
180

MadaBoost: A Modification of AdaBoost

Carlos Domingo∗

Dept. of Math. and Comput. Sci.
Tokyo Institute of Technology

carlos@is.titech.ac.jp

Osamu Watanabe†

Dept. of Math. and Comput. Sci.
Tokyo Institute of Technology

watanabe@is.titech.ac.jp

Abstract

We propse a new boosting algorithm that mends
some of the problems that have been detected in
the so far most successful boosting algorithm,
AdaBoost due to Freund and Schapire [FS97].
These problems are: (1)AdaBoost cannot be used
in the boosting by filtering framework, and
(2) AdaBoost does not seem to be noise resistant.
In order to solve them, we propose a new boosting
algorithm MadaBoost by modifying the weight-
ing system ofAdaBoost. We prove that one ver-
sion ofMadaBoost is in fact a boosting algorithm,
and we show how our algorithm can be used in de-
tail. We then prove that our new boosting algo-
rithm can be casted in the statistical query learn-
ing model [Kea93] and thus, it is robust to random
classification noise [AL88].

1 Introduction

In the last decade, boosting techniques have been received a
great deal of attention from the machine learning and com-
putational learning communities. In this paper, we further
explore this topic by proposing a new boosting algorithm —
MadaBoost — that mends some of the problems that have
been detected in the so far most successful boosting algo-
rithm, AdaBoost due to Freund and Schapire [FS97]. These
problems are: (1)AdaBoost cannot be used in the boosting
by filtering framework, and (2)AdaBoost does not seem to
be noise resistant. The outline of our modification was first
proposed in [Wat99] with only a partial proof for its justifi-
cation. In this paper, we describe the modification in detail,
provide a much improved analysis of its correctness and per-
formance, and prove that our new boosting algorithm can be
casted in the statistical query learning model [Kea93] and
thus, it is robust to random classification noise [AL88].

While the above problem (2) is an obvious weakness, it
may not seem so important that even if a boosting algorithm
does not work for the “filtering framework”, where examples

∗Supported in part by European Union Science and Technology
Fellowship, STF13.

†Supported in part by the Ministry of Education, Science, Sports
and Culture of Japan, Grant-in-Aid for Scientific Research on Pri-
ority Areas (Discovery Science).

are randomly obtained with respect to a distribution defined
over all instance space. Here we argue that it is indeed im-
portant that a boosting algorithm can be used in the filtering
framework.

Recall thatAdaBoost is defined for the “subsampling
framework”, where a sample of sufficient size, which is ran-
domly selected before the boosting, is fixed throughout all
the boosting process and distributions are defined only with
respect to the sample. From the theoretical side, one conse-
quence of having a boosting algorithm for the filtering frame-
work is that we can directly get a bound on the generalization
error of the boosting algorithm. From a more practical side,
the advantage becomes more clear. First, we do not need to
determine “sufficient sample size” for the boosting process.
(Although some formulas exist to calculate sample size, they
may not be easy to use and they usually give overestimated
size.) Secondly, since a sample is not a priori fixed, we can
run the weak learner on random samples of appropriate sizes
at each iteration of the boosting; in this way, we can reduce
the computation time particularly when the dataset is very
large and we use apprporiate sampling [DGW99] for scaling-
up the weak learner. Recall thatAdaBoost is defined for the
subsampling framework and that it is not appropriate for the
filtering framework, at least not in an obvious way.

Note that there are boosting algorithms, namely, the one
proposed by Schapire [Sch90] and the one by Freund [Fre95],
that can be used for the filtering framework and that are noise
resistant [AD93] in the sense of the statistical query learning
model. However, none of these algorithms are “adaptive”
like AdaBoost, a property that has been repeatedly shown to
be crucial for practical feasibility. More recently, some at-
tempts have been done for improvingAdaBoost, mainly to
try to make it noise resistant. These modifications also tried
to change the weighting scheme so that the weights change
more smoothly; see, e.g., [FHT98]. From these variations,
the only one that is a boosting algorithm in the PAC sense is
BrownBoost [Fre99]. While BrownBoost seems more error
resistant thanAdaBoost, it has not been shown whether it
can be used in the filtering framework. Moreover, Brown-
Boost is a more complicated thanAdaBoost, while our al-
gorithm remains as simple asAdaBoost.

Our modification forMadaBoost is very simple. We
just bound the weight assigned to each example by its ini-
tial probability. In this way, the weights of the examples
cannot become arbitrarily large as it happens inAdaBoost.
The uncontrolled growth of the weights seems to be the root

181

of the problems ofAdaBoost, and in fact, we can show that
MadaBoost works under the filtering framework and it be-
longs to the statistical query model. What is more impor-
tant from the theoretical view point is that we can show that
even this moderate weight scheme has the boosting property.
Unfortunately, our proof still has some minor weaknesses.
First, the proof works only for one version ofMadaBoost
that has an even more moderate weight scheme. Secondly,
we need to assume that the advantages of the weak hypothe-
ses produced during the boosting process are monotonically
decreasing. Thirdly, the boosting speed, at least what we
could prove, is much slower than the one forAdaBoost.
Nevertheless, we do not expect these weaknesses to affect
the practicality of our algorithm, an intuition supported by
our experiments [DW00].

2 Preliminaries

We explain the notion of boosting andAdaBoost. (Please do
not skip our description ofAdaBoost that is different from
the original one.)

We begin by recalling some basic notions on PAC learn-
ing. The goal of PAC learning is to obtain some hypothesisf
that can predict an unknown target functionf∗ with a desired
accuracy under an unknown distributionD on the domain
X of f∗. Throughout this paper, we consider the problem
of learning Boolean functions. LetEXD,f∗

be a black box
example generator, which generates a pair(x, f∗(x)) with
probabilityD(x). An algorithmA is called aPAC learner if
for anyD, and for any inputǫ andδ, 0 < ǫ, δ < 1, by using
EXD,f∗

, A yields some hypothesisf such that corD(f, f∗)

(
def
= Prx:D{ f(x) = f∗(x) }) ≥ 1−ǫwith probability at least

1 − δ. On the other hand, an algorithm is called aweak
PAC learner if for anyD and any inputδ, 0 < δ < 1, it uses
EXD,f∗

and obtains, with probability at least1−δ, a hypoth-
esish such that corD(h, f∗) = 1/2+γ for someγ > 0. This
γ is called theadvantage of h (over the random hypothesis).
The efficiency (e.g., the running time) of a learning algorithm
is usually measured in terms of1/ǫ (or 1/γ in case of a weak
learner),1/δ, the size of instances, and the “complexity” of
a target function. In order to simplify our discussion, we will
ignore instance size and complexity of the target function,
and we measure the efficiency only in terms of1/δ and1/ǫ
and/or1/γ.

Boosting Techniques: Subsampling and Filtering

We explain the outline of boosting techniques. Suppose that
we are given some weak learning algorithmWeakLearn.
For the rest of the paper we will assume thatWeakLearn
is an algorithm that, when given as input a confidence value
δ, it asks for a certain amount of labeled examples under a
fixed but unknown distribution and, with probability larger
than1 − δ, outputs a weak hypothesis that has error strictly
smaller than 1/2 under the distribution from which the exam-
ples were generated.

A boosting algorithm runs thisWeakLearn several times,
sayT times, under distributionsD1, ...,DT that are slightly
modified from the given distributionD and collects weak
hypothesesh1, ..., hT . (In the following, we call each exe-
cution ofWeakLearn aboosting round or boosting step.) A

final hypothesis is built by combining these weak hypothe-
ses. Here the key idea is to put more weight, when making a
new weak hypothesis, to “problematic instances” for which
the previous weak hypotheses perform poorly. That is, at
the point whenh1, ..., ht−1 have been obtained, the boost-
ing algorithm computes a new distributionDt that puts more
weight on those instances that have been misclassified by
most ofh1, ..., ht−1. Then, a new hypothesisht produced
by WeakLearn on this distributionDt should be strong on
those problematic instances, thereby improving the perfor-
mance of the combined hypothesis built fromh1, ..., ht.

Boosting techniques differ typically on (i) the weighting
scheme used to obtained the modified distribution, (ii) the
way the weak hypotheses are combined, and (iii) the way to
executeWeakLearn on the modified distributions. Accord-
ing to this last point, boosting techniques can be classified
in two types:-boosting by subsampling andboosting by fil-
tering [Fre95]. In the boosting by subsampling framework,
a boosting algorithm first obtains, usingEXD,f∗

, a setS of
enough number of examples as a “training set”. Then it runs
WeakLearn onS by changing the weight of each example.
The goal is to obtain a hypothesis that explains the training
set well and hope that this hypothesis will also predict well
the label on unseen examples outsideS. Since we can now
regardS as a domain, we only need to provide labeled ex-
amples under a given distribution onS, which is possible
so long as the distribution is efficiently computable. On the
other hand, in the boosting by filtering framework, a boost-
ing algorithm selects an example from the original domain
X each timeWeakLearn requests one.

AdaBoost: An Adaptive Boosting Algorithm
Here we describeAdaBoost in detail.AdaBoost is designed
for the subsampling framework. LetS be the sample that is
given as input toAdaBoost. For anyt ≥ 1, assume that we
have already obtained hypothesesh1, ..., ht−1, where each
hi is a weak hypothesis off∗ on some distributionDi−1 de-
fined with respect to sampleS. Let ǫ1, ..., ǫt−1 denote the
errors andγ1, ..., γt−1 denote the advantages of these hy-

potheses; that is,ǫi
def
= 1 − corDi

(hi) andγi
def
= advDi

(hi)
(= 1/2 − ǫi). We use parametersβ1, ..., βt−1 that are de-

fined asβi
def
=
√
ǫi/(1− ǫi) (=

√
(1− 2γi)/(1 + 2γi)) for

eachi, 1 ≤ i ≤ t − 1. (Remark. In this paper, we de-
fine βi in this way, which is the square root ofβi used in
[FS97]. Due to this change, the weightwt defined below is
not the same as the one used in [FS97] although the defini-
tions of the distributionsDt and the combined hypothesisft

also given below are mathematically equivalent. Thus, there
is no essential difference between this description of the al-
gorithm and the original one, while ours is more appropriate
for discussing the modification to the filtering framework.)

For any hypothesish and anyx ∈ X , definecons(h, x)
def
= 1

(resp.,−1) if h(x) = f∗(x) (resp.,h(x) 6= f∗(x)). Then for
each instancex ∈ S, its weightwt−1(x) after the(t − 1)th
boosting round is defined as follows.

wt−1(x)
def
= D0(x)×

∏

1≤i≤t−1

β
cons(hi,x)
i ,

whereD0 is the initial distribution, that is the uniform dis-

tribution onS. LetWt−1
def
=
∑

x∈S wt−1(x). The next dis-

182

tributionDt is defined asDt(x)
def
= wt−1(x)/Wt−1 for all

x ∈ S. (Note thatD1(x) = D0(x).) Finally, the com-
bined hypothesisft−1 of h1, ..., ht−1 is their weighted ma-
jority vote that is defined as

ft−1(x)
def
=





1, if
∏

i:hi(x)=1

βi ≤
∏

i:hi(x)=0

βi,

0, otherwise.

Then for the “boosting property” ofAdaBoost, we have the
following theorem [FS97].

Theorem 1 Suppose that WeakLearn, when called by
AdaBoost on a training set S, generates weak hypotheses
h1, h2, ..., hT whose advantages are γ1, γ2, ..., γT > 0. Then
the error of the combined hypothesis fT onS can be bounded
as follows.

error(S, fT)
def
= Pr

x:D0

{ fT (x) 6= f∗(x) } ≤ exp

(
−2

T∑

i=1

γ2
i

)
.

3 MadaBoost: A New Weighting Scheme

Here we describe our modification for our boosting algo-
rithm MadaBoost and prove that one version ofMadaBoost
has an adaptive boosting property. For the sake of compari-
son we describeMadaBoost first in the subsampling frame-
work. Later we will explain how to make it work for the
filtering framework.

The modification we propose is very simple. For each
instancex, we modify its weightwt(x) after thetth boosting
round with the initial weightD0(x) as a saturation bound;
that is, the weightwt(x) cannot be increased beyondD0(x).
(Recall thatD0, in the subsampling framework, is usually
taken as the uniform distribution overS.) More specifically,
our new weighting system is defined as follows. DefineBt(x)
def
=
∏

1≤i≤t β
cons(hi,x)
i . Then for each instancex ∈ S, the

new weightwt−1(x) after the(t− 1)th step is defined by

wt−1(x)
def
=

{
D0(x)×Bt−1(x), if Bt−1(x) < 1, and
D0(x), otherwise.

The rest is exactly the same as before. Recall thatWt−1
def
=∑

x∈S wt−1(x) andDt(x)
def
= wt−1(x)/Wt−1 for all x ∈ S.

Thus, the weight of each instance changes very mod-
erately. It is interesting to see that even using this moder-
ate weighting scheme the algorithm still has some boosting
property. For example, our experiments [DW99] show that
MadaBoost has a boosting property more or less similar to
AdaBoost. Here we prove a general adaptive boosting prop-
erty. Unfortunately, though, for our current proof, we need
to modify the weighting scheme ofMadaBoost even more
moderate one. The difference fromMadaBoost is the defini-
tion ofβt; we defineβt =

√
ǫ′t/(1− ǫ′t), whereǫ′t =

√
ǫt/2.

That is, instead of using the error probabilityǫt of the tth
weak hypothesis, we useǫ′t, which is slightly larger thanǫt.
In terms of the advantageγt, sinceǫ′t ≈ 1/2−γt/2, this new
weighting scheme definesβt by using the advantage that is
roughly the half of the real one. Note also thatǫ′t < 1/2
so long asǫt < 1/2. We refer this version ofMadaBoost
asMB:1/2. For this algorithm, we can prove the following
boosting property.

Theorem 2 Suppose that WeakLearn, when called by
MB:1/2 on a training set S, generates weak hypotheses h1,
h2, ..., hT whose advantages are γ1, γ2, ..., γT that satisfies
γ1 ≥ γ2 ≥ · · · ≥ γT > 0. Let f1, f2, ..., fT be combined
hypotheses obtained after each round. Then for any ǫ, either
there is some t, 1 ≤ t < T , for which we have

error(S, ft) = Pr
x:D0

{ ft(x) 6= f∗(x) } < ǫ,

or we have the following bound.

error(S, fT) = Pr
x:D0

{ fT (x) 6= f∗(x) } ≤ 1−
∑

1≤i≤T

2ǫγ2
i .

Before the proof, let us examine the meaning of this the-
orem. Suppose that our goal is to obtain a hypothesis whose
error probability onS is less thanǫ = 1/‖S‖ (under the uni-
form distribution overS), and suppose thatWeakLearn gen-
erates weak hypotheses with advantage larger thanγ. Then
within T = (‖S‖ − 1)/(2γ2) rounds, we have someft with
error(S, ft) < ǫ because if noft, 1 ≤ t < T , has this desired
property, then we have error(S, fT) ≤ 1− T · (2γ2/‖S‖)≤
1/‖S‖; that is,fT indeed has the desired property. Hence,
we can bound the number of boosting rounds asO(‖S‖/γ2),
or O(ǫ−1/γ2) in general, to reduce the error inS below ǫ.
On the other hand,AdaBoost needsO(ln ǫ−1/γ2) under the
same situation. That is, the boosting speed ofMB:1/2, at
least the one we can prove here, is exponentially slower than
AdaBoost in terms ofǫ−1.

Here we need one condition; that is, the advantage se-
quenceγ1, γ2, . . . , γT is non-increasing. Intuitively, a learn-
ing problem gets harder and harder as boosting proceeds;
hence, it seems natural to assume that an advantage sequence
is non-increasing. In fact, this phenomenon has been con-
firmed experimentally [DKM96, DW99]. Note also that,
even if it occursγt > γt−1 for some roundt, we can con-
tinue boosting by usingγt−1 instead ofγt. That is,MB:1/2
works with no problem with any advantage sequence; it just
cannot use the advantage of some “accidentally” good weak
hypothesis.

For proving the theorem, we first note the following fact,
which will be also important for our later discussion. (The
same property holds forMadaBoost andAdaBoost.)

Lemma 3 Suppose that MB:1/2 is executed with a sample
set S in which it executes WeakLearn for t times and obtains
weak hypotheses h1, ..., ht with advantage γ1, ..., γt. Let ft

be the combined hypothesis obtained from them. Then we
have error(S, ft) ≤Wt.

Therefore, in order to prove Theorem 2, it suffices to
show that the sequenceW1,W2, ... converges to 0. More
specifically, we need to show thatWt is smaller thanWt−1

by (ǫ/2)γ2
t (if Wt−1 ≥ ǫ). This is what we will prove below.

Proof of Theorem 2. For anyt ≥ 1, we consider thetth
boosting step, the situation when thetth boosting round has
just finished. That is,WeakLearn has been called fort times
andt weak hypothesesh1, . . . , ht have been obtained. Let
ǫ1, . . . , ǫt be their errors, and letγ1, . . . , γt be their advan-
tages. We would like to discuss how muchWt gets decreased

183

from Wt−1, but it seems difficult to estimate the decrement
because there may be some instancex ∈ X for which the
weight does not change between the(t − 1)th and thetth
step. Thus, we introduce here some “imaginary” weight that
boundsWt and show that it gets decreased as the theorem
claims.

First we define our new weight for the situation that the
(t − 1)th step has been finished. For this, we divide the in-
stance spaceX according to the valueBt−1(x) =∏t−1

i=1 β
cons(hi,x)
i of each instancex ∈ X . More specifically,

we divideX into two setsU andV , whereU (resp.,V) is
the set of instancesx ∈ X such thatBt−1(x) < 1 (resp.,
Bt−1(x) ≥ 1). Note thatx is in U iff ft−1 gives a cor-
rect classification, and note that for anyx ∈ V , its weight
wt−1(x) is defined bywt−1(x) = D0(x). Now by usingαt

def
= β−1

t − 1 > 0, we define our new weight̃wt−1(x) as fol-
lows.

(if x ∈ U)

w̃t−1(x)
def
= Bt−1(x)D0(x), and

(if x ∈ V)

w̃t−1(x)
def
= (1 + αt logβ

−1
t
Bt−1(x))D0(x).

Also defineW̃t−1
def
=
∑

x∈X w̃t−1(x).
We explain the motivation of this weight function. In

our original weight scheme, all instances inU changes their
weight from the(t − 1)th step to thetth step, while some
instancesx in V keep the same weight, i.e.,D0(x). Thus,
for the weightw̃t−1(x) for eachx ∈ V , we introduce the ad-
ditional nonnegative term αt logβ

−1
t
Bt−1(x)D0(x) so that

w̃t−1(x) changes depending whetherht gives the correct
classification ofx or not. Intuitively, if ht correctly (resp.,
wrongly) classifiesx ∈ V , then its weight gets decreased
(resp., increased) byαt.

We need to be a bit careful for defining the new weight
for the tth step. The weight̃wt after thetth step is defined
similarly, but the division ofX is different andβt+1 should
be used here. That is, these are defined as follows by using
Bt(x) =

∏t

i=1 β
cons(hi,x)
i andαt+1 = β−1

t+1 − 1.

U ′ def
= { x ∈ X |Bt(x) < 1 }, and

V ′ def
= { x ∈ X |Bt(x) ≥ 1 }.

(if x ∈ U ′)

w̃t(x)
def
= Bt(x)D0(x), and

(if x ∈ V ′)

w̃t(x)
def
= (1 + αt+1 logβ

−1
t+1

Bt(x))D0(x).

Then definẽWt
def
=
∑

x∈X w̃t(x). On the other hand, for our
comparison, we also consider an intermediate weight func-
tion w̃′

t that is defined as follows.

(if x ∈ U ′)

w̃′
t(x)

def
= Bt(x)D0(x),

(if x ∈ V ′)

w̃′
t(x)

def
= (1 + αt logβ

−1
t
Bt(x))D0(x).

DefineW̃ ′
t

def
=
∑

x∈X w̃′
t(x).

Below we will show that̃Wt gets decreased from̃Wt−1

by (γ2
t /2)Wt−1 by proving that (i)̃Wt ≤ W̃ ′

t , and (ii)W̃ ′
t ≤

W̃t−1 − (γ2
t /2)Wt−1.

First proveW̃t ≤ W̃ ′
t . For this, it suffices to show that

w̃t(x) ≤ w̃′
t(x) for all x ∈ X . The case thatx ∈ U ′ is

trivial because by definitioñwt(x) = w̃′
t(x). Consider the

casex ∈ V ′. Here we note thatβ−1
t+1 ≤ β−1

t ; this is because
we assumed thatγt+1 ≤ γt. Thus we have

w̃t(x) ≤ w̃′
t(x)

⇔ αt+1 logβ
−1
t+1

Bt(x) ≤ αt logβ
−1
t
Bt(x)

⇔ (β−1
t − 1)(log2Bt(x)/ log2 β

−1
t)

≤ (β−1
t+1 − 1)(log2Bt(x)/ log2 β

−1
t+1)

⇔ (β−1
t − 1)/ log2 β

−1
t ≤ (β−1

t+1 − 1)/ log2 β
−1
t+1.

This last inequality holds becauseφ(z) = (z − 1)/ log2 z is
monotonically incrasing forz > 1.

Next we analyze how much does̃W ′
t get decreased from

W̃t−1. For this, we estimate∆(x) = w̃′
t(x)− w̃t−1(x) con-

sidering the cases (U)x ∈ U and (V) x ∈ V . Further-
more, for each case, we consider the case (P)ht correctly
classifiesx and the case (Q)ht wrongly classifiesx. Below
we useP andQ to denote{ x ∈ X |ht(x) = f∗(x) } and
{ x ∈ X |ht(x) 6= f∗(x) } respectively.
(Case U.P) Note thatx ∈ U ′. Hence, by definition, we have

w̃t−1(x) = Bt−1(x)D0(x) = wt−1(x), and
w̃′

t(x) = Bt(x)D0(x) = βtwt−1(x).

Thus∆(x) = (βt − 1)wt−1(x) (≤ 0).
(Case U.Q) We have eitherx ∈ U ′ or x ∈ V ′. For the
former case, we have

w̃t−1(x) = Bt−1(x)D0(x) = wt−1(x), and
w̃′

t(x) = Bt(x)D0(x) = β−1
t wt−1(x),

and hence∆(x) = (β−1
t − 1)wt−1(x) (≥ 0). For the latter

case, we have

w̃t−1(x) = Bt−1(x)D0(x), and
w̃′

t(x) = (1 + αt logβ
−1
t
Bt(x))D0(x)

= (1 + αt + αt logβ
−1
t
Bt−1(x))D0(x).

Thus, we have

∆(x) = (1−Bt−1(x) + αt + αt logβ
−1
t
Bt−1(x))D0(x)

= (αt + (1−Bt−1(x) + αt logβ
−1
t
Bt−1(x)))D0(x).

Here we want to show that1−Bt−1(x)+αt logβ
−1
t
Bt−1(x)

≤ 0. Note thatβt ≤ Bt−1(x) < 1 becausex ∈ U (i.e.,
Bt−1(x) < 1) andx ∈ V ′ (i.e.,Bt(x) = Bt−1(x)β

−1
t ≥ 1).

Hence,Bt−1(x) = βz
t for somez, 0 < z ≤ 1. Then we have

1−Bt−1(x) + αt logβ
−1
t
Bt−1(x) = 1− βz

t − αtz

On the other hand, the functionψ(z)
def
= 1 − βz

t − αtz is
nonincreasing on[0, 1] (sinceαt = β−1

t − 1 ≥ − lnβt) and
ψ(0) = 0. Thus, we can show that

∆(x) ≤ αtD0(x) ≤ β−1
t αtBt−1(x)D0(x)

= β−1
t αtwt−1(x).

184

(Case V.P) We have eitherx ∈ U ′ or x ∈ V ′. For the latter
case, we have

w̃t−1(x) = (1 + αt logβ
−1
t
Bt−1(x))D0(x), and

w̃′
t(x) = (1 + αt logβ

−1
t
Bt(x))D0(x)

= (1− αt + αt logβ−1
t
Bt−1(x))D0(x).

Hence∆(x) = −αtD0(x) = −αtwt−1(x) (≤ 0). For the
former case, we have

w̃t−1(x) = (1 + αt logβ
−1
t
Bt−1(x))D0(x), and

w̃′
t(x) = Bt(x)D0(x) = Bt−1(x)βtD0(x)

Let us consider here backwards. For our later analysis, we
would like to have∆(x)≤ (βt−1)wt−1(x). But for this, it is
enough to have∆(x)≤ (βt−1)w̃t−1(x) sinceBt−1(x) ≥ 1
and thusw̃t−1(x) ≥ wt−1(x). On the other hand, since

∆(x) = (Bt−1(x)βt − (1 + αt logβ
−1
t
Bt−1(x)))D0(x),

we have

∆(x) ≤ (βt−1)w̃t−1(x)

⇔ Bt−1(x)βt − (1 + αt logβ
−1
t
Bt−1(x))

≤ (βt − 1)(1 + αt logβ
−1
t
Bt−1(x))

⇔ Bt−1(x) ≤ 1 + αt logβ
−1
t
Bt−1(x)

⇔ Bt−1(x)− 1

logβ
−1
t
Bt−1(x)

≤ αt.

To prove the last inequality, we note that1 ≤ Bt−1(x) <
β−1

t . Thus, by lettingβ−1
t = 1 + δ andBt−1(x) = (1 + δ)z

for someδ, z > 0, we have

Bt−1(x)− 1

logβ
−1
t
Bt−1(x)

=
(1 + δ)z − 1

z
≤ zδ

z
= δ = β−1

t −1.

Thus, the desired inequality holds since we definedαt =
β−1

t − 1. In fact, this is one of the reasons for our definition
of αt.
(Case V.Q) Sincex ∈ V ′, we have

w̃t−1(x) = (1 + αt logβ
−1
t
Bt−1(x))D0(x), and

w̃′
t(x) = (1 + αt logβ

−1
t
Bt(x))D0(x)

= (1 + αt + αt logβ
−1
t
Bt−1(x))D0(x).

Hence∆(x) = αtD0(x) = (β−1
t − 1)wt−1(x) (≥ 0).

Summarize our analysis. Note thatαt = β−1
t −1≥ 1−βt.

Then for anyx ∈ X , we have shown that

x ∈ P
⇒ ∆(x) ≤ max(βt − 1,−αt)wt−1(x)

≤ (βt − 1)wt−1(x), and
x ∈ Q
⇒ ∆(x) ≤ max(β−1

t αt, β
−1
t − 1)wt−1(x)

≤ β−1
t (β−1

t − 1)wt−1(x).

Thus, the total difference∆
def
= W̃ ′

t − W̃t−1 is estimated as
follows.

∆ =
∑

x∈X

∆(x) =
∑

x∈P

∆(x) +
∑

x∈Q

∆(x)

≤
∑

x∈P

(βt − 1)wt−1(x) +
∑

x∈Q

β−1
t (β−1

t − 1)wt−1(x)

= Wt−1 × ((βt − 1)(1− ǫt) + β−1
t (β−1

t − 1)ǫt).

Where the last equality is from the definition ofP , Q, and
ǫt; that is,ǫt = Prx:Dt−1{ ht(x) 6= f∗(x) } =Dt−1(Q), and
1− ǫt = Prx:Dt−1{ ht(x) = f∗(x) } =Dt−1(P).

Here recall thatβt is defined as
√
ǫ′t/(1− ǫ′t) with ǫ′t =√

ǫt/2. Hence we haveǫt ≤ ǫ′t and

β−1
t ǫt = 2(ǫ′t)

2

√
1− ǫ′t
ǫ′t

= ǫ′t(2
√
ǫ′t(1− ǫ′t)) ≤ ǫ′t.

Then we can bound∆ as follows.

∆ = Wt−1 × ((βt − 1)(1− ǫt) + β−1
t (β−1

t − 1)ǫt)

= Wt−1 × ((βt − 1)(1− ǫt) + β−2
t ǫt − β−1

t ǫt)

≤ Wt−1 × ((βt − 1)(1− ǫt) + β−1
t ǫ′t − β−1

t ǫt)

= Wt−1 × (β−1ǫ′t + (1− ǫ′t)βt − 1
+(ǫ′tβt − ǫtβt + ǫt − ǫtβ−1

t))

≤ Wt−1 × (β−1ǫ′t + (1− ǫ′t)βt − 1
+(2ǫ′tβt − 2(ǫ′t)

2(βt + β−1
t)))

= Wt−1 × (β−1ǫ′t + (1− ǫ′t)βt − 1)

= Wt−1 × (2
√
ǫ′t(1− ǫ′t)− 1)

= Wt−1 × (
√

1− (1− 2ǫ′t)
2 − 1)

≤ Wt−1 ×
−(1− 2ǫ′t)

2

2

= Wt−1 ×
−1− (1− 2γt) + 2

√
1− 2γt

2

≤ Wt−1 ×
(−2 + 2γt) + (2− 2γt − γ2

t)

2

= Wt−1 ×
(
−γ

2
t

2

)
.

That is,W̃ ′
t (henceW̃t) gets decreased from̃Wt−1 at least

byWt−1(γ
2
t /2).

Now suppose thatWt−1 is bigger thanǫ. (Otherwise
we are done.) TheñWt decreases from̃Wt−1 by at least
(ǫ/2)γ2

t . On the other hand,̃W0 = W0 = 1. Therefore, if
Wt ≥ ǫ for all t, 1 ≤ t < T , then we haveWT ≤ W̃T ≤
1− (ǫ/2)

∑
1≤i≤T γ

2
i , as claimed. ⊔⊓

Two remarks from the above proof. First consider the
reason why the further modification ofMadaBoost is nec-
essary. This is because we estimated∆(x) somewhat larger.
More specifically, for the casex ∈ Q, we estimated∆(x)
≤max(β−1

t αt, β
−1
t −1)wt−1(x)≤ β−1

t (β−1
t −1)wt−1(x);

but we usually would be able to use a smaller bound such
as ∆(x) ≤ (β−1

t − 1)wt−1(x). Suppose that this bound
worked for all (or almost all)x ∈ Q, then we would be
able to bound∆ by Wt−1 × (β−1ǫt + (1 − ǫt)βt − 1) =

Wt−1 × (2
√
ǫt(1− ǫt) − 1), which gives∆ ≤ Wt−1 ×

(
√

1− 4γ2
t −1)≤Wt−1× (−2γ2

t). Then a similar boosting
property would be provable forMadaBoost.

Next consider the possibility of proving a faster conver-
gence likeAdaBoost. The reason of our slower convergence
is due to the additive decrement of̃Wt, whereas the weight
Wt gets decreased multiplicatively inAdaBoost. Note, how-
ever,W̃t gets decreased multiplicatively if we may assume
thatW̃t ≈ Wt. In fact, assuming that̃Wt ≈ Wt, we would

have∆ (
def
= W̃t − W̃t−1) ≤ W̃t−1 × (−γ2

t /2). Thus,W̃t ≤

185

W̃t−1 × (1 − γ2
t /2); that is,W̃t gets decreased multiplica-

tively and indeed by a factor similar toAdaBoost. Since we
may assumẽWt ≈ Wt for the first several boosting steps,
we can expect convergence speed similar toAdaBoost, at
least, for the first several steps. This phenomenon has been
observed in our experiments [DW99].

4 Using MadaBoost with Filtering

We show thatMadaBoost indeed works under the filtering
framework, thereby satisfying our goal. (For simplicity, we
use MadaBoost for our explanation here and in the next
section. The same analysis also holds forMB:1/2.) Note
that the boosting property of Theorem 2 holds in the filter-
ing framework. The difference is that we consider the error
probability on the whole domainX ; hence,D0 = D (in the
definition ofwt−1(x)) andWt−1 =

∑
x∈X wt−1(x). More

specifically, Lemma 3 holds in the filtering framework, and
the error probability of the combined hypothesis (underD
overX) is bounded byWt. The main issue now is the way
to generate examples under modified distributions.

In the boosting by filtering framework, a boosting algo-
rithm uses a selection procedure, which is called afilter,
to generate examples under given distributions. Our filter
FiltEXDt

used at thetth boosting step is standard and es-
sentially the same as the one given in [Fre95]. That is, the
filter generates an example(x, f∗(x)) by EXD,f∗

and either
“rejects” it and throws it away, or “accepts” it and passes it
on toWeakLearn, where the probability of accepting an ex-
ample iswt−1(x)/D(x). More precisely, we consider the
following procedure.

Procedure FiltEXDt

if Wt−1 < ǫ then
output “accurate enough” and halt;

repeat
useEXD,f∗

to generate an example(x, b);

p(x)← min
(∏

1≤i≤t−1 β
cons(hi,x)
i , 1

)
;

% That is,p(x) = wt−1(x)/D(x).
accept(x, b) with probabilityp(x);

until some example(x, b) is accepted;
return(x, b);

end-procedure.

Then the following properties are immediate.

Lemma 4 Consider the execution of FiltEXDt
for some t.

(1) FiltEXDt
outputs x with probability Dt(x). (Recall that

Dt(x) = wt−1(x)/Wt−1.)

(2) The probability that FiltEXDt
accepts the first gener-

ated example and passes it to WeakLearn is∑
x∈X(wt−1(x)/D(x)) ·D(x) = Wt−1.

The above statement (1) guarantees that this filtering pro-
cedureFiltEXDt

gives an example under the desired distri-
butionDt. On the other hand, it follows from the statement
(2) that the expected number of executions ofEXD,f∗

until
some example is accepted is1/Wt−1. Thus, the procedure
takes longer and longer time whenWt−1 gets decreased.
But also recall thatWt−1 bounds the error probability of the

combined hypothesis; hence, we can stop the filtering pro-
cedure if it takes, say, more than1/ǫ steps to get one exam-
ple. Therefore, we may assume that the running time of the
procedure isO(1/ǫ). This is the key of our new weighting
scheme.

To completely show thatMadaBoost can be used in the
filtering framework, we also need to consider the following
points:- (i) the way to set the confidence values so that the
overall algorithm does not fail with probability larger than
1 − δ, (ii) the way to determine “Wt−1 < ǫ” in FiltEXDt

,
and (iii) the way to estimateγt, the advantage of an obtained
weak hypothesisht.

To solve (i), notice that the places where the algorithm
can fail are three:- in one of the executions ofWeakLearn,
in estimatingγt, and in determining when to stop (i.e., when
Wt becomes less thanǫ). Then in order to obtain an overall
confidence ofδ, it suffices to guarantee that any of these two

procedures fails with probability at mostδt
def
= δ/(3t(t +

1)) at each boosting stept. For (ii), we simply count the
number of unsuccessful calls ofEXD,f∗

in the execution of
FiltEXDt

. We determineWt−1 < ǫ if the number exceeds a
certain bound that can be easily derived from an appropriate
concentration bound. For instance, it follows from the Ho-
effding bound that ifWt−1 > ǫ, thenFiltEXDt

callsEXD,f∗

more thanO((1/ǫ) ln(1/δt)) times to yield one example.
Solving (iii) is not trivial. We need the way to estimate

the advantageγt of an obtained weak hypothesisht. Recall
that in the proof of Theorem 2, we assumed thatγt was com-
puted exactly. Whileγt can be directly computed under the
subsampling framework, this cannot be done in a straightfor-
ward manner in the filtering framework. Notice here, how-
ever, that it would be enough if we could obtain an estimate
γ̂t of γt such that|γt − γ̂t| ≤ γt/2, because then we could
useγ̂t/2 for γt. This may slow down the convergence speed
a bit, but the proof of Theorem 2 works. Then how can we
obtain such an estimator̂γt of γt? The situation is differ-
ent from estimatingWt−1, and a straightforward application
of a convergence bound like the Hoeffding bound does not
work. Fortunately, we can make use of more sophisticated
estimation methods called “adaptive sampling techniques”
that have been proposed in [DGW99, Wat00]. By using
one of these techniques, it is possible to obtain a desiredγ̂t

from O((1/γ2
t) ln(1/δt)) examples randomly generated by

EXD,f∗
.

Now summarizing the above discussion, we have the fol-
lowing theorem.

Theorem 5 Suppose that for given inputs ǫ > 0 and δ < 1,
the algorithm MadaBoost used in the filtering framework as
described above executes WeakLearn terminates after the
T th boosting round, obtaining weak hypotheses with advan-
tages γ1 ≥ · · · ≥ γT > 0.

(1) With probability 1 − δ, we have errorD(X, fT) ≤ 1 −∑T

i=1 ǫγ
2
i /8, where

errorD(X, fT)
def
= Pr

x:D
{ fT (x) 6= f∗(x) }.

(2) With probability 1 − δ, we have Wt−1 ≥ ǫ for any t,
1 ≤ t < T (and WT < ǫ) and thus, for each execution of
FiltEXDt

, the generator EXD,f∗
is called

186

O((1/ǫ) ln(1/δt)) times, where δt
def
= δ/3t(t + 1). Sim-

ilarly, for estimating the advantage of the obtained tth
weak hypothesis, EXD,f∗

is calledO((1/ǫγ2
t)((ln(1/δt))

2)
times.

We can now explain clearly whyAdaBoost cannot be
used for the filtering framework. As it happens with
MadaBoost, the boosting property ofAdaBoost, i.e., The-
orem 1, still holds in the filtering framework. Furthermore,
Wt−1 also bounds the generalization error of thetth com-
bined hypothesis (This property only holds under the weight-
ing scheme as defined in Section 2). On the other hand, we
cannot use the above filtering procedure as it is because the
weights are not bounded between 0 and 1. There are two
ways to get around this, either we normalize the weights of
AdaBoost or we use the original definition in [FS97] where
the weights are bounded between 0 and 1. Both ways will
lead to the same conclusion; that is, the probability that the
filter outputs one example could be exponentially smaller
than the current generalization error. For example, in the
case that the advantage of all obtained weak hypotheses isγ,
we can show that the expected running time of the filter to
output one example becomes exponential in1/γ.

5 Noise Tolerance

We show here, from the theoretical point of view, that
MadaBoost is in fact resistant to certain kinds of noise by
showing that it belongs to the statistical query model of learn-
ing introduced by Kearns [Kea93].

Before showing the result, let us recall the definitions
of the statistical query model. In the Statistical Query (SQ)
model a learner does not have access to examples anymore.
The example oracleEX(f∗, D) is replaced by a statistics
oracleSTAT (f∗, D) that works as follows. A statistical
query is of the form[χ, τ], whereτ is a tolerance parame-
ter, andχ is a mapping from labeled examples to{0, 1} (i.e.
χ : X×{0, 1} → {0, 1}) corresponding to an indicator func-
tion for those examples about which statistic are to be col-
lected. A call toSTAT (f∗, D)[χ, τ] returns an estimatêPχ

of Pχ = Prx:D{χ(x, f∗(x)) } that satisfies|P̂χ − Pχ| ≤ τ .
By using queries of this type, we would like to design a learn-
ing algorithm that is robust to random classification noise.

Now we show thatMadaBoost belongs to the SQ model.
That is, the following theorem. (The same statement holds
for MB:1/2.)

Theorem 6 Algorithm MadaBoost is an statistical query
boosting algorithm.

We first give a proof outline. As in [AD93], we assume
thatWeakLearn is a SQ learning algorithm; that is, it uses
the statistical oracle instead of the example oracle. Notice
here thatWeakLearn works under the modified distribu-
tions. Hence at each stept it does not useSTAT (f∗, D)
but STAT (f∗, Dt). Therefore for the proof it suffices to
show that we can simulate a query toSTAT (f∗, Dt) by us-
ing queries toSTAT (f∗, D) that is the oracle available to
the boosting algorithm. More specifically, we fix a query
STAT (f∗, Dt)[χ, τ] and assume that we are in thetth boost-
ing step and thatWeakLearn is making the query

STAT (f∗, Dt)[χ, τ] in order to construct hypothesisht+1.
Then we show the way to simulateSTAT (f∗, Dt)[χ, τ] with
queries toSTAT (f∗, D). Here we also assume thatWt ≥ ǫ
for a given parameterǫ the boosting algorithm, because oth-
erwise, the boosting process would have been terminated.

Now we explain our simulation ofSTAT (f∗, Dt)[χ, τ]
in detail. For our analysis, we need to divide a subspaceX ′

def
= { x ∈ X | ft(x) = f∗(x) } in slices depending on the
value ofwt(x). For this, we definen as the smallest integer
satisfying the following inequality, andY as follows.

log

(
96(n+ 1)3

τǫ

)
≤ n, and Y

def
= 1− τǫ

192(n+ 1)2
.

Let l be the smallest integer such thatY l ≤
t∏

i=1

βi holds.

Then define the following set for eachk ≥ 0. (Note that
{Ek}k≥0 is the division ofX ′.)

Ek
def
= { x | x ∈ X andY k+1 ≤

t∏

i=1

β
cons(hi,x)
i < Y k }.

Armed with this definition, we can now rewrite the query
STAT (f∗, Dt)[χ, τ] as follows.

STAT (f∗, Dt)[χ, τ] = Prx:Dt
{χ(x, f∗(x)) }

=
∑

x∈X

χ(x, f∗(x))Dt(x)

=
∑

x∈X

ft(x)=f∗(x)

χ(x, f∗(x))Dt(x)

+
∑

x∈X

ft(x)6=f∗(x)

χ(x, f∗(x))Dt(x)

=
∑

0≤k≤l−1

∑

x∈Ek

χ(x, f∗(x))Dt(x)

+
∑

x∈X

ft(x)6=f∗(x)

χ(x, f∗(x))
D(x)

Wt

=
∑

0≤k≤l

Pr
x:Dt

{χ(x, f∗(x)) ∧ x ∈ Ek }

+
Prx:D{χ(x, f∗(x)) ∧ ft(x) 6= f∗(x) }

Wt

Now we want to approximate these two additive terms of
the above formula. We show how each term can be approxi-
mated efficiently up to an additive tolerance ofτ/2; then the
overall probability is approximated up to an additive toler-
ance ofτ as desired.

The second term in the above is already given in terms of
probability with respect toD; hence, we can useSTAT (f∗, D)
to approximate it appropriately as shown by the following
lemma. (The proof is easy and omitted here.)

Lemma 7 Let p = Prx:D{χ(x, f∗(x)) ∧ ft(x) 6= f∗(x) }
and let p̂ and Ŵt be two estimators such that | p̂ − p | ≤
τWt/6 and | Ŵt −Wt | ≤ τWt/6, then an estimator p̂/Ŵt

satisfies ∣∣∣∣
p̂

Ŵt

− p

Wt

∣∣∣∣ ≤
τ

2
.

187

For the first term, let us define the following probabilities
in order to simplify the notation.

p
(1)
k

def
= Prx:Dt

{χ(x, f∗(x)) ∧ x ∈ Ek }, and

p
(2)
k

def
= Prx:D{χ(x, f∗(x)) ∧ x ∈ Ek }.

Then for anyk ≥ 0, the following inequalities hold by
definition ofEk.

Y k+1p
(2)
k

Wt

≤ p
(1)
k ≤ Y kp

(2)
k

Wt

. (1)

Thus, our goal is to obtain, for everyk, an estimator̂p(1)
k

that approximatesp(1)
k up to an appropriate additive toler-

ance. We estimatep(1)
k by using the estimatorŝp(2)

k andŴt

of p(2)
k andWt. The following lemma states the way.

Lemma 8 For any k ≥ 0, let p̂
(2)
k and Ŵt two estimators

satisfying

| p̂(2)
k − p

(2)
k | ≤

τWt

24Y k+1(n+ 1)
, and

| Ŵt −Wt | ≤ τWt

24(n+ 1)
.

Then by defining p̂
(1)
k

def
= Y k+1p̂

(2)
k /Ŵt, we have

| p̂(1)
k − p

(1)
k | ≤

τ

4(n+ 1)
.

Proof. SinceWt ≥ ǫ, we have1 − Y = τǫ/(192(n + 1)2)

≤ τWt/8(n+ 1). Moreover, sincep(2)
k andY k are both less

than or equal to1, the following inequality holds.

Y k(1− Y)p
(2)
k ≤ τWt

8(n+ 1)
,

which implies

Y kp
(2)
k

Wt

− Y k+1p
(2)
k

Wt

≤ τ

8(n+ 1)
.

This inequality together with inequality (1) implies

p
(1)
k −

τ

4(n+ 1)
≤ Y k+1p

(2)
k

Wt

− τ

8(n+ 1)
, and

Y k+1p
(2)
k

Wt

+
τ

8(n+ 1)
≤ p

(1)
k +

τ

4(n+ 1)
.

Thus, if we show that estimator̂p(1)
k as defined in the

statement of the lemma approximatesY k+1p
(2)
k /Wt up to an

additive tolerance smaller thanτ/(8(n+1)), then, by the in-
equality above, we can conclude thatp̂

(1)
k also approximates

p
(1)
k up to an additive tolerance smaller thanτ/(4(n+ 1)) as

claimed in the statement of the lemma.
First note the following two inequalities, which are easy

to show.

Y k+1p
(2)
k + τWt

24(n+1)

Wt − τWt

24(n+1)

≤ Y k+1p
(2)
k

Wt

+
τ

8(n+ 1)
, and

Y k+1p
(2)
k

Wt

− τ

8(n+ 1)
≤

Y k+1p
(2)
k − τWt

24(n+1)

Wt + τWt

24(n+1)

.

Next use the assumption of the lemma onp̂(2)
k andŴt; then

we have

Y k+1p
(2)
k − τWt

24(n+1)

Wt + τWt

24(n+1)

≤ Y k+1p̂
(2)
k

Ŵt

≤
Y k+1p

(2)
k + τWt

24(n+1)

Wt − τWt

24(n+1)

.

This implies that|p̂(1)
k −Y k+1p

(2)
k /Wt| ≤ τ/8(n+1), prov-

ing the lemma as already argued.⊔⊓

Notice that ask becomes large the probabilityp(1)
k gets

smaller. In fact, we do not need to approximate all of them;
only the firstn + 1 would be enough. The rest can be dis-
carded as shown in the following lemma.

Lemma 9
∑

n+1≤k≤l−1 p
(1)
k ≤ τ/4.

Proof. SinceY < 1 andǫ ≤ Wt, it follows from our choice
of n thatlog(96(k+ 1)3/(τWt)) ≤ k log(1/Y) for anyk >
n. This implies

Y k

Wt

≤ τ

96(k + 1)3
≤ τ

4k2
.

Moreover, the following chain of inequalities also hold.

∑

n+1≤k≤l−1

p
(1)
k ≤

∑

n+1≤k≤l−1

Y kp
(2)
k

Wt

≤
∑

n+1≤k≤l−1

Y k

Wt

≤
∑

n+1≤k≤l−1

τ

4k2
.

Then the lemma follows by noticing that
∑

n+1≤k≤l−1 τ/4k
2

is smaller thanτ/4. ⊔⊓

Thus, for1 ≤ k ≤ n, we use the estimator̂p(1)
k as defined

in Lemma 8, and for anyk > n, we just usêp(1)
k = 0 as our

estimator. In this way, we can bound the error as follows.
∣∣∣∣∣∣

∑

0≤k≤l−1

p
(1)
k −

∑

0≤k≤l−1

p̂
(1)
k

∣∣∣∣∣∣

≤
∑

0≤k≤n

τ

4(n+ 1)
+

∑

n+1≤k≤l−1

τ

4k2

≤ τ

2
.

Estimatorsp̂ and p̂(2)
k can be obtained from queries to

STAT (f∗, D) since they are estimators of probabilities with
respect toD, and the conditionsft(x) 6= f∗(x) andx ∈ Ek

can be tested in polynomial time. On the other hand,Ŵt

cannot be directly obtained fromSTAT . Before describing

188

how to obtain̂Wt, let us discuss about the tolerances of these
estimators.

We need to verify that the tolerances required for all the
approximations involved in the proof are not too small. In
other words, we need to show that the inverse of all the tol-
erances are polynomial in1/ǫ and1/τ . First recall that all
the tolerances are required to depend onWt. This value is
not known but we can assume that it is larger thanǫ through-
out all the boosting process; hence, we can substituteWt

by ǫ in all the tolerances. The tolerance required forŴt in
Lemma 8 (i.e.,τǫ/24(n + 1)) is the smallest among all the
tolerances required; thus, it is enough to show that24(n +
1)/τǫ is bounded by a polynomial in1/ǫ and1/τ . But this
follows from the fact thatn is bounded by a polynomial;
more specifically, it is easy to show thatn is bounded by
O((1/ǫτ) ln(1/ǫτ)).

It remains to see how can we approximateWt from
STAT (f∗, D). The smallest tolerance required forWt

through the proof isτǫ/24(n + 1); hence, we show how to
approximateWt up to this tolerance. First we rewriteWt as
follows.

Wt =
∑

x∈X

wt(x)

= Pr
x:D
{ ft(x) 6= f∗(x) } +

∑

0≤k≤l−1

∑

x∈Ek

wt(x).

Moreover, by definition ofEk, the following inequality
holds for anyk ≥ 0.

Y k+1q
(2)
k ≤ q

(1)
k ≤ Y kq

(2)
k ,

whereq(2)k = Prx:D{ x ∈ Ek } andq(1)k =
∑

x∈Ek
wt(x).

The following lemma shows how to approximateWt.
(The proof, which is similar to the previous two proofs, is
omitted.)

Lemma 10 Let q = Prx:D{ ft(x) 6= f∗(x) } and for any

k ≥ 0, let q̂
(2)
k and q̂ be two estimators such that

| q̂(2)k − q(2)k | ≤
τǫ

Y k+1192(n+ 1)2
and | q̂ − q | ≤ τǫ

48n
.

Then by defining Ŵt
def
= q̂ +

∑
0≤k≤n q̂

(2)
k , we have

|Wt − Ŵt | ≤
τǫ

24(n+ 1)
.

Summarizing, we have shown how to estimate
Prx:Dt

{χ(x, f∗(x)) } up to toleranceτ by combining ap-
propriately the answers of the following statistical queries.

STAT (f∗, D)[χ(x, f∗(x)) ∧ ft(x) 6= f∗(x) , τǫ/6]

STAT (f∗, D)[χ(x, f∗(x)) ∧ x ∈ Ek , τǫ/(24Y k+1(n+ 1))]
(for eachk, 0 ≤ k ≤ n)

STAT (f∗, D)[ft(x) 6= f∗(x) , τǫ/(48n)], and

STAT (f∗, D)[x ∈ Ek , τǫ/(192Y k+1(n+ 1)2)]
(for eachk, 0 ≤ k ≤ n).

Therefore, we have proven Theorem 6.

References

[AL88] D. Angluin and P. Laird, Learning from noisy
examples, Machine Learning, 2(4):343–370,
1988.

[AD93] J.A. Aslam and S.E. Decatur, General bounds on
statistical query learning and PAC learning with
noise via hypothesis boosting, inProc. of the
34th Annual Sympos. on Foundations of Comp.
Sci., 282–291, 1993.

[Die98] T.G. Dietterich, An experimental comparison of
three methods for constructing ensembles of de-
cision trees: bagging, boosting and randomiza-
tion, Machine Learning, 32:1–22, 1998.

[DKM96] T. Dietterich, M. Kearns, and Y. Mansour, Ap-
plying the weak learning framework to under-
stand and improve C4.5, inProc. 13th Inter-
national Conference on Machine Learning, 96–
104, 1996.

[DGW99] C. Domingo, R. Gavaldà, and O. Watanabe,
Adaptive sampling methods for scaling up
knowledge discovery algorithms, inProc. of the
Second International Conference on Discovery
Science, DS’99, Lecture Notes in Artificial In-
telligence 1721, 172–183, 1999.

[DW99] C. Domingo and O. Watanabe, Experimental
evaluation of a modified AdaBoost for the
filtering framework, Technical report C-139,
Dept. of Mathematics and Computer Science,
Tokyo Institute of Technology, available from
www.is.titech.ac.jp/research/research-report/
C/index.html, 1999.

[DW00] C. Domingo and O. Watanabe, Scaling up a
boosting-based learner via adaptive sampling, in
Proc. of Knowledge Discovery and Data Min-
ing, PAKDD’00, Lecture Notes in Artificial In-
telligence 1805, 317–328, 2000

[Fre95] Y. Freund, Boosting a weak learning algo-
rithm by majority, Information and Computa-
tion, 121(2):256–285, 1995.

[Fre99] Y. Freund, An adaptive version of the boost
by majority algorithm, inProc. of the Twelfth
Annual Conference on Computational Learning
Theory, 1999.

[FS97] Y. Freund and R.E. Schapire, A decision-
theoretic generalization of on-line learning and
an application to boosting.J. Comput. Syst. Sci.,
55(1):119–139, 1997.

[FS96] Y. Freund and R.E. Schapire, Experiments with
a new boosting algorithm, inProc. of the
Thirteenh International Conference on Machine
Learning, 148–156, 1996.

[FHT98] J. Friedman, T. Hastie, and R. Tibshirani, Ad-
ditive logistic regression: a statistical view of
boosting, Technical report, 1998.

[Kea93] M. Kearns, Efficient noise-tolerant learning
from statistical queries, InProc. of the Twenty-
Fifth Annual ACM Sympos. on Theory of Com-
put., 392–401, 1993.

[Sch90] R.E. Schapire, The strength of weak learnability,
Machine Learning, 5(2):197–227, 1990.

189

[Wat99] O. Watanabe, From computational learning the-
ory to discovery science, inProc. 26th Inter-
national Colloquium on Automata, Languages
and Programming, ICALP’99, Lecture Notes in
Computer Science 1644, 134–148, 1999.

[Wat00] O. Watanabe, Simple sampling techniques for
discovery science,IEICE Trans. on Information
and Systems, E83-D(1): 19–26, 2000.

