figure 2: The sequential-update optimization algorithm.

This function is clearly continuous and nonpositive. We have
that

B

F

�

0 k q

t+1
�

�B

F

�

0 k q

t

�

�

m

X

i=1

q

t;i

0

@exp

0

@

�

n

X

j=1

�

t;j

M

ij

1

A

� 1

1

A

=

m

X

i=1

q

t;i

�

exp
�

��

t

M

ij

t

�

� 1
�

(26)

�

m

X

i=1

q

t;i

�

1+M

ij

t

2
e

��

t

+

1�M

ij

t

2
e

�

t

� 1

�

(27)

=

Z

t

+ r

t

2
e

��

t

+

Z

t

� r

t

2
e

�

t

� Z

t

(28)

=

q

Z

2
t

� r

2
t

� Z

t

= A(q

t

) (29)

where Eq. (27) uses the convexity ofe��t

x, and Eq. (29)
uses our choice of�

t

(as before, we chose�
t

to minimize
the bound in Eq. (28)).

If A(q) = 0 then

0 = max
j

�

�

�

�

�

m

X

i=1

q

i

M

ij

�

�

�

�

�

so
P

i

q

i

M

ij

= 0 for all j. Thus,A is an auxiliary function
for q1;q2; : : : and the theorem follows immediately from
Lemma 2.

As mentioned above, this algorithm is essentially equiv-
alent to AdaBoost, specifically, the version of AdaBoost first
presented by Freund and Schapire [13]. In AdaBoost, on
each iteration, a distributionD

t

over the training examples
is computed and the weak learner seeks a weak hypothesis
with low error with respect to this distribution. The algorithm
presented in this section assumes that the space of weak hy-
potheses consists of the featuresh1; : : : ; hn, and that the

weak learner always succeeds in selecting the feature with
lowest error (or, more accurately, with error farthest from
1=2). Translating to our notation, the weightD

t

(i) assigned
to example(x

i

; y

i

) by AdaBoost is exactly equal toq
t;i

=Z

t

,
and the weighted error of thet-th weak hypothesis is equal
to

1
2

�

1�
r

t

Z

t

�

:

Theorem 4 then is the first proof that AdaBoost always
converges to the minimum of the exponential loss (assuming
an idealized weak learner of the form above). Note that when
q

?

6= 0, this theorem also tells us the exact form of limD
t

.
However, we do not know what the limiting behavior ofD

t

is whenq
?

= 0, nor do we know about the limiting behavior
of the parameters�

t

(whether or notq
?

= 0).
We have also presented in this section a new algorithm for

logistic regression. In fact, this algorithm is the same as one
given by Duffy and Helmbold [12] except for the choice of
�

t

. In practical terms, very little work would be required to
alter an existing learning system based on AdaBoost so that
it uses logistic loss rather than exponential loss—the only
difference is in the manner in whichq

t

is computed from�
t

.
We can even do this for systems based on “confidence-rated”
boosting [20] in which�

t

andj
t

are chosen together on each
round to minimize Eq. (26) rather than an approximation of
this expression as used in the algorithm of Fig. 2. (Note that
the proof of Theorem 4 can easily be modified to prove the
convergence of such an algorithm using the same auxiliary
function.)

7 A PARAMETERIZED FAMILY OF

ITERATIVE ALGORITHMS

In previous sections, we described separate parallel- and
sequential-update algorithms. In this section, we describe a
parameterized family of algorithms that includes the parallel-
update algorithm of Section 5 as well as a sequential-update
algorithm that is different from the one in Section 6. This
family of algorithms also includes other algorithms that may
be more appropriate than either in certain situations as we
explain below.

The algorithm, which is shown in Fig. 3, is similar to
the parallel-update algorithm of Fig. 1. On each round, the
quantitiesW+

t;j

andW�

t;j

are computed as before, and the
vectord

t

is computed as�
t

was computed in Fig. 1. Now,
however, this vectord

t

is not added directly to�
t

. Instead,
another vectora

t

is selected which provides a “scaling” of
the features. This vector is chosen to maximize a measure
of progress while restricted to belong to the setAM . The
allowed form of these scaling vectors is given by the setA,
a parameter of the algorithm;AM is the restriction ofA to
those vectorsa satisfying the constraint that for alli,

n

X

j=1

a

j

jM

ij

j � 1:

The parallel-update algorithm of Fig. 1 is obtained by
choosingA = f1g and assuming that

P

j

jM

ij

j � 1 for
all i. (Equivalently, we can make no such assumption, and
chooseA = fc1 j c > 0g.)

165

Parameters: (same as in Fig. 1)
A � R

n

+

Input: Matrix M 2 R

m�n satisfying the condition that
8j; 9a 2 AM for whicha

j

> 0 where
AM

:

= fa 2 A j 8i :
X

j

a

j

jM

ij

j � 1g

Output: (same as in Fig. 1)
Let�1 = 0

For t = 1; 2; : : : :

� q

t

= (M�

t

) �

F

q0
� For j = 1; : : : ; n:

W

+

t;j

=

X

i:sign(M
ij

)=+1

q

t;i

jM

ij

j

W

�

t;j

=

X

i:sign(M
ij

)=�1

q

t;i

jM

ij

j

d

t;j

=

1
2

ln

W

+

t;j

W

�

t;j

!

� a

t

= arg max
a2AM

n

X

j=1

a

j

�

q

W

+

t;j

�

q

W

�

t;j

�2

� 8j : �
t;j

= a

t;j

d

t;j

� Update parameters:�
t+1 = �

t

+ �

t

Figure 3: A parameterized family of iterative optimization
algorithms.

We can obtain a sequential-update algorithm by choosing
A to be the set of unit vectors (i.e., with one component equal
to 1 and all others equal to 0), and assuming thatM

ij

2

[�1;+1] for all i; j. The update then becomes

�

t;j

=

�

d

t;j

if j = j

t

0 else

where

j

t

= arg max
j

�

�

�

�

q

W

+

t;j

�

q

W

�

t;j

�

�

�

�

:

Another interesting case is when we assume that
P

j

M

2
ij

� 1 for all i. It is then natural to choose

A = fa 2 R

n

+

j jjajj2 = 1g

which ensures thatAM = A. Then the maximization over
AM can be solved analytically giving the update

�

t;j

=

b

j

d

t;j

jjbjj2

whereb
j

=

�
q

W

+

t;j

�

q

W

�

t;j

�2
. (This idea generalizes

easily to the case in which
P

j

M

p

ij

� 1 andjjajj
q

= 1 for
any dual normsp andq.)

A final case is when we do not restrict the scaling vectors
at all, i.e., we chooseA = R

n

+

. In this case, the maximization
problem that must be solved to choose eacha

t

is a linear
programming problem withn variables andm constraints.

We now prove the convergence of this entire family of
algorithms.

Theorem 5 Given the assumptions of Theorem 3, the al­
gorithm of Fig. 3 converges to optimality in the sense of
Theorem 3.

Proof: We use the auxiliary function

A(q) = � max
a2AM

n

X

j=1

a

j

�

q

W

+

j

(q)�

q

W

�

j

(q)

�2

whereW+

j

andW�

j

are as in Theorem 3. This function is
continuous and nonpositive. We can bound the change in
B

F

�

0 k q

t

�

using the same technique given in Theorem 3:

B

F

�

0 k q

t+1
�

�B

F

�

0 k q

t

�

�

m

X

i=1

q

t;i

2

4exp

0

@

�

n

X

j=1

�

t;j

M

ij

1

A

� 1

3

5

=

m

X

i=1

q

t;i

2

4exp

0

@

�

n

X

j=1

a

t;j

d

t;j

s

ij

jM

ij

j

1

A

� 1

3

5

�

m

X

i=1

q

t;i

2

4

n

X

j=1

a

t;j

jM

ij

j(e

�d

t;j

s

ij

� 1)

3

5

=

n

X

j=1

a

t;j

�

W

+

t;j

e

�d

t;j

+W

�

t;j

e

d

t;j

�W

+

t;j

�W

�

t;j

�

= �

n

X

j=1

a

t;j

�

q

W

+

t;j

�

q

W

�

t;j

�2

= A(q

t

):

Finally, if A(q) = 0 then

max
a2AM

n

X

j=1

a

j

�

q

W

+

j

(q) �

q

W

�

j

(q)

�2

= 0:

Since for everyj there existsa 2 AM with a

j

> 0, this
impliesW+

j

(q) = W

�

j

(q) for all j, i.e.,
P

i

q

i

M

ij

= 0.
Applying Lemma 2 completes the theorem.

8 MULTICLASS PROBLEMS

In this section, we show how all of our results can be extended
to the multiclass case. Because of the generality of the pre-
ceding results, we will see that no new algorithms need be
devised and no new convergence proofs need be proved for
this case. Rather, all of the preceding algorithms and proofs
can be directly applied to the multiclass case.

In the multiclass case, the label setY has cardinalityk.
Each feature is of the formh

j

: X � Y ! R. In logistic
regression, we use a model

P̂r[yjx] =
e

f

�

(x;y)

P

`2Y

e

f

�

(x;`)

=

1
1+

P

` 6=y

e

f

�

(x;`)�f

�

(x;y)

(30)
wheref

�

(x; y) =

P

n

j=1 �jhj(x; y). The loss on a training
set then is

m

X

i=1

ln

2

41+

X

` 6=y

i

e

f

�

(x

i

;`)�f

�

(x

i

;y

i

)

3

5

: (31)

166

We transform this into our framework as follows: Let

B = f(i; `) j 1� i � m; ` 2 Y � fy

i

gg:

The vectorsp, q, etc. that we work with are inRB
+

. That is,
they are(k � 1)m-dimensional and are indexed by pairs in
B. Let p̄

i

denote
P

` 6=y

i

p

i;`

. The convex functionF that we
use for this case is

F (p) =

m

X

i=1

2

4

X

` 6=y

i

p

i;`

ln p
i;`

+ (1� p̄

i

) ln(1� p̄

i

)

3

5

which is defined over the space

∆ =

n

p 2 R

B

+

j 8i : p̄
i

� 1
o

:

The resulting Bregman distance is

B

F

�

p k q

�

=

m

X

i=1

2

4

X

` 6=y

p

i;`

ln

�

p

i;`

q

i;`

�

+ (1� p̄

i

) ln

�

1� p̄

i

1� q̄

i

�

3

5

:

Clearly,

B

F

�

0 k q

�

= �

m

X

i=1

ln(1� q̄

i

):

It can be shown that

(v � q)

(i;`)

=

q

i;`

e

�v

i;`

1� q̄

i

+

P

` 6=y

i

q

i;`

e

�v

i;`

:

Assumption 1 can be verified by noting that

B

F

�

0 k v � q

�

)�B

F

�

0 k q

�

=

m

X

i=1

ln

1� q̄

i

1� (v � q)

i

!

=

m

X

i=1

ln

0

@1� q̄

i

+

X

` 6=y

i

q

i;`

e

�v

i;`

1

A (32)

�

m

X

i=1

0

@

�q̄

i

+

X

` 6=y

i

q

i;`

e

�v

i;`

1

A

=

X

(i;`)2B

q

i;`

(e

�v

i;`

� 1):

Now let M
(i;`);j

= h

j

(x

i

; y

i

) � h

j

(x

i

; `), and letq0 =

(1=k)1. Plugging in these definitions gives that
B

F

�

0 k (M�) � q0
�

is equal to Eq. (31). Thus, the al-
gorithms of Sections 5, 6 and 7 can all be used to solve this
minimization problem, and the corresponding convergence
proofs are also directly applicable.

There are several multiclass versions of AdaBoost. Ada-
Boost.M2 [13] (a special case of AdaBoost.MR [20]), is
based on the loss function

X

(i;`)2B

exp
�

f

�

(x

i

; `)� f

�

(x

i

; y

i

)

�

: (33)

For this loss, we can use a similar set up except for the choice
of F . We instead use

F (p) =

X

(i;`)2B

p

i;`

ln p
i;`

for p 2 ∆ = R

B

+

. In fact, this is actually the sameF used
for (binary) AdaBoost. We have merely changed the index
set toB. Thus, as before,

B

F

�

0 k q

�

=

X

(i;`)2B

q

i;`

and
(v � q)

i;`

= q

i;`

e

�v

i;`

:

ChoosingM as we did for multiclass logistic regression and
q0 = 1, we have thatB

F

�

0 k (M�) � q0
�

is equal to the
loss in Eq. (33). We can thus use the preceding algorithms
to solve this multiclass problem as well. In particular, the
sequential-update algorithm gives AdaBoost.M2.

AdaBoost.MH [20] is another multiclass version of Ada-
Boost. For AdaBoost.MH, we replaceB by the index set

f1; : : : ;mg � Y ;

and for each examplei and label̀ 2 Y , we define

ỹ

i;`

=

�

+1 if ` = y

i

�1 if ` 6= y

i

.

The loss function for AdaBoost.MH is
m

X

i=1

X

`2Y

exp
�

�ỹ

i;`

f

�

(x

i

; `)

�

: (34)

We now letM
(i;`);j

= ỹ

i;`

h

j

(x

i

; `) and use again the sameF
as in binary AdaBoost withq0 = 1 to obtain this multiclass
version of AdaBoost.

9 A COMPARISON TO ITERATIVE

SCALING

In this section, we describe the generalized iterative scaling
(GIS) procedure of Darroch and Ratcliff [9] for comparison
to our algorithms. We largely follow the description of GIS
given by Berger, Della Pietra and Della Pietra [1] for the
multiclass case. To make the comparison as stark as possible,
we present GIS in our notation and prove its convergence
using the methods developed in previous sections. In doing
so, we are also able to relax one of the key assumptions
traditionally used in studying GIS.

We adopt the notation and set-up used for multiclass lo-
gistic regression in Section 8. (To our knowledge, there is no
analog of GIS for the exponential loss so we only consider
the case of logistic loss.) We also extend this notation by
defining q

i;y

i

= 1 � q̄

i

so thatq
i;`

is now defined for all
` 2 Y . Moreover, it can be verified thatq

i;`

= P̂r[`jx
i

] as
defined in Eq. (30) ifq = (M�) � q0.

In GIS, the following assumptions regarding the features
are usually made:

8i; j; ` : h

j

(x

i

; `) � 0 and 8i; ` :
n

X

j=1

h

j

(x

i

; `) = 1 :

167

In this section, we prove that GIS converges with the second
condition replaced by a milder one, namely, that

8i; ` :
n

X

j=1

h

j

(x

i

; `) � 1 :

Since, in the multiclass case, a constant can be added to
all featuresh

j

without changing the model or loss function,
and since the features can be scaled by any constant, the two
assumptions we consider clearly can be made to hold without
loss of generality. The improved iterative scaling algorithm
of Della Pietra, Della Pietra and Lafferty [10] also requires
only these milder assumptions but is much more complicated
to implement, requiring a numerical search (such as Newton-
Raphson) for each feature on each iteration.

GIS works much like the parallel-update algorithm of
Section 5 withF ,M andq0 as defined for multiclass logistic
regression in Section 8. The only difference is in the com-
putation of the vector of updates�

t

, for which GIS requires
direct access to the featuresh

j

. Specifically, in GIS,�
t

is
defined to be

�

t;j

= ln

�

H

j

P

j

(q

t

)

�

where

H

j

=

m

X

i=1

h

j

(x

i

; y

i

)

P

j

(q) =

m

X

i=1

X

`2Y

q

i;`

h

j

(x

i

; `):

Clearly, these updates are quite different from the updates
described in this paper.

Using more notation from Sections 5 and 8, we can re-
formulateP

j

(q) within our framework as follows:

P

j

(q) =

m

X

i=1

X

`2Y

q

i;`

h

j

(x

i

; `)

=

m

X

i=1

h

j

(x

i

; y

i

)

+

m

X

i=1

X

`2Y

q

i;`

�

h

j

(x

i

; `)� h

j

(x

i

; y

i

)

�

= H

j

�

X

(i;`)2B

q

i;`

M

(i;`);j

= H

j

� (W

+

j

(q) �W

�

j

(q)): (35)

We can now prove the convergenceof these updates using
the usual auxiliary function method.

Theorem 6 Let F , M and q0 be as above. Then the modified
GIS algorithm described above converges to optimality in the
sense of Theorem 3.

Proof: We will show that

A(q)

:

= �D
U

�

hH1; : : : ; Hn

i k hP1(q); : : : ; Pn(q)i
�

= �

n

X

j=1

�

H

j

ln
H

j

P

j

(q)

+ P

j

(q) �H

j

�

(36)

is an auxilliary function for the vectorsq1;q2; : : : computed
by GIS. Clearly,A is continuous, and the usual nonnega-
tivity properties of unnormalized relative entropy imply that
A(q) � 0 with equality if and only ifH

j

= P

j

(q) for all j.
From Eq. (35),H

j

= P

j

(q) if and only ifW+

j

(q) =W

�

j

(q).
Thus,A(q) = 0 implies that the constraintsqT

M = 0 as in
the proof of Theorem 3. All that remains to be shown is that

B

F

�

0 k (M�) � q

�

�B

F

�

0 k q

�

� A(q) (37)

where

�

j

= ln

�

H

j

P

j

(q)

�

:

We introduce the notation

∆
i

(`) =

n

X

j=1

�

j

h

j

(x

i

; `);

and then rewrite the gain as follows using Eq. (32):

B

F

�

0 k (M�) � q

�

�B

F

�

0 k q

�

=

m

X

i=1

ln

0

@

q

i;y

i

+

X

` 6=y

i

q

i;`

exp

0

@

�

n

X

j=1

�

j

M

(i;`);j

1

A

1

A

= �

m

X

i=1

∆
i

(y

i

)

+

m

X

i=1

ln

2

4

e

∆
i

(y

i

)

0

@

q

i;y

i

+

X

` 6=y

i

q

i;`

e

�

P

n

j=1
�

j

M

(i;`);j

1

A

3

5

:

(38)

Plugging in definitions, the first term of Eq. (38) can be
written as

m

X

i=1

∆
i

(y

i

) =

n

X

j=1

"

ln

�

H

j

P

j

(q)

�

m

X

i=1

h

j

(x

i

; y

i

)

#

=

n

X

j=1

H

j

ln

�

H

j

P

j

(q)

�

: (39)

Next we derive an upper bound on the second term of Eq. (38):

m

X

i=1

ln

2

4

e

∆
i

(y

i

)

0

@

q

i;y

i

+

X

` 6=y

i

q

i;`

e

�

P

n

j=1
�

j

M

(i;`);j

1

A

3

5

=

m

X

i=1

ln

0

@

q

i;y

i

e

∆
i

(y

i

)

+

X

` 6=y

i

q

i;`

e

∆
i

(`)

1

A

=

m

X

i=1

ln

X

`2Y

q

i;`

e

∆
i

(`)

!

168

10
0

10
1

10
2

10
3

10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
training loss

i.s.
seq
seq2
par

10
0

10
1

10
2

10
3

10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
training loss

i.s.
seq
seq2
par

Figure 4: The training logistic loss on data generated by a noisy hyperplane with many (left) or few (right) relevant features.

�

m

X

i=1

X

`2Y

q

i;`

e

∆
i

(`)

� 1

!

(40)

=

m

X

i=1

X

`2Y

q

i;`

2

4exp

0

@

n

X

j=1

h

j

(x

i

; `)�

j

1

A

� 1

3

5 (41)

�

m

X

i=1

X

`2Y

q

i;`

n

X

j=1

h

j

(x

i

; `)(e

�

j

� 1) (42)

=

m

X

i=1

X

`2Y

q

i;`

n

X

j=1

h

j

(x

i

; `)

�

H

j

P

j

(q)

� 1

�

(43)

=

n

X

j=1

�

H

j

P

j

(q)

� 1

�

m

X

i=1

X

`2Y

q

i;`

h

j

(x

i

; `)

=

n

X

j=1

(H

j

� P

j

(q)) : (44)

Eq. (40) follows from the log bound lnx � x � 1. Eq. (42)
uses Eq. (25) and our assumption on the form of theh

j

’s.
Eq. (43) follows from our definition of the update�.

Finally, combining Eqs. (36), (38), (39) and (44) gives
Eq. (37) completing the proof.

It is clear that the differences between GIS and the updates
given in this paper stem from Eq. (38), which is derived from
lnx = �C + ln

�

e

C

x

�

, with C = ∆
i

(y

i

) on thei’th term
in the sum. This choice ofC effectively means that the log
bound is taken at a different point (lnx = �C + ln

�

e

C

x

�

�

�C + e

C

x � 1). In this more general case, the bound is
exact atx = e

�C ; hence, varyingC varies where the bound
is taken, and thereby varies the updates.

10 EXPERIMENTS

In this section, we briefly describe some experiments us-
ing synthetic data. These experiments are preliminary and
are only intended to suggest the possibility of these algo-
rithms’ having practical value. More systematic experiments
are clearly needed using both real-world and synthetic data,

and comparing the new algorithms to other commonly used
procedures.

We first tested how effective the methods are at mini-
mizing the logistic loss on the training data. In the first ex-
periment, we generated data using a very noisy hyperplane.
More specifically, we first generated a random hyperplane
in 100-dimensional space represented by a vectorw 2 R

100

(chosen uniformly at random from the unit sphere). We then
chose 300 pointsx 2 R

100 where each point is normally
distributedx � N(0; I). We next assigned a labely to each
point depending on whether it fell above or below the cho-
sen hyperplane, i.e.,y = sign(w � x). After each label was
chosen, we perturbed each pointx by adding to it a random
amount" where" � N(0; 0:8 I). This had the effect of
causing the labels of points near the separating hyperplane
to be more noisy than points that are farther from it. The
features were identified with coordinates ofx.

We ran the parallel- and sequential-update algorithms of
Sections 5 and 6 (denoted “par” and “seq” in the figures)
on this data. We also ran the sequential-update algorithm
that is a special case of the parameterized family described
in Section 7 (denoted “seq2”). Finally, we ran the iterative
scaling algorithm described in Section 9 (“i.s.”).

The results of this experiment are shown on the left of
Fig. 4 which shows a plot of the logistic loss on the training
set for each of the four methods as a function of the number
of iterations. (The loss has been normalized to be 1 when
� = 0.) All of our methods do very well in comparison
to iterative scaling. The parallel-update method is clearly
the best, followed closely by the second sequential-update
algorithm. The parallel-update method can be as much as 30
times faster (in terms of number of iterations) than iterative
scaling.

On the right of Fig. 4 are shown the results of a simi-
lar experiment in which all but four of the components of
w were forced to be zero. In other words, there were only
four relevant variables or features. In this experiment, the
sequential-update algorithms, which perform a kind of fea-
ture selection, initially have a significant advantage over the

169

10
0

10
1

10
2

10
3

0.15

0.2

0.25

0.3

0.35

0.4
test error

log seq
exp seq
log par
exp par

Figure 5: The test misclassification error on data generated
by a noisy hyperplane with Boolean features.

parallel-update algorithm, but are eventually overtaken.
In the last experiment, we tested how effective the new

competitors of AdaBoost are at minimizing the test misclas-
sification error. In this experiment, we chose a separating
hyperplanew as in the first experiment. Now, however, we
chose 1000 pointsx uniformly at random from the Boolean
hypercubef�1;+1g100. The labelsy were computed as
before. After the labelsy were chosen, we flipped each coor-
dinate of each pointx independently with probability 0:05.
This noise model again has the effect of causing examples
near the decision surface to be noisier than those far from it.

For this experiment, we used the parallel- and sequential-
update algorithms of Sections 5 and 6 (denoted “par” and
“seq”). In both cases, we used variants based on exponen-
tial loss (“exp”) and logistic loss (“log”). (In this case, the
sequential-update algorithms of Sections 6 and 7 are identi-
cal.)

Fig. 5 shows a plot of the classification error on a separate
test set of 5000 examples. There is not a very large difference
in the performance of the exponential and logistic variants of
the algorithms. However, the parallel-update variants start
out doing much better, although eventually all of the methods
converge to roughly the same performance level.

ACKNOWLEDGMENTS

Many thanks to Manfred Warmuth for first teaching us about
Bregman distances and for many comments on an earlier
draft. Thanks also to Nigel Duffy, David Helmbold and Raj
Iyer for helpful discussions and suggestions. Some of this
research was done while Yoram Singer was at AT&T Labs.

References

[1] Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della
Pietra. A maximum entropy approach to natural language
processing.Computational Linguistics, 22(1):39–71, 1996.

[2] L. M. Bregman. The relaxation method of finding the common
point of convex sets and its application to the solution of
problems in convex programming.U.S.S.R. Computational
Mathematics and Mathematical Physics, 7(1):200–217, 1967.

[3] Leo Breiman. Arcing the edge. Technical Report 486, Statis-
tics Department, University of California at Berkeley, 1997.

[4] Leo Breiman. Prediction games and arcing classifiers. Techni-
cal Report 504, Statistics Department, University of California
at Berkeley, 1997.

[5] Nicolò Cesa-Bianchi, Anders Krogh, and Manfred K. War-
muth. Bounds on approximate steepest descent for likelihood
maximization in exponential families.IEEE Transactions on
Information Theory, 40(4):1215–1220, July 1994.

[6] I. Csisźar. I-divergence geometry of probability distribu-
tions and minimization problems.The Annals of Probability,
3(1):146–158, 1975.

[7] I. Csisźar. Sanov property, generalized I-projection and a
conditional limit theorem.Annals of Probability, 12:768–793,
1984.

[8] I. Csisźar. Maxent, mathematics, and information theory. In
Proceedings of the Fifteenth International Workshop on Max­
imum Entropy and Bayesian Methods, pages 35–50, 1995.

[9] J. N. Darroch and D. Ratcliff. Generalized iterative scaling
for log-linear models.The Annals of Mathematical Statistics,
43(5):1470–1480, 1972.

[10] Stephen Della Pietra, Vincent Della Pietra, and John Lafferty.
Inducing features of random fields.IEEE Transactions Pattern
Analysis and Machine Intelligence, 19(4):1–13, April 1997.

[11] Carlos Domingo and Osamu Watanabe. Scaling up a boosting-
based learner via adaptive sampling. InProceedings of the
Fourth Pacific­Asia Conference on Knowledge Discovery and
Data Mining, 2000.

[12] Nigel Duffy and David Helmbold. Potential boosters? In
Advances in Neural Information Processing Systems 11, 1999.

[13] Yoav Freund and Robert E. Schapire. A decision-theoretic gen-
eralization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 55(1):119–139,
August 1997.

[14] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Ad-
ditive logistic regression: a statistical view of boosting. The
Annals of Statistics, to appear.

[15] Klaus-U. Ḧoffgen and Hans-U. Simon. Robust trainability
of single neurons. InProceedings of the Fifth Annual ACM
Workshop on Computational Learning Theory, pages 428–
439, July 1992.

[16] Jyrki Kivinen and Manfred K. Warmuth. Boosting as entropy
projection. InProceedings of the Twelfth Annual Conference
on Computational Learning Theory, pages 134–144, 1999.

[17] John Lafferty. Additive models, boosting and inference for
generalized divergences. InProceedings of the Twelfth Annual
Conference on Computational Learning Theory, pages 125–
133, 1999.

[18] John D. Lafferty, Stephen Della Pietra, and Vincent Della
Pietra. Statistical learning algorithms based on Bregman dis-
tances. InProceedings of the Canadian Workshop on Infor­
mation Theory, 1997.

[19] Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus
Frean. Functional gradient techniques for combining hypothe-
ses. InAdvances in Large Margin Classifiers. MIT Press,
1999.

[20] Robert E. Schapire and Yoram Singer. Improved boostingal-
gorithms using confidence-rated predictions.Machine Learn­
ing, 37(3):297–336, December 1999.

[21] F. Topsoe. Information theoretical optimization techniques.
Kybernetika, 15:7–17, 1979.

[22] Osamu Watanabe. From computational learning theory todis-
covery science. InProceedings of the 26th International Col­
loquium on Automata, Languages and Programming, pages
134–148, 1999.

