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Abstract

We propse a new boosting algorithm that mends
some of the problems that have been detected in
the so far most successful boosting algorithm,
AdaBoost due to Freund and Schapire [FS97].
These problems are: (RdaBoost cannot be used

in the boosting by filtering framework, and
(2) AdaBoost does not seem to be noise resistant.
In order to solve them, we propose a new boosting
algorithm MadaBoost by modifying the weight-
ing system ofAdaBoost. We prove that one ver-
sion ofMadaBoost is in fact a boosting algorithm,
and we show how our algorithm can be used in de-
tail. We then prove that our new boosting algo-
rithm can be casted in the statistical query learn-
ing model [Kea93] and thus, it is robust to random
classification noise [AL88].
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are randomly obtained with respect to a distribution defined
over all instance space. Here we argue that it is indeed im-
portant that a boosting algorithm can be used in the filtering
framework.

Recall thatAdaBoost is defined for the “subsampling
framework”, where a sample of sufficient size, which is ran-
domly selected before the boosting, is fixed throughout all
the boosting process and distributions are defined only with
respect to the sample. From the theoretical side, one conse-
guence of having a boosting algorithm for the filtering frame-
work is that we can directly get a bound on the generalization
error of the boosting algorithm. From a more practical side,
the advantage becomes more clear. First, we do not need to
determine “sufficient sample size” for the boosting process.
(Although some formulas exist to calculate sample size, they
may not be easy to use and they usually give overestimated
size.) Secondly, since a sample is not a priori fixed, we can
run the weak learner on random samples of appropriate sizes

at each iteration of the boosting; in this way, we can reduce
the computation time particularly when the dataset is very
large and we use apprporiate sampling [DGW99] for scaling-
up the weak learner. Recall thatlaBoost is defined for the
In the last decade, boosting techniques have been received gubsampling framework and that it is not appropriate for the
great deal of attention from the machine learning and com- filtering framework, at least not in an obvious way.
putational learning communities. In this paper, we further  Note that there are boosting algorithms, namely, the one
explore this topic by proposing a new boosting algorithm — proposed by Schapire [Sch90] and the one by Freund [Fre95],
MadaBoost — that mends some of the problems that have that can be used for the filtering framework and that are noise
been detected in the so far most successful boosting algoresistant [AD93] in the sense of the statistical query learning
rithm, AdaBoost due to Freund and Schapire [FS97]. These model. However, none of these algorithms are “adaptive”
problems are: (1AdaBoost cannot be used in the boosting  |ike AdaBoost, a property that has been repeatedly shown to
by filtering framework, and (2AdaBoost does not seem to  pe crucial for practical feasibility. More recently, some at-
be noise resistant. The outline of our modification was first tempts have been done for improviAglaBoost, mainly to
proposed in [Wat99] with only a partial proof for its justifi-  try to make it noise resistant. These modifications also tried
Cathn. In this pgper, we descrlbg the modification in detall, to Change the Weighting scheme so that the Weights Change
provide a much improved analysis of its correctness and per-more smoothly; see, e.g., [FHT98]. From these variations,
formance, and prove that our new boosting algorithm can bethe only one that is a boosting algorithm in the PAC sense is
casted in the statistical query learning model [Kea93] and BrownBoost [Fre99]. While BrownBoost seems more error
thus, it is robust to random classification noise [AL88]. resistant tharAdaBoost, it has not been shown whether it
While the above problem (2) is an obvious weakness, it can be used in the filtering framework. Moreover, Brown-

may not seem so important that even if a boosting algorithm Boost is a more complicated thaadaBoost, while our al-
does not work for the *filtering framework”, where examples gorithm remains as simple aslaBoost.

*Supported in part by European Union Science and Technology ~ Our modification forMadaBoost is very simple. We
Fellowship, STF13. just bound the weight assigned to each example by its ini-
fSupported in part by the Ministry of Education, Science, Sports tial probability. In this way, the weights of the examples

and Culture of Japan, Grant-in-Aid for Scientific Research on Pri- cannot become arbitrarily large as it happenadaBoost.
ority Areas (Discovery Science). The uncontrolled growth of the weights seems to be the root
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of the problems oAdaBoost, and in fact, we can show that
MadaBoost works under the filtering framework and it be-
longs to the statistical query model. What is more impor-
tant from the theoretical view point is that we can show that

final hypothesis is built by combining these weak hypothe-
ses. Here the key idea is to put more weight, when making a
new weak hypothesis, to “problematic instances” for which
the previous weak hypotheses perform poorly. That is, at

even this moderate weight scheme has the boosting propertythe point whem, ..., h;_; have been obtained, the boost-

Unfortunately, our proof still has some minor weaknesses.

First, the proof works only for one version MadaBoost

ing algorithm computes a new distributid@h that puts more
weight on those instances that have been misclassified by

that has an even more moderate weight scheme. Secondlymost of by, ..., h;_1. Then, a new hypothesis, produced

we need to assume that the advantages of the weak hypotheby WeakLearn on this distributionD, should be strong on
ses produced during the boosting process are monotonicallythose problematic instances, thereby improving the perfor-
decreasing. Thirdly, the boosting speed, at least what wemance of the combined hypothesis built frém ..., h;.

could prove, is much slower than the one fhdaBoost.

Boosting techniques differ typically on (i) the weighting

Nevertheless, we do not expect these weaknesses to affectcheme used to obtained the modified distribution, (ii) the

the practicality of our algorithm, an intuition supported by
our experiments [DWOQ].

2 Preliminaries

We explain the notion of boosting aAdlaBoost. (Please do
not skip our description oAdaBoost that is different from
the original one.)

We begin by recalling some basic notions on PAC learn-
ing. The goal of PAC learning is to obtain some hypothgsis
that can predict an unknown target functifinwith a desired
accuracy under an unknown distributidn on the domain
X of f.. Throughout this paper, we consider the problem
of learning Boolean functions. L&Xp ;, be a black box
example generator, which generates a pairf.(z)) with
probability D(z). An algorithmA is called aPAC learner if
for any D, and for any input andd, 0 < ¢, 6 < 1, by using
EXp ;.. A yields some hypothesig such that cop(f, f+)

(X Pro.p{ f(2) = f.(z)}) > 1 —ewith probability at least

1 — 4. On the other hand, an algorithm is calledvaak
PAC learner if for any D and any inpub, 0 < § < 1, it uses
EXp ;, and obtains, with probability at leabkt- ¢, a hypoth-
esish such that cap (h, f.) = 1/2+~ for somey > 0. This

~ is called theadvantage of h (over the random hypothesis).
The efficiency (e.g., the running time) of a learning algorithm
is usually measured in terms bfe (or 1/~ in case of a weak
learner),1/4, the size of instances, and the “complexity” of
a target function. In order to simplify our discussion, we will
ignore instance size and complexity of the target function,
and we measure the efficiency only in termslgb and1/e
and/orl/~.

Boosting Techniques: Subsampling and Filtering

way the weak hypotheses are combined, and (iii) the way to
executeWeakLearn on the modified distributions. Accord-
ing to this last point, boosting techniques can be classified
in two types:-boosting by subsampling andboosting by fil-
tering [Fre95]. In the boosting by subsampling framework,
a boosting algorithm first obtains, usilXp ¢,, a setS of
enough number of examples as a “training set”. Then it runs
WeakLearn on S by changing the weight of each example.
The goal is to obtain a hypothesis that explains the training
set well and hope that this hypothesis will also predict well
the label on unseen examples outsitieSince we can now
regardS as a domain, we only need to provide labeled ex-
amples under a given distribution @y which is possible

so long as the distribution is efficiently computable. On the
other hand, in the boosting by filtering framework, a boost-
ing algorithm selects an example from the original domain
X each timéWeakLearn requests one.

AdaBoost: An Adaptive Boosting Algorithm

Here we describAdaBoost in detail. AdaBoost is designed
for the subsampling framework. Létbe the sample that is
given as input tiAdaBoost. For anyt > 1, assume that we
have already obtained hypotheses ..., h;_1, where each
h; is a weak hypothesis gf. on some distributioD;_; de-
fined with respect to samplg. Leteq,...,e;_1 denote the

errors andy,, ...,v;—1 denote the advantages of these hy-

potheses; that is; def g _ corp, (h;) and~; def advp, (h;)

(= 1/2 — ¢;). We use parametersy, ..., 5, that are de-
fined as3; < \/e;/(1— &) (= /(1 — 27) /(1 + 277)) for
eachi, 1 < i < t—1. (Remark. In this paper, we de-
fine 3; in this way, which is the square root ¢f used in
[FS97]. Due to this change, the weight defined below is

not the same as the one used in [FS97] although the defini-

We explain the outline of boosting techniques. Suppose thattions of the distributions); and the combined hypothesfs

we are given some weak learning algorithiveakLearn.
For the rest of the paper we will assume tNétakLearn

also given below are mathematically equivalent. Thus, there
is no essential difference between this description of the al-

is an algorithm that, when given as input a confidence value 9°rthm and the original one, while ours is more appropriate

0, it asks for a certain amount of labeled examples under a

fixed but unknown distribution and, with probability larger
thanl — ¢, outputs a weak hypothesis that has error strictly
smaller than 1/2 under the distribution from which the exam-
ples were generated.

A boosting algorithm runs thi&eakLearn several times,
sayT times, under distribution®), ..., D that are slightly
modified from the given distributio® and collects weak
hypotheses., ..., hr. (In the following, we call each exe-
cution of WeakLearn a boosting round or boosting step.) A
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for discussing the modification to the filtering framework.)

For any hypothesid and anyz € X, definecons(h, x) def
(resp.,—1) if h(z) = fi(z) (resp.,h(x) # f«(x)). Then for
each instance < S, its weightw,_, (z) after the(t — 1)th
boosting round is defined as follows.

def cons(h;,r
wi—i(z) € Do(x)x [ B0,
1<i<t—1

where Dy is the initial distribution, that is the uniform dis-

tribution onS. Let W,_; def > wes Wi—1(x). The next dis-



tribution D; is defined asD,(x) def wi—1(x) /Wi, for all
x € S. (Note thatD;(z) = Dy(z).) Finally, the com-
bined hypothesig;_; of h1, ..., h;_1 is their weighted ma-
jority vote that is defined as

def 1, |if H Bi < H B,
fio1(z) = ithi(z)=1 ithi(z)=0
0, otherwise.

Then for the “boosting property” cAdaBoost, we have the
following theorem [FS97].

Theorem 1 Suppose that WeakLearn, when called by
AdaBoost on a training set S, generates weak hypotheses
h1, ha, ..., hp whose advantages are 1,2, ...,y > 0. Then
the error of the combined hypothesis fr on S can be bounded

as follows.
T
(-23000).
i=1

3 MadaBoost: A New Weighting Scheme

Here we describe our modification for our boosting algo-
rithm MadaBoost and prove that one version MadaBoost

ero(S. fr) < Pr {fr(x) # fu(x)} < exp

has an adaptive boosting property. For the sake of compari-

son we describdadaBoost first in the subsampling frame-
work. Later we will explain how to make it work for the
filtering framework.

The modification we propose is very simple. For each
instancer, we modify its weightu, () after thetth boosting
round with the initial weightDy(z) as a saturation bound;
that is, the weightv; (z) cannot be increased beyoiy ().
(Recall thatDy, in the subsampling framework, is usually
taken as the uniform distribution ovér) More specifically,
our new weighting system is defined as follows. Defihér)

E Ty cye, 5277, Then for each instance € S, the
new weightw,_1 (x) after the(t — 1)th step is defined by

{ Do(z) x By_1(x), if Bi_1(z) <1, and

Dy(z), otherwise.

The rest is exactly the same as before. Recallhiat; dof
e Wit () andDy () € w,_y (2) /Wi, forallz € 5.

Thus, the weight of each instance changes very mod-
erately. It is interesting to see that even using this moder-
ate weighting scheme the algorithm still has some boosting
property. For example, our experiments [DW99] show that
MadaBoost has a boosting property more or less similar to
AdaBoost. Here we prove a general adaptive boosting prop-
erty. Unfortunately, though, for our current proof, we need
to modify the weighting scheme dfladaBoost even more
moderate one. The difference fraviadaBoost is the defini-
tion of 3;; we defines; = /¢, /(1 — €}), wheree, = /e, /2.
That is, instead of using the error probability of the ¢th
weak hypothesis, we us¢, which is slightly larger tham,.
In terms of the advantagg, sincee; ~ 1/2 — ~;/2, this new
weighting scheme defing$ by using the advantage that is
roughly the half of the real one. Note also that< 1/2
so long as: < 1/2. We refer this version cMadaBoost
asMB:1/2. For this algorithm, we can prove the following
boosting property.

def

wi—1(x)
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Theorem 2 Suppose that WeakLearn, when called by
MB:1/2 on a training set S, generates weak hypotheses h1,
ha, ..., h whose advantages are 1,72, ..., yr that satisfies
Y1 > y2 > - > > 0. Let f1, fa, ..., fr be combined
hypotheses obtained after each round. Then for any e, either
there is some t, 1 <t < T, for which we have

error(Sv ft) = zPDr {ft(x) # f*(x) } < ¢
or we have the following bound.

error(S, fr) = Pr {fr(x) # f(x)} < 1= > 2e}.

1<i<T

Before the proof, let us examine the meaning of this the-
orem. Suppose that our goal is to obtain a hypothesis whose
error probability onS' is less thar = 1/||S|| (under the uni-
form distribution overS), and suppose th&VeakLearn gen-
erates weak hypotheses with advantage largertharhen
within 7" = (||S]| — 1)/(2+?) rounds, we have somg with
erron(S, f;) < ebecause ifng;, 1 <t < T, has this desired
property, then we have er(e, fr) <1 —T - (2¢2/||S]]) <
1/]|S]]; that is, fr indeed has the desired property. Hence,
we can bound the number of boosting round®sS|| /v2),
or O(e~*/~?) in general, to reduce the error fbelowe.

On the other hand\daBoost needsO(In ¢! /4?) under the
same situation. That is, the boosting speedvi8:1/2, at
least the one we can prove here, is exponentially slower than
AdaBoost in terms ofe 1.

Here we need one condition; that is, the advantage se-
quencey, v, - - - , Y1 IS hon-increasing. Intuitively, a learn-
ing problem gets harder and harder as boosting proceeds;
hence, it seems natural to assume that an advantage sequence
is non-increasing. In fact, this phenomenon has been con-
firmed experimentally [DKM96, DW99]. Note also that,
even if it occursy; > ;1 for some round, we can con-
tinue boosting by using,_; instead ofy,. That is,MB:1/2
works with no problem with any advantage sequence; it just
cannot use the advantage of some “accidentally” good weak
hypothesis.

For proving the theorem, we first note the following fact,
which will be also important for our later discussion. (The
same property holds fdvladaBoost andAdaBoost.)

Lemma 3 Suppose that MB:1/2 is executed with a sample
set S in which it executes WeakLearn for t times and obtains
weak hypotheses hi, ..., hy with advantage 1, ...,v:. Let fi
be the combined hypothesis obtained from them. Then we
have erron(S, fi) < W;.

Therefore, in order to prove Theorem 2, it suffices to
show that the sequend&;, W5, ... converges to 0. More
specifically, we need to show thHt; is smaller thariV;_,
by (¢/2)~7 (if W;—1 > €). This is what we will prove below.

Proof of Theorem 2. For anyt > 1, we consider theth
boosting step, the situation when ttth boosting round has
just finished. That isWeakLearn has been called fartimes
andt weak hypotheseay, ..., h; have been obtained. Let
€1,...,¢€ be their errors, and lety, ..., ~; be their advan-
tages. We would like to discuss how mudh gets decreased



from W;_1, but it seems difficult to estimate the decrement Below we will show thaWt gets decreased froﬁt_l

bec_:ause there may be some instance X for which the by (v2/2)W;_, by proving that (i)Wt < Wt/, and (ii) f/{v/t/ <

weight does not change between {ie- 1)th and thetth Wit — (72/2)W,

step. Thus, we introduce here some “imaginary” weight that = ' Tt ~t’1'~/ o !

boundsi¥; and show that it gets decreased as the theorem _ First proveW, < Wi. For this, it suffices to show that

claims. wy(z) < wy(z) forall z € X. The case that € U’ is
First we define our new weight for the situation that the trivial becaluse by def|n|t|om;t(x21: wt&'f)' Consider the

(t — 1)th step has been finished. For this, we divide the in- casex € V. Here we note that, |, < 3,"; this is because

stance spaceX according to the valueB; (z) = we assumed that 1 < ;. Thus we have

[T:Z1 o) of each instance € X. More specifically,
we divide X into two setsUU andV, whereU (resp.,V) is
the set of instances € X such thatB,_;(z) < 1 (resp.,
Bi_1(x) > 1). Note thatz is in U iff f;_, gives a cor-
rect classification, and note that for anye V, its weight
wy—1(z) is defined byw;_1 (z) = Do(x). Now by usinga;

def B, — 1 > 0, we define our new weight; _ (z) as fol-

lows.

(if x € U)
ﬁatﬁg)?f Bi_1(z)Do(z), and
ITx €
ﬂ;tfl(l‘) déf (1 =+ 1Og[3;1 Btfl(l‘))D()(l').

Also defineW;_, def Y wex Wi1().

We explain the motivation of this weight function. In
our original weight scheme, all instanceslinchanges their
weight from the(¢ — 1)th step to theth step, while some
instancese in V keep the same weight, i.el)o(x). Thus,
for the weightw;_; («) for eache € V, we introduce the ad-
ditional nonnegative term a; logﬁ;1 Bi_1(x)Do(x) so that

w—1(x) changes depending whethkr gives the correct
classification ofr or not. Intuitively, if h; correctly (resp.,

wrongly) classifiest € V, then its weight gets decreased

(resp., increased) hy;.

We need to be a bit careful for defining the new weight

for thetth step. The weighty, after thetth step is defined
similarly, but the division ofX is different and3;,; should

wi(z) < wi(z)

S oy 10g6;+11 Bi(z) < a4 log6;1 B (x)

& (57 ~1)(logy Bi(2)/log 5, 1)
< (ﬁt_-s-l — 1)(logy Bi()/log, 51;1)

& (671 =1)/logy B < (By — 1)/ logy By
This last inequality holds becaugéz) = (z — 1)/ log, z is
monotonically incrasing fot > 1. -

Next we analyze how much do&g/ get decreased from
W;_1. For this, we estimaté\ (z) = w;(z) — w—1(x) con-
sidering the cases () € U and (V) z € V. Further-
more, for each case, we consider the caseh{Rjorrectly
classifiesr and the case (Q); wrongly classifies:. Below
we useP and(@ to denote{ z € X |h(z) = f.(z)} and
{z € X |he(x) # fo(x) } respectively.

(Case U.P) Note that € U’. Hence, by definition, we have
B, _1(z)Do(z) = we—1(x), and
Bi(x)Do(x) = Brwi—1(x).

ThusA(z) = (8 — 1)wi—1(z) (L 0).

(Case U.Q) We have eithar € U’ or x € V'. For the
former case, we have

Bi—1(z)Do(z) = we—1(x), and
By(z)Do(z) = B; 'wi—1(z),

and henceA(z) = (3! — 1w;_1(x) (> 0). For the latter

w1 ()
wy ()

ﬁt,l(x) =
wy(x) =

be used here. That is, these are defined as follows by usind*@se. we have

Bt(LU) _ Hz;:l ﬁzt_:ons(hi,a?) andOét+1 _ 51;_11 —1.

U {x e X|By(x) <1}, and
s def

Vi Y (reX|Bix)>11)
(if z € U”)

a(z) < By(z)Do(z), and
(if z € V')

wy(x) def (14 g1 logﬁtll1 By(x))Do(x).

Then defindT/t def > zex Wi(x). On the other hand, for our

comparison, we also consider an intermediate weight func-

tion w; that is defined as follows.

(if z € U")
i) ,)dif Bu(#) Do (),
ITx €
@@) = (14 arlogys By(w))Do(x).

DefineW; ©' 3, « @(x).
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Bi_1(x)Do(x), and
1+ oy logﬁ;1 By(x))Dy(x)
14+ o+ o log g1 Bi_1(x))Do(x).

w1 ()
wy ()

Thus, we have

Alz) = 1—Bi—1(z) + o + 1ogﬁ;1 Bi_1(x))Do(x)
= (e + (1 —Be—1(x) + o log -1 Bi_1(x)))Do(x).

Here we want to show that- B, (z) + oy 10g6;1 Bi_1(x)
< 0. Note thatg; < B;_1(x) < 1 becauser € U (i.e.,
Bi_1(z) < 1)andz € V' (i.e., Bi(x) = B;_1(x)3;* > 1).
Hence,B;_1(x) = 37 for somez, 0 < z < 1. Then we have

1= Bii(w) +aglogy1 Bii(z) = 1-0f —ayz

On the other hand, the functiafi(z) ety - 0F — auz is
nonincreasing off, 1] (sincea; = f; ' —1 > —1In ;) and
1(0) = 0. Thus, we can show that

A(x) a:Do(z) < B oyBy_1(x)Do(x)
By tagws 1 ().
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(Case V.P) We have eithere U’ orz € V'. For the latter
case, we have

ﬁt_l({L‘)

wy ()

= (1+O¢t10gﬁt—1 Bt—l( )) o
(1+Oét10gﬁt—1 Bt( )) (1’

(1 — o + o logﬁ;1 Btfl(l'))

(z), and
)

0(1‘)

HenceA(z) = —a;Do(x) = —oqwe—1(x) (< 0). For the
former case, we have

w-1(z) = (T4 logﬁ;1 Bi—1(x))Do(x), and

w; () Bi(z)Do(x) = Bi-1(x)B; Do(x)
Let us consider here backwards. For our later analysis, we
would like to haveA (z) < (8;—1)w;—1(z). Butfor this, itis
enough to have\ (z) < (8; — 1)ws—1(z) sinceB;_1(x) > 1
and thusw; 1 (z) > w;—1(z). On the other hand, since

Alz) = (Bi—1(@)Br — (1 4+ o logﬁ;1 Bi_1(z)))Do(x),
we have
Alz) < (B—1)wp-1(2)
= Bt 1( )ﬁt (1 + oy 10gﬁ—1 B;_ 1( ))
<SG -D+a loggﬂ Bi_1(x))
= Bt 1( ) <1 —l—atlogﬁfl B;_ 1( )
B 1(z)—1 <
log -1 Bi_1(z) —
To prove the last inequality, we note that< B;_;(z) <
B;*. Thus, by letting3; ' =1 + d andB;_;(z) = (1 4+ 6)*
for somed, z > 0, we have
B 1(z)—1 (1+6)* —
log -1 Bi_1(x) z
Thus, the desired inequality holds since we defingd=

B;* — 1. In fact, this is one of the reasons for our definition
of Ot

(Case V.Q) Since € V', we have
We—1(x) (14 o log ;-1 Bi_1(x))Dg(x), and
wy(z) (14 o log6;1 Bi(z))Dg(x)

I+ ar+ o logﬁ;l B;_1(z))Do(x).

HenceA(z) = a;Do(z) = (6;* — Dw;_1(x) (> 0).

Summarize our analysis. Note thgt= ﬁt‘l—l >1—0.
Then for anyr € X, we have shown that

Ot

Sy
z

x€eP

= A(z) < max(f; — 1, —ag)wi—1(x)
< (Bt — Dwi—1(x), and
x€Q
= A(z) < max(8; tas, B — Dwy_q ()
< BB - Dwia ().

Thus, the total differenca < W/ —

follows.
S A@) = ) A)

Wt,l is estimated as

A + > Ax)

rzeX mEP reQ

< Z(ﬁt—l Wy — 1 +Zﬁt ﬁt wtfl( )
zeP zeQ

= Wi x ((B—DA—e)+ 5B = Der).
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Where the last equality is from the definition Bf @, and
e; thatis,e; = Pryp.p, ,{ he(z) # fu(z) } = D;—1(Q), and
1— ¢ = Proup, , { ha(z) = fu(@)} = Dia(P).

Here recall thap; is defined as/¢}/(1 — €}) with €, =
\/€t/2. Hence we have, < ¢, and

1—
!
€

!
€

Bile = 2(e)? = ¢(2Ve(l—¢)) < e

Then we can bound\ as follows.

Wit x (B = 1D)(1 — ) + 8,787
Wit x (B = 1)(1 =) + ﬂ;%t
Wi_q X (51: - 1)(1 —et) + By e —
Wt—l (1 - Et)ﬂt -1
( tﬁt — e +e— b))
e+ (1—-¢€)s -1
(262515 —2(e)*(Be+ B 1)
+(1—€)B—1)
(2 Et(l —€)—1)
(V1—(1-2€)2—
(1 — 2¢})?

— Det)
B 'er)
B ter)

A

X (
(
(B8~

IN

Wi x (8

(B~

Wt—l X
Wtfl X
Wtfl X 1)
Wtfl X

Wtfl X 5
L (F2429) + (2 -2 - 7?)
9

‘ (_
That is,Wt’ (henceWt) gets decreased froﬂ’ﬂv/t,l at least
by Wi—1(77/2).

Now suppose thaWt 1 is bigger thane. (Otherwise
we are done.) TherWt decreases fronWt 1 by at least
(¢/2)y?. On the other handy, = W, = 1. Therefore, if

W; > eforallt,1 <t < T, then we havéVr < WT <
1—(e/2) >, ;<72 asclaimed. O

Two remarks from the above proof. First consider the
reason why the further modification MadaBoost is nec-
essary. This is because we estimafgd:) somewhat larger.
More specifically, for the case € @, we estimated\(z)
< max(ﬁt_lat, ﬁt_l —Dw_1(x) < ﬁt_l(ﬂt_l —Dwi—1(x);
but we usually would be able to use a smaller bound such
asA(z) < (6, — Dw;_1(z). Suppose that this bound
worked for all (or almost all)x € @, then we would be
able to boundA by W; 1 x (B7tes + (1 — )3 — 1) =
Wi_1 x (2 6,5(1 —6,5) — 1), which giVESA < W1 X
(/1 =492 —1) < W;_; x (—2+7). Then a similar boosting
property would be provable fdvladaBoost.

Next consider the possibility of proving a faster conver-
gence likeAdaBoost. The reason of our slower convergence

is due to the additive decrement ﬁft, whereas the weight
W, gets decreased multiplicatively AdaBoost. Note, how-

ever, W, gets decreased multiplicatively if we may assume
that Wt ~ W;. In fact, assummg thdﬂ/t W;, we would

haveA (dﬁf Wy — Wt,l) < Wt,l X (—2/2). Thus,Wt <

ot

)

2



Wi_1 x (1 —~2/2); that is, W, gets decreased multiplica-
tively and indeed by a factor similar #todaBoost. Since we
may assuméV, =~ W, for the first several boosting steps,
we can expect convergence speed similaAtaBoost, at

combined hypothesis; hence, we can stop the filtering pro-
cedure if it takes, say, more tharie steps to get one exam-
ple. Therefore, we may assume that the running time of the
procedure ig9(1/e). This is the key of our new weighting

least, for the first several steps. This phenomenon has beerscheme.

observed in our experiments [DW99].

4 Using MadaBoost with Filtering

We show thatMadaBoost indeed works under the filtering
framework, thereby satisfying our goal. (For simplicity, we
use MadaBoost for our explanation here and in the next
section. The same analysis also holds¥&B:1/2.) Note
that the boosting property of Theorem 2 holds in the filter-
ing framework. The difference is that we consider the error
probability on the whole domaixX'; hence,Dy = D (in the
definition ofw; 1 (x)) andW; 1 = > wy—1(x). More
specifically, Lemma 3 holds in the filtering framework, and
the error probability of the combined hypothesis (under
over X) is bounded by¥;. The main issue now is the way
to generate examples under modified distributions.

In the boosting by filtering framework, a boosting algo-
rithm uses a selection procedure, which is calleflizar,
to generate examples under given distributions. Our filter
FiltEXp, used at theth boosting step is standard and es-
sentially the same as the one given in [Fre95]. That is, the
filter generates an example, f.(z)) by EXp ;. and either
“rejects” it and throws it away, or “accepts” it and passes it
on toWeakLearn, where the probability of accepting an ex-
ample isw;_1(x)/D(z). More precisely, we consider the
following procedure.

Procedure FiltEXp,
if W;_1 < ethen
output “accurate enough” and halt;
repeat
useEXp ¢, to generate an example, b);

. 3 h»;, .
p(x) < min HlSiSt—l ﬁfonb( w)v L)

% That is,p(x) = wi—1(x)/D(z).
accept(x, b) with probabilityp(z);
until some exampléz, b) is accepted,;
return(z, b);
end-procedure.

Then the following properties are immediate.

Lemma 4 Consider the execution of FItEX p, for some t.

(1) FiltEX p, outputs x with probability Di(z). (Recall that
Dy(z) = wi—1(z)/Wi-1.)

(2) The probability that FItEX p, accepts the first gener-
ated example and passes it to WeakLearn is

Yvex (Wi1(z)/D(x)) - D(x) = Wiy

The above statement (1) guarantees that this filtering pro-
cedureFiltEXp, gives an example under the desired distri-
bution D;. On the other hand, it follows from the statement
(2) that the expected number of execution&EXp ¢, until
some example is acceptedligiW;_,. Thus, the procedure
takes longer and longer time whé#,_; gets decreased.
But also recall thatV;_; bounds the error probability of the
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To completely show tha¥ladaBoost can be used in the
filtering framework, we also need to consider the following
points:- (i) the way to set the confidence values so that the
overall algorithm does not fail with probability larger than
1 — 0, (ii) the way to determineW;_; < € in FitEXp,,
and (iii) the way to estimate;, the advantage of an obtained
weak hypothesig,.

To solve (i), notice that the places where the algorithm
can fail are three:- in one of the executionsWéakLearn,
in estimatingy;, and in determining when to stop (i.e., when
W, becomes less thad). Then in order to obtain an overall
confidence ob, it suffices to guarantee that any of these two

procedures fails with probability at most ef §/(3t(t +
1)) at each boosting step For (ii), we simply count the
number of unsuccessful calls BXp ¢, in the execution of
FiltEXp,. We determinéV;_; < e if the number exceeds a
certain bound that can be easily derived from an appropriate
concentration bound. For instance, it follows from the Ho-
effding bound that ilV;_; > ¢, thenFiltEX p, callsEXp ¢,
more thanO((1/¢) In(1/4;)) times to yield one example.

Solving (iii) is not trivial. We need the way to estimate
the advantage, of an obtained weak hypothedis. Recall
that in the proof of Theorem 2, we assumed thavas com-
puted exactly. Whiley, can be directly computed under the
subsampling framework, this cannot be done in a straightfor-
ward manner in the filtering framework. Notice here, how-
ever, that it would be enough if we could obtain an estimate
~: of v; such thaty, — 7| < ~:/2, because then we could
usey, /2 for ;. This may slow down the convergence speed
a bit, but the proof of Theorem 2 works. Then how can we
obtain such an estimatéy, of 1,? The situation is differ-
ent from estimatingV;_1, and a straightforward application
of a convergence bound like the Hoeffding bound does not
work. Fortunately, we can make use of more sophisticated
estimation methods called “adaptive sampling techniques”
that have been proposed in [DGW99, Wat00]. By using
one of these techniques, it is possible to obtain a desjiyed
from O((1/4?)1In(1/8;)) examples randomly generated by
EXp ;..

Now summarizing the above discussion, we have the fol-
lowing theorem.

Theorem 5 Suppose that for given inputs € > 0 and 6 < 1,
the algorithm MadaBoost used in the filtering framework as
described above executes WeakLearn terminates after the
T'th boosting round, obtaining weak hypotheses with advan-
tagesy; > --- > ~yr > 0.

(1) With probability 1 — 6, we have errorp (X, fr) < 1 —

S ev2/8, where

def

errony (X, fr) = Pri fr(z) # fu(z)}.

(2) With probability 1 — 6, we have W;_1 > € for any t,
1 <t < T (and Wr < €) and thus, for each execution of
FitEXp,,  the generator EXpy is called



O((1/€)In(1/6;)) times, where &, def 0/3t(t + 1). Sim-
ilarly, for estimating the advantage of the obtained tth
weak hypothesis, EXp ¢, is called O((1/ev?)((In(1/6,))%)
times.

We can now explain clearly whxdaBoost cannot be
used for the filtering framework. As it happens with
MadaBoost, the boosting property chdaBoost, i.e., The-
orem 1, still holds in the filtering framework. Furthermore,
W;_1 also bounds the generalization error of ttie com-
bined hypothesis (This property only holds under the weight-

ing scheme as defined in Section 2). On the other hand, we ;
cannot use the above filtering procedure as it is because the
weights are not bounded between 0 and 1. There are two

ways to get around this, either we normalize the weights of
AdaBoost or we use the original definition in [FS97] where
the weights are bounded between 0 and 1. Both ways will
lead to the same conclusion; that is, the probability that the
filter outputs one example could be exponentially smaller
than the current generalization error. For example, in the
case that the advantage of all obtained weak hypotheses is
we can show that the expected running time of the filter to
output one example becomes exponentidl/i.

5 Noise Tolerance

We show here, from the theoretical point of view, that
MadaBoost is in fact resistant to certain kinds of noise by
showing that it belongs to the statistical query model of learn-
ing introduced by Kearns [Kea93].

Before showing the result, let us recall the definitions
of the statistical query model. In the Statistical Query (SQ)

model a learner does not have access to examples anymore.

The example oracl& X (f., D) is replaced by a statistics

oracle STAT(f., D) that works as follows. A statistical

query is of the formy, 7], wherer is a tolerance parame-

ter, andy is a mapping from labeled examples{t@ 1} (i.e.

x : X x{0,1} — {0, 1}) corresponding to an indicator func-

tion for those examples about which statistic are to be col-

lected. A call toST AT (f., D)[x, 7] returns an estimat@x

of P, = Pry.p{ x(z, f.(z)) } that satisfie$P, — P, | < .

By using queries of this type, we would like to design a learn-

ing algorithm that is robust to random classification noise.
Now we show thaMadaBoost belongs to the SQ model.

That is, the following theorem. (The same statement holds

for MB:1/2.)

Theorem 6 Algorithm MadaBoost is an statistical query
boosting algorithm.

We first give a proof outline. As in [AD93], we assume
that WeakLearn is a SQ learning algorithm; that is, it uses

STAT(f«, Dt)[x, ] in order to construct hypothests ;.

Then we show the way to simulatd” AT ( f.., D¢)[x, 7] with

queries toST AT (f«, D). Here we also assume thaf, > ¢

for a given parameterthe boosting algorithm, because oth-

erwise, the boosting process would have been terminated.
Now we explain our simulation o§ T AT ( f«, D¢)[x, 7]

in detail. For our analysis, we need to divide a subspgate

o {x € X|fi(z) = f«(z)} in slices depending on the
value ofw,(z). For this, we define: as the smallest integer
satisfying the following inequality, and as follows.

o <96(n +1)3

TE
t
Let [ be the smallest integer such that < Hﬁi holds.

TE

< n, and Y def _—.
192(n + 1)2

Then define the following set for each > O (Note that
{Ex} k>0 is the division ofX".)

t
{z|ze XandY" < Hﬁfons(’“’z) <Yk}
i=1
Armed with this definition, we can now rewrite the query
STAT(f«, D¢)[x, ] as follows.

STAT(f., D)[x, 7] = Pro.p,{x(z, f«(2))}
> X(@, fo(2))Dy(x)

dcf
Ey

_ Xz X(, £+ () Dy )
ftff*t; \(a, £. () Di(x)

_ Z(Z )Di(a)
D SRRENAE >>DV(V?:)

zeX
Fe(@)# fx ()

> Prix

Tl
0<k<I

Pro.p{ x(@, f«(x)) A fi(z) # fu(2) }
Wi

Now we want to approximate these two additive terms of
the above formula. We show how each term can be approxi-
mated efficiently up to an additive tolerancerg®; then the
overall probability is approximated up to an additive toler-
ance ofr as desired.

The second term in the above is already given in terms of
probability with respect t®; hence, we can us&€T" AT (f«, D)
to approximate it appropriately as shown by the following

fu(@)) N € By }

+

the statistical oracle instead of the example oracle. Notice lemma. (The proof is easy and omitted here.)

here thatWeakLearn works under the modified distribu-
tions. Hence at each stept does not useST AT (f., D)
but STAT(f., D). Therefore for the proof it suffices to
show that we can simulate a queryS@ AT (f., D) by us-
ing queries taST AT'(f., D) that is the oracle available to
the boosting algorithm. More specifically, we fix a query
STAT(f., Dt)[x, 7] and assume that we are in ttle boost-
ing step and thatWeakLearn is making the query
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Lemma7 Let p = Pro.p{ x(z, fu(z)) A fi(z) # fu(z)}
and let p and Wt be two estimators such that |p — p| <

TW:/6 and | Wt Wi | < 7W,/6, then an estimator p/Wt
satisfies

~

pr o
Wi

i
Wi

.
< —-.
-2




For the first term, let us define the following probabilities
in order to simplify the notation.

(1) def Pro.p,{ x(z, f«(x)) Nz € E; }, and

Pro.p{ x(z, fi(x)) ANz € Ey }.

Then for anyk > 0, the following inequalities hold by
definition of E,.

P =
2) def
ng) lef

yk+1 (2)
R 4 T

Ykpl(f)
w, — Uk '

<
= T,

(1)
Thus, our goal is to obtain, for eveky an estimatofig)
that approximate$§€1) up to an appropriate additive toler-
ance. We estimatpg) by using the estimator;’éf) and W,

of p,(f) andW;. The following lemma states the way.

Lemma 8 For any k > 0, let ﬁ;f)

satisfying

and Wy two estimators

2 _ @) Wi J
R N T
= TWt

W, — W, .
[We=Wil < 24(n + 1)

Then by defining 7/55:) def Ykﬂﬁgf)/wt, we have
S oo T
RS

Proof. SinceW; > ¢, we havel — Y = 7¢/(192(n + 1)?)

< 7tW;/8(n+1). Moreover, since;,(f) andY'* are both less
than or equal td, the following inequality holds.

W,
YRa—y)p® < T
which implies
Ykpgf) - Ykal(cQ) -
This inequality together with inequality (1) implies
yh+1,(2)
pM_ T < P T and
4(n+1) Wi 8(n+1)
2
Yk+1p§€) N - p(l) N - |
W, 8(n+1) — “F T 4n+1)

Thus, if we show that estimatqﬁf) as defined in the
statement of the lemma approximaié’@’“lpf)/Wt upto an
additive tolerance smaller thar((8(n + 1)), then, by the in-
equality above, we can conclude trﬁP also approximates
p,(;) up to an additive tolerance smaller thaf(4(n + 1)) as
claimed in the statement of the lemma.

First note the following two inequalities, which are easy
to show.
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Ykﬂpl(f) + 24?1%1) Yk+lpl(f) + u and
W, — WV‘L) - Wy 8(n+1)’
Yk-ﬁ-lp](f) - yk+1pl(€2) _ 24@4&1)
W, 8(n+1) Wi+ gionty

Next use the assumption of the Iemmaﬁﬁf? and/V[Z; then
we have

k+1,..(2) TWe k+1,.(2) TW4
Y™ — 24(n+1) Yk“l/)(;f) < Y™ + 24(n+1)
W; S = = W :

Wi + 51ttty Wi Wi = sitnty

This implies that;’fkl) - Y’““pf)/Wq <7/8(n+1), prov-
ing the lemma as already argued]

Notice that ask becomes large the probabilip,il) gets
smaller. In fact, we do not need to approximate all of them;
only the firstn 4+ 1 would be enough. The rest can be dis-
carded as shown in the following lemma.

Lemma 9 Zn+1gkgl—1 pg) < 7/4

Proof. SinceY < 1 ande < W4, it follows from our choice
of n thatlog(96(k + 1)3/(W;)) < klog(1/Y) for anyk >
n. This implies

e v T

Wy = 96(k+1)3 — 4k2°

Moreover, the following chain of inequalities also hold.

k,.(2)
Y <Y Yy
by = W,
nt+1<k<l—1 nt+1<k<l—1
Yk T
< X ws X g
nt+1<k<l—1 n+1<k<l—1

Then the lemma follows by noticing that,, , | <, , 7/4k>
is smaller tharr /4. O

Thus, forl < k£ < n, we use the estimatq?él) as defined

in Lemma 8, and for an¥ > n, we just usq’;ﬁl) =0 asour

estimator. In this way, we can bound the error as follows.

S Y Y

0<k<l—1 0<k<l—1
T T
< J _
S 2 ant 2w
0<k<n n+1<k<i—1
.
< —.
- 2

Estimatorsp and ;’)f) can be obtained from queries to
ST AT (f., D) since they are estimators of probabilities with
respect taD, and the conditiong;(x) # f.(z) andz € E},

can be tested in polynomial time. On the other haﬁ\d,
cannot be directly obtained fros{I" AT. Before describing



how to obtain/I/IZ, let us discuss about the tolerances of these References

estimators.

We need to verify that the tolerances required for all the
approximations involved in the proof are not too small. In
other words, we need to show that the inverse of all the tol-
erances are polynomial it/e and1/7. First recall that all
the tolerances are required to dependiBn This value is
not known but we can assume that it is larger thémrough-
out all the boosting process; hence, we can substifidte

by ¢ in all the tolerances. The tolerance required?@r in
Lemma 8 (i.e.;re/24(n + 1)) is the smallest among all the
tolerances required; thus, it is enough to show thidh +
1)/7e is bounded by a polynomial ih/e and1/7. But this
follows from the fact that: is bounded by a polynomial;
more specifically, it is easy to show thatis bounded by
O((1/er)In(1/eT)).

It remains to see how can we approximatg from
STAT(f.,D). The smallest tolerance required fov;
through the proof ise/24(n + 1); hence, we show how to
approximatd¥, up to this tolerance. First we rewrit&; as

follows.
Z wy ()

zeX

Pr{fi@) # ful@)}+ Y Y wlx).

0<k<l—1 z€Ey

Wi

Moreover, by definition off, the following inequality
holds for anyk > 0.

Yk+lq](€2) < q](cl) < qul(f)
(2 _ 1 _
whereq,” = Pr,.p{x € E} } andq, ’ = ZmeEk wy(x).
The following lemma shows how to approximalg,.

(The proof, which is similar to the previous two proofs, is
omitted.)

Lemma 10 Let ¢ = Pry.p{ fi(z) # f«(z)} and for any

k>0, let Q\,(f) and q be two estimators such that

TE

@) _ @) -
67 9| =Yg 1

and |§—q| <

Then by defining w, & q+ D 0<k<n 6,(62), we have

Fe TE
We=W,| < —=— .
| W t|_24(n+1)

Summarizing, we have shown how to estimate
Pr..p,{ x(z, f«(z)) } up to tolerancer by combining ap-
propriately the answers of the following statistical queries.

STAT(fs, D)[x(z, fu(2)) A fr(z) # fu(@), T€/6]
STAT(f., D)[x(x, f«(z)) Aw € Ey, 7¢/(24Y ¥ 1 (n + 1)) ]
(for eachk, 0 < k <n)
STAT(f., D)[ fi(z) # fu(z), T¢/(48n)], and
STAT(f.,D)[x € Ey, 7¢/(192Y*+1(n +1)?)]
(for eachk, 0 < k < n).

Therefore, we have proven Theorem 6.
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