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Abstract

In the literature a number of relative loss bounds
have been shown for on-line learning algorithms.
Here the relative loss is the total loss of the on-line
algorithm in all trials minus the total loss of the
best comparator that is chosen off-line. However,
for many applications instantaneous loss bounds
are more interesting where the learner first sees a
batch of examples and then uses these examples
to make a prediction on a new instance. We show
relative expected instantaneous loss bounds for the
case when the examples are i.i.d. with an unknown
distribution. We bound the expected loss of the al-
gorithm on the last example minus the expected
loss of best comparator on a random example. In
particular, we study linear regression and density
estimation problems and show how the leave-one-
out loss can be used to prove instantaneous loss
bound for these cases. For linear regression we
use an algorithm that is similar to a new on-line
learning algorithm developed by Vovk.

Recently a large number of relative total loss bou-
nds have been shown that have the formO(lnT ),
whereT is the number of trials/examples. Stan-
dard conversions of on-line algorithms to batch al-
gorithms result in relative expected instantaneous
loss bounds of the formO(

ln T

T

). Our methods
lead toO(

1

T

) bounds. We also prove lower bounds
that show that our upper bound on the relative ex-
pected instantaneous loss for Gaussian density es-
timation is optimal. In the case of linear regression
we can show that our bounds are tight within a fac-
tor of two.

1 INTRODUCTION

Consider a sequence of trialst = 1; 2; : : : ; T . In each trial
an example is processed. Such an example consists of an
instance vector x

t

and anoutcome y
t

. For some trialst the
learner has to make aprediction by

t

for the outcomey
t

. The
learner must do this based on the examples from the previous
t�1 trials plus the current instancex

t

. This means that as the
number of trials increases, the learner has more information
at its disposal.

A learning algorithm is a strategy for choosing predic-
tions. The discrepancy between a predictionby

t

of the learner
and a correct outcomey

t

is measured by a loss function.
The learner wants to make use of “correlations” between in-
stances and outcomes for the purpose of keeping the loss as
small as possible. To model such correlations we compare
the loss of a learning algorithm against the loss of the best
function from acomparison class of predictors.

In this papers we are mainly interested inoff-line learn-
ing where the learner has to make one prediction in the last
trial T . On-line algorithms must predict in all trials. For off-
line algorithms we focus on theinstantaneous loss in the last
trial and for on-line algorithms on thetotal loss of all trials.
We always consider the loss of the algorithm minus the loss
of the best comparator. Such bounds are called relative loss
bounds. They might be shown for worst-case sequences of
examples or for the case when the examples are i.i.d. with a
fixed but unknown distribution. The main focus of this paper
is to prove relative expected instantaneous loss bounds.

We obtain such bounds without using the powerful but
rough machinery of the fat shattering dimension (See, e.g.,
Anthony and Bartlett [1]). Instead we want to build on the
recent successes in proving relative total loss bounds for on-
line algorithms. These bounds hold for worst-case sequences
and they grow asO(lnT ) (See Foster [5], Vovk [14], Azoury
and Warmuth [2], Forster [3], Gordon [6], Yamanishi [16],
[17]). There are standard conversions of on-line algorithms
to off-line algorithms (See Helmbold and Warmuth [9] and
Kivinen and Warmuth [10]). These conversions would pro-
duce complicated algorithms and their relative expected in-
stantaneous loss bounds would have the formO(

lnT

T

). In-
stead we prove bounds of the formO(

1

T

).
We first do this for Gaussian density estimation by an

exact calculation. In the case of Bernoulli density estimation
and linear regression we use a generalization of an inequality
from Haussler, Littlestone and Warmuth [8] that is based on
the leave-one-out loss.

We also give a lower bound that shows that our result
for Gaussian density estimation is tight. For linear regres-
sion our lower and upper bounds are within a factor of two.
We believe that the upper bound for linear regression can be
improved so that it meets the lower bound.

All algorithms we use in this paper are subtle modifica-
tions of previously introduced algorithms. We chose these
modifications to optimize our bounds. It remains to be seen
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whether these modifications result in improved performance
on natural data.

An interesting application of our new linear regression
algorithm is the case when the instances are expanded to
feature vectors and the dot product between two feature vec-
tors is given by a kernel function (See Saunders, Gammer-
man & Vovk [13]). Also Fourier or wavelet transforms can
be used to extract frequency-dependent information from the
instances, see, e.g., Walker [15] and Graps [7]. These linear
transforms can reduce the dimensionality of the comparison
class which leads to smaller relative loss bounds. One of
the most salient properties of our bound for linear regression
is the fact that it is linear in theexpected dimension of the
instances (or feature vectors).

2 NOTATION AND PRELIMINARIES

In our setting, instancesx, predictionsby and outcomesy are
elements of aninstance space X , a prediction space bY and
an outcome space Y, respectively. Anexample z is a pair
(x; y) of an instancex 2 X and an outcomey 2 Y. Loss
functions map tuples of predictions and outcomes to the non-
negative reals. For such a loss functionL, the learner incurs
lossL(by; y) if it makes the predictionby 2 bY and the correct
outcome isy 2 Y. The comparison classC consists of func-
tionsc that map instances to predictions, i.e.c : X !

b

Y.
Such a function is called acomparator. The loss of a com-
paratorc on example(x; y) isL(c(x); y).

A learning algorithmQ is a function that maps a batch
of examples and an instance to a prediction. If the learner is
given the examplesz

1

= (x

1

; y

1

),. . . ,z
T�1

= (x

T�1

; y

T�1

)

2 X � Y in trials 1 throughT � 1 and the instancex
T

2 X

in trial T , then its prediction isQ(z

1

; : : : ; z

T�1

; x

T

) 2

b

Y.
The loss of algorithmQ in trial T is

L(Q(z

1

; : : : ; z

T�1

; x

T

); y

T

) :

Under the assumption that the examples are i.i.d. with
unknown distributionwe want to find learning algorithms for
which we can prove that the expected loss of the learner in
trial T on a random example is not much larger than the ex-
pected loss of the best function from the comparison class.
Formally we want to bound therelative expected instanta-
neous loss

E

(z

1

;:::;z

T

)�D

T

�

L(Q(z

1

; : : : ; z

T�1

; x

T

); y

T

)

�

� inf

c2C

E

(x;y)�D

�

L(c(x); y)

�

(1)

for any distributionD on the set of examplesX � Y. Here
E

(z

1

;:::;z

T

)�D

T denotes the expectation over random vari-
ablesz

1

= (x

1

; y

1

); : : : ; z

T

= (x

T

; y

T

) which are i.i.d. with
distributionD, andE

(x;y)�D

denotes the expectation over
the random variable(x; y) with distributionD. The infimum
in (1) is called thecomparison term.

3 GAUSSIAN DENSITY ESTIMATION

In density estimation problems we do not use the instance
spaceX . One of the simplest density estimation problems
is the prediction of the mean of a unit variance Gaussian. In

this case the prediction spacebY and the outcome spaceY
are bothRm for a fixed dimensionm 2 N. The loss function
is the squared Euclidean normL(by; y) = kby � yk

2 and the
comparison classC for the best mean vector is againRm.

For Gaussian density estimation the comparison term in
(1) is the variance of the unknown distributionD, i.e.

inf

c2R

m

E

y�D

�

kc� yk

2

�

= E

y�D

�

kyk

2

�

� kE

y�D

(y)k

2

;

(2)
and the infimum is attained whenc is chosen as the expecta-
tionE

y�D

(y) of D. To see this note that

E

y�D

�

kc� yk

2

�

= kck

2

� 2c � E

y�D

(y) + E

y�D

(kyk

2

) (3)

is convex inc. Setting the gradient of (3) with respect to
c to zero shows that the infimum of (3) is attained forc =

E

y�D

(y). For thisc, (3) is equal to

E

y�D

�

kyk

2

�

� kE

y�D

(y)k

2

:

Theorem 3.1 Consider the following prediction algorithm
Q for Gaussian density estimation

Q(y

1

; : : : ; y

T�1

) :=

P

T�1

t=1

y

t

T � 1 +

p

T � 1

:

Then for any distributionD on Rm the relative expected in-
stantaneous loss of Q is

E

(y

1

;:::;y

T

)�D

T

�

kQ(y

1

; : : : ; y

T�1

)� y

T

k

2

�

� inf

c2R

m

E

y�D

�

kc� yk

2

�

=

1

T + 2

p

T � 1

E

y�D

(kyk

2

) :

Proof. Let � := (T � 1 +

p

T � 1)

�1. The relative ex-
pected instantaneous loss (1) for Gaussian density estimation
is

E

(y

1

;:::;y

T

)�D

T

 

k�

T�1

X

t=1

y

t

� y

T

k

2

!

� inf

c2R

m

E

y�D

�

kc� yk

2

�

(2)

= E

(y

1

;:::;y

T

)�D

T

�

�

2

k

T�1

X

t=1

y

t

k

2

�2�

T�1

X

t=1

y

t

� y

T

+ ky

T

k

2

�

�E

y�D

�

kyk

2

�

+ kE

y�D

(y)k

2

= �

2

(T � 1)E

y�D

�

kyk

2

�

+ kE

y�D

(y)k

2

�

�

�

�

2

(T � 1)(T � 2)� 2�(T � 1) + 1

�

| {z }

=0

=

1

T + 2

p

T � 1

E

y�D

�

kyk

2

�

:
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For the second equality we used

k

T�1

X

t=1

y

t

k

2

=

T�1

X

t=1

ky

t

k

2

+

T�1

X

s;t=1

s 6=t

y

s

� y

t

:

2

The prediction used in Theorem 3.1 is a special case of
the following prediction for trialT :

cy

0

+

P

T�1

t=1

y

t

c+ T � 1

:

Herey
0

is an initial mean andc � 0 is the multiplicity of
this mean. We chosey

0

= 0 andc =

p

T � 1. In Azoury
and Warmuth [2] worst-case on-line total loss bounds were
proven for the algorithm that usesy

0

= 0 andc = 1. The
relative expected instantaneous loss bounds for the latteral-
gorithm are slightly weaker.

In Section 7 we show that the prediction algorithm of
Theorem 3.1 is optimal in a very strong sense: For every
learning algorithmQ0 for Gaussian density estimation there
is a simple distributionD on two points for which the relative
expected instantaneous loss ofQ

0 is at least as large as the
bound of Theorem 3.1.

4 THE LEAVE-ONE-OUT LOSS

The bound for Gaussian density estimation given in the pre-
vious section was proven by an exact calculation. For the rel-
ative expected instantaneous loss bounds for Bernoulli den-
sity estimation and linear regression we need to use a general
inequality given in Theorem 4.1 of this section. This theorem
is a generalization of a similar theorem given in Haussler,
Littlestone and Warmuth [8]. Theorem 4.1 gives a bound
on the relative expected instantaneous loss (1) in terms of
the leave-one-out loss of a learning algorithm. The leave-
one-out loss of a learning algorithmQ on a sequence ofT
examplesz

1

; : : : ; z

T

2 X �Y is the average of the losses of
the learning algorithm on the last example of certain permu-
tations of the sequence:

L

Q;loo

(z

1

; : : : ; z

T

) :=

1

T

T

X

t=1

L(Q(z

1

; : : : ; z

t�1

; z

t+1

; : : : ; z

T

; x

t

); y

t

) :

(4)

The sample error of a functionc : X !

b

Y on T examples
z

1

; : : : ; z

T

2 X � Y is

L

c;se

(z

1

; : : : ; z

T

) :=

1

T

T

X

t=1

L(c(x

t

); y

t

) : (5)

Theorem 4.1 The relative expected instantaneous loss (1) of
any learning algorithm Q is bounded as follows:

E

(z

1

;:::;z

T

)�D

T

�

L(Q(z

1

; : : : ; z

T�1

; x

T

); y

T

)

�

� inf

c2C

E

(x;y)�D

�

L(c(x); y)

�

� E

(z

1

;:::;z

T

)�D

T

�

L

Q;loo

(z

1

; : : : ; z

T

)� inf

c2C

L

c;se

(z

1

; : : : ; z

T

)

�

� sup

z

1

;:::;z

T

2X�Y

�

L

Q;loo

(z

1

; : : : ; z

T

)� inf

c2C

L

c;se

(z

1

; : : : ; z

T

)

�

:

Proof. This holds because (1) is the sum of

E

(z

1

;:::;z

T

)�D

T

�

L(Q(z

1

; : : : ; z

T�1

; x

T

); y

T

)

�

=

1

T

T

X

t=1

E

(z

1

;:::;z

T

)�D

T

�

L(Q(z

1

; : : : ; z

t�1

; z

t+1

; : : : ; z

T

; x

t

); y

t

)

�

= E

(z

1

;:::;z

T

)�D

T

�

L

Q;loo

(z

1

; : : : ; z

T

)

�

and of

� inf

c2C

E

(x;y)�D

�

L(c(x); y)

�

(5)

= � inf

c2C

E

(z

1

;:::;z

T

)�D

T

�

L

c;se

(z

1

; : : : ; z

T

)

�

� �E

(z

1

;:::;z

T

)�D

T

�

inf

c2C

L

c;se

(z

1

; : : : ; z

T

)

�

:

2

The bound in terms of the supremum has the advantage
that it does not contain an expectation over an unknown dis-
tribution. In the original theorem of Haussler, Littlestone and
Warmuth [8] the comparison term is zero.

For Gaussian density estimation the infimum of the sam-
ple error that appears in the bounds of Theorem 4.1 is the
sample variance:

inf

c2R

m

L

c;se

(y

1

; : : : ; y

T

) =

1

T

T

X

t=1

ky

t

�

1

T

T

X

s=1

y

s

k

2

:

This follows because

L

c;se

(y

1

; : : : ; y

T

)

(5)

=

1

T

T

X

t=1

kc� y

t

k

2

= kck

2

� 2c �

1

T

T

X

t=1

y

t

+

1

T

T

X

t=1

ky

t

k

2

is convex inc and its gradient with respect toc vanishes for
the sample meanc =

1

T

P

T

t=1

y

T

. Plugging this value ofc
into the above expression gives the sample variance.

5 BERNOULLI DENSITY ESTIMATION

For Bernoulli density estimation the outcomes are coin flips
(i.e. Y = f0; 1g). The probability of the underlying coin
is hidden and the comparison class consists of all possible
choices for the hidden coin (i.e.C = [0; 1]). The predictions
are estimates of the probability of the hidden coin (i.e.bY =

[0; 1]). If the learner makes the predictionby this means that it
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assigns probabilityby to the outcome 1 and probability1� by
to the outcome 0. The loss function

L(by; y) = �y ln by � (1� y) ln(1� by) (6)

is the negated logarithm of the probability that the learneras-
signed to the correct binary outcomey. We use the notation
0 � ln � := 0 for all � 2 R, i.e. L(0; 0) = L(1; 1) = 0 and
L(0; 1) = L(1; 0) = 1. Note that as for Gaussian density
estimation we do not use the instance spaceX .

Theorem 5.1 Consider the following prediction algorithm
Q for Bernoulli density estimation

Q(y

1

; : : : ; y

T�1

) :=

1 +

P

T�1

t=1

y

t

T + 1

:

Then for any distributionD on the outcome space the relative
expected instantaneous loss of Q is bounded as follows:

E

(y

1

;:::;y

T

)�D

T

�

L(Q(y

1

; : : : ; y

T�1

); y

T

)

�

� inf

c2C

E

y�D

�

L(c; y)

�

� ln

�

1 +

1

T

�

�

1

T

:

Proof. Because of Theorem 4.1 it suffices to show that
for anyT outcomesy

1

; : : : ; y

T

the term

L

Q;loo

(y

1

; : : : ; y

T

) � inf

c2[0;1]

L

c;se

(y

1

; : : : ; y

T

)

is equal toln
�

1 +

1

T

�

. The infimum can be written as

inf

c2[0;1]

L

c;se

(y

1

; : : : ; y

T

) = ��y ln �y � (1 � �y) ln(1� �y) ;

where�y :=

1

T

P

T

t=1

y

t

is the average of the examples. This
holds because

L

c;se

(y

1

; : : : ; y

T

)

(5)

=

1

T

T

X

t=1

L(c; y

t

)

(6)

=

1

T

 

�

T

X

t=1

y

t

ln c�

T

X

t=1

(1� y

t

) ln(1� c)

!

= ��y ln c� (1 � �y) ln(1� c) :

is convex inc 2 [0; 1] and its gradient with respect toc van-
ishes forc = �y.

The leave-one-out loss of the learning algorithmQ on the
outcomesy

1

; : : : ; y

T

is

L

Q;loo

(y

1

; : : : ; y

T

)

(4)

=

1

T

T

X

t=1

L

�

1 +

P

s2f1;:::;Tgnftg

y

s

T + 1

; y

t

�

=

1

T

X

t2f1;:::;Tg

y

t

=1

L

�

T �y

T + 1

; 1

�

+

1

T

X

t2f1;:::;Tg

y

t

=0

L

�

1 + T �y

T + 1

; 0

�

(6)

= ��y ln

�

T �y

T + 1

�

� (1� �y) ln

�

T (1� �y)

T + 1

�

:

Thus

L

Q;loo

(y

1

; : : : ; y

T

)� inf

c2[0;1]

L

c;se

(y

1

; : : : ; y

T

)

= ��y ln

�

T

T + 1

�

� (1� �y) ln

�

T

T + 1

�

= ln

�

1 +

1

T

�

�

1

T

:

2

As in the case of Gaussian density estimation our algo-
rithm again uses a prediction of the form

cy

0

+

P

T�1

t=1

y

t

c+ T � 1

:

The initial mean is chosen to be unbiased, i.e.y

0

=

1

2

. In
our prediction we chosec = 2 for the multiplicity of the
mean. This is different from the standard Laplace estimator
for which c = 1. For the Laplace estimator we could only
prove a slightly weaker bound.

6 OVERVIEW OF OLD AND NEW

RESULTS FOR LINEAR REGRESSION

6.1 KNOWN RESULTS

In linear regression the instance space isX = R

n for a fixed
dimensionn. The prediction space isbY = R and the out-
come space isY = [�Y; Y ] � R. This means that we make
the assumption that the outcomes are bounded by some con-
stantY . However, the learner does not need to knowY . The
loss functionL is the square loss, i.e.L(by; y) = (by � y)

2.
The comparison classC consists of the linear functionsc :

R

n

! R. Thus for off-line linear regression the relative ex-
pected instantaneous loss (1) of a learning algorithmQ is

E

(z

1

;:::;z

T

)�D

T

�

(Q(z

1

; : : : ; z

T�1

; x

T

)� y

T

)

2

�

� inf

w2R

n

E

(x;y)�D

�

(w � x� y)

2

�

; (7)

whereD is an unknown distribution of the examples. For the
comparison term we represent linear functionsc : R

n

! R

asn-dimensional vectorsw.
For on-line linear regression therelative total loss of a

learning algorithmQ is

T

X

t=1

(Q(z

1

; : : : ; z

t�1

; x

t

) � y

t

)

2

� inf

w2R

n

 

T

X

t=1

(w � x

t

� y

t

)

2

+ akwk

2

!

; (8)

wherez
1

= (x

1

; y

1

), . . . , z
T

= (x

T

; y

T

) are theT examples
of trials 1 throughT . Herea � 0 is a constant and the
termakwk

2 is a measure of the complexity of the vectorw.
The largera, the smaller the expression (8). Bounds on (8)
that hold for almost arbitrary sequences of examples have
only been shown for the casea > 0. Note that we will not
need a term likeakwk2 in (8) to show our relative expected
instantaneous loss bounds for off-line linear regression.

Vovk [14] proposed a learning algorithm for on-line lin-
ear regression for which he showed that the relative loss (8)is
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at mostnY 2

ln(1+

TX

2

an

) for all example sequences of length
T for which the Euclidean norm of the instances is bounded
by a constantX. For the casea = 0, he also showed that
for any learning algorithm there is a distributionD on the
examples for which the expectation of (8),

E

(z

1

;:::;z

T

)�D

T

�

T

X

t=1

(Q(z

1

; : : : ; z

t�1

; x

t

)� y

t

)

2

� inf

w2R

n

T

X

t=1

(w � x

t

� y

t

)

2

�

(9)

is at least(n � o(1))Y

2

lnT asT ! 1. Forster and War-
muth [4] give a corresponding upper bound ofnY

2

(1+lnT )

on (9) that holds for any distributionD on the examples.
Vovk’s algorithm for on-line linear regression and the

boundnY 2

(1+lnT ) on (9) can be converted to a learning al-
gorithm for off-line linear regression with a relative expected
instantaneous loss bound ofnY 2

(1+ln T )

T

.
In Theorem 6.2 we propose a new learning algorithm for

linear regression and prove that its relative expected instan-
taneous loss is at most2nY 2

1

T

. Note that for any particular
distributionD the dimensionn in this upper bound can be
replaced by the expected dimension ofT random instances.

In Section 7 we also show a lower bound on the relative
expected instantaneous loss of any learning algorithm. This
lower bound is(n� o(1))Y

2
1

T

asT !1. This shows that
our upper bound cannot be improved by more than a factor
of 2.

An overview of upper and lower relative loss bounds for
linear regression is given in Figure 1.

6.2 NEW ALGORITHM AND PROOFS

We need some notations: For anyT examplesz
1

= (x

1

; y

1

),
: : : ; z

T

= (x

T

; y

T

) 2 X � Y = R

n

�R let

b

T

:=

T

X

t=1

y

t

x

t

2 R

n

; A

T

:=

T

X

t=1

x

t

x

0

t

2 R

n�n

:

(10)
A

T

is a positive semi-definite matrix that might not be in-
vertible, but the pseudoinverseA+

T

2 R

n�n of A
T

is al-
ways defined. For the definition of the pseudoinverse of a
matrix see, e.g., Rektorys [12]. There it is also shown how
the pseudoinverse of a matrix can be computed from the sin-
gular value decomposition. The pseudoinverseA

+

T

is posi-
tive semi-definite andA+

T

A

T

x = x = A

T

A

+

T

x holds for all
x 2 spanfx

1

; : : : ; x

T

g. For all t 2 f1; : : : ; Tg,

x

0

t

A

+

T

x

t

2 [0; 1] ; (11)

and ifx
t

is linearly independent of the remainingT � 1 vec-
tors thenx0

t

A

+

T

x

t

= 1. (Details are given in Appendix A.)
We also need the following inequality.

Theorem 6.1 (Forster and Warmuth [4]) For any T vec-
tors x

1

; : : : ; x

T

2 R

n and for A
T

given by (10):

T

X

t=1

x

0

t

A

+

T

x

t

= dim(spanfx

1

; : : : ; x

T

g) � n :

Vovk [14] proposed the predictionb0
T�1

A

+

T

x

T

for trial T
in the on-line linear regression setting. Our new prediction
algorithm multiplies Vovk’s prediction by the factor

1� x

0

T

A

+

T

x

T

(11)

2 [0; 1] :

This new prediction was chosen so that in the the proof of
following theorem all terms that are linear iny

t

cancel out.
It remains to be seen whether the factor improves the perfor-
mance on some natural data.

The relative expected instantaneous loss bound we prove
for the new algorithm is of the formO(

1

T

). We were not able
to prove a bound of the same form for Vovk’s algorithm nor
for the standard least squares algorithm.

Theorem 6.2 Consider the following prediction algorithm
Q for linear regression

Q(z

1

; : : : ; z

T�1

; x

T

) := (1� x

0

T

A

+

T

x

T

)b

0

T�1

A

+

T

x

T

:

Then for any distributionD on the examples with outcomes
in [�Y; Y ] the relative expected instantaneous loss of Q is
bounded as follows:

E
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;:::;z

T

)�D

T

�

(Q(z

1

; : : : ; z

T�1

; x

T

)� y
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T
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T

�

T

X

t=1

y

2

t

x

0

t
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T

x

t

�

� 2Y

2

1

T

E

(z

1
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T

)�D

T

�

dim(spanfx

1

; : : : ; x

T

g)

�

� 2nY

2

1

T

:

Proof. Because of Theorem 4.1 it suffices to bound the
term

L

Q;loo

(z

1

; : : : ; z

T

)� inf

c2C

L

c;se

(z

1

; : : : ; z

T

) (12)

for any T examplesz
1

= (x

1

; y

1

); : : : ; z

T

= (x

T

; y

T

) 2

X � Y. Let

�

t

:= x

0

t

A

+

T

x

t

; �

t
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0

@

X

s2f1;:::;Tgnftg

y

s

x

s

1

A

0

A

+

T

x

t

for t 2 f1; : : : ; Tg. The learner’s prediction can be written
as(1 � �

T

)�

T

.
The linear function with minimal sample error on the ex-

amplesz
1

; : : : ; z

T

isRn

3 x 7! b

0

T

A

+

T

x 2 R. Because of
b

0

T

A

+

T

x

t

= y

t

�

t

+ �

t

we can write the infimum in (12) as

inf

c2C

L
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1

; : : : ; z

T

)

(5)

=

1

T

T

X
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((y

t

�

t
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t

)� y

t

)

2

: (13)

Thus

L

Q;loo
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L

c;se

(z
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t
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t
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Relative loss bounds

for linear regression

Upper bound Lower bound

Expected instantaneous 2nY

2

1

T

(n� o(1))Y

2

1

T

Worst case on-line total nY

2

ln

�

1 +

TX

2

an

�

Expected case on-line total nY

2

(1 + lnT ) (n� o(1))Y

2

lnT

Figure 1: Upper and lower relative loss bounds for linear regression
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� 2Y
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T
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t=1

x

0

t
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T

x

t

Theorem 6:1

� 2nY

2

1

T

:

2

Note that the prediction of the learning algorithm in The-
orem 6.2 is zero ifx

T

=2 spanfx

1

; : : : ; x

T�1

g. If x
T

2

spanfx

1

; : : : ; x

T�1

g, then the Sherman-Morrison formula
(see Press et al. [11]) shows that the prediction of Theorem
6.2 is equal to

(1� x

0

T

A

+

T

x

T

)b

0

T�1

A

+

T

x

T

=

 

1� x
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T

A

+

T�1
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+

(x
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2
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�b
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1�

x

0

T

A

+

T�1

x

T

1 + x

0

T

A

+

T�1

x

T

!

=

b

0

T�1

A

+

T�1

x

T

(1 + x

0

T

A

+

T�1

x

T

)

2

:

Vovk’s original prediction is the same as the above except
that the denominator is not squared. The standard least squ-
ares algorithm is simply the enumerator of the above. For all
of these algorithms the prediction as a function ofx

T

is de-
termined by the pseudoinverseA+

T�1

. If this pseudoinverse
has been calculated in advance, then predictions for different
values ofx

T

costs onlyO(n

2

) time.

7 LOWER BOUNDS

In this section we show lower bounds on the relative ex-
pected instantaneous loss (1) for Gaussian density estimation

and for linear regression. We do this by adapting a lower
bound for on-line linear regression of Vovk [14] to the off-
line setting.

Theorem 7.1 For every learning algorithm Q for linear re-
gression and for every " > 0 there is a T

0

2 N such that for
all T � T

0

there is a distribution D on the examples (with
outcomes bounded by Y ) such that the relative expected in-
stantaneous loss is at least (n� ")Y

2
1

T

.
For every learning algorithm Q for one-dimensional Gaus-
sian density estimation there is a distributionD on f�1; 1g
such that the relative expected instantaneous loss is at least
(T + 2

p

T � 1)

�1.

Proof. For a fixed parameter� � 1 we generate a dis-
tributionD on the examples with the following stochastic
strategy: A vector� 2 [0; 1]

n is chosen from the prior distri-
butionBeta(�; �)n, i.e. the components of� are i.i.d. with
distributionBeta(�; �). ThenD = D

�

is the distribution
for which the example(e

i

; 1) has probability�i
n

and the ex-
ample(e

i

; 0) has probability1��i
n

. Heree
1

; : : : ; e

n

are the
unit vectors ofRn. In each trial the examples are generated
i.i.d. with D

�

. We can calculate the Bayes optimal learn-
ing algorithm for which the expectation (over the prior) of
the relative expected instantaneous loss (1) is minimal. We
show that for the Bayes optimal algorithm the expectation of
(1) is

�

4�+ 2

1

n

T�1

T�1

X

t=0

�

T � 1

t

�

(n � 1)

T�1�t

t+ 2�

:

The lower bounds for Gaussian density estimation and
linear regression follow by suitably choosing� and with an
affine transformation of the outcomes (using the fact that all
instances are unit vectors).

Details of the proof are given in Appendix B. 2
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APPENDIX A: OMITTED CALCULATIONS

FOR LINEAR REGRESSION

PROPERTIES OF THE PSEUDOINVERSE A

+

T

We begin showing thatA
T

=

P

T

t=1

x

t

x

0

t

(as defined in (10))
is always invertible on the subspace

X

T

:= spanfx

1

; : : : ; x

T

g

ofRn.

Lemma A.1 Let X?

T

be the orthogonal complement of X
T

inRn. Then the linear map

A

T

: X

T

! X

T

is invertible and
A

T

: X

?

T

! X

?

T

is the zero function.

Proof. A
T

: X

T

! X

T

is one-to-one because ifA
T

x =

0 holds for a vectorx 2 X

T

it follows that

0 = x

0

A

T

x =

T

X

t=1

x

0

x

t

x

0

t

x =

T

X

t=1

(x

t

� x)

2

;

i.e. x 2 fx
1

; : : : ; x

T

g

?

= X

?

T

. Thusx 2 X

T

\X

?

T

= f0g.
SincedimX

T

is finite this also implies thatA
T

: X

T

! X

T

is onto.
Finally we have that forx 2 X

?

T

:

A

T

x =

T

X

t=1

(x � x

t

| {z }

=0

)x

t

= 0 :

2

Now we can calculate the pseudoinverseA

+

T

of the linear
mapA

T

:

Lemma A.2 The matrix A+

T

is positive semi-definite and

8x 2 X

T

: A

+

T

A

T

x = x = A

T

A

+

T

x ;

8x 2 X

?

T

: A

+

T

x = 0

Proof. SinceA
T

mapsX
T

into X

T

andX?

T

into X

?

T

(by Lemma A.1) we can calculate the pseudoinverse onX

T

and onX?

T

separately. Now we only have to note that the
pseudoinverse of the zero function is the zero function and
that the pseudoinverse of an invertible matrix is the inverse
matrix. 2

To show thatx0
t
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LINEAR FUNCTION WITH MINIMAL SAMPLE
ERROR

Forw 2 R

n let c be the linear functionc(x) = w � x for x 2
R

n. The sample error is minimal forw = A

+

T

b

T

because

TL

c;se

(z

1

; : : : ; z

T

)

(5)

=

T

X

t=1

(c(x

t

)� y

t
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2

= w

0

A
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w � 2b

T

�w +

T

X

t=1

y

2

t

:

is convex inw (becauseA
T

is positive semi-definite) and its
gradient with respect tow vanishes forw = A

+

T

b

T

.

PREDICTION IS ZERO IF x

T

=2 X

T�1
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T

nX
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This shows thatA+

T

x

T
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. Because ofb
T�1

2 X

T�1

the prediction is zero in this case.

SHERMAN-MORRISON FORMULA

If x
T

2 spanfx

1

; : : : ; x

T�1

g, then the Sherman-Morrison
formula (see Press et al. [11]) applied to the linear function
A
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shows that
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for all c; d 2 spanfx

1

; : : : ; x

T

g.

APPENDIX B: PROOF OF THEOREM 7.1

THE BETA DISTRIBUTION

For parameters�; � > 0, the distributionBeta(�; �) has the
density function

�
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(1� �)
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is the beta function.� is the gamma function which satisfies
�(�) = (�� 1)�(�� 1)

for � 2 Rn f1; 0;�1;�2;�3; : : :g.
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THE BAYES OPTIMAL LEARNING ALGORITHM

We show that the learning algorithm
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has minimal expected relative expected instantaneous loss
in the stochastic setting we consider here.K

T

counts how
often the instancex
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From this formula we see what the best learning algorithm
in this setting is: For fixedx
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LOSS OF BAYES OPTIMAL ALGORITHM

Let Ber(p) denote the Bernoulli distribution onf0; 1g with
meanp 2 [0; 1]. The expected loss of the optimal learning
algorithm (15) is

E

��Beta(�;�)

n
E

(z

1

;:::;z

T

)�D

T

�

 

�

k

T

+ �

K

T

+ 2�

� y

T

�

2

!

=

1

n

T

X

x

1

;:::;x

T

2fe

1

;:::;e

n

g

E

��Beta(�;�)

n



98

E

y

1

�Ber(��x

1

)

� � �E

y

T

�Ber(��x

T

)

 

�

k

T

+ �

K

T

+ 2�

� y

T

�

2

!

=

�

4�+ 2

1

n

T

X

x

1

;:::;x

T

2fe

1

;:::;e

n

g

�

1 +

1

K

T

+ 2�

�

:

For the last equality fix�, x
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THE COMPARISON TERM

For a fixed distributionD
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n, the comparison term
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Integrating this over� � Beta(�; �)

n shows that the expec-
tation (over the prior) of the comparison term is�

4�+2

.

LOWER BOUND ON RELATIVE LOSS

Subtracting the expectation of the comparison term from the
expected loss of the Bayes optimal algorithm shows that the
expectation of the relative expected instantaneous loss (1) of
the optimal learning algorithm is exactly
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LOWER BOUND FOR LINEAR REGRESSION

The lower bound (16) can be written as�
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We show that this is at least
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This proves the lower bound of Theorem 7.1 for linear re-
gression. (We use an affine transformation of the outcomes
from [0; 1] to [�Y; Y ]. This transformation leads to a factor
of 4Y 2 in the lower bound.)
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LOWER BOUND FOR GAUSSIAN DENSITY
ESTIMATION

Forn = 1 the lower bound (16) is equal to
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To find the maximum off we calculatef 0(�):
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Thusf 0(�) = 0 holds if and only if� =
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This proves the lower bound for Gaussian density estima-
tion. (Again we have to use an affine transformation of the
outcomes that gives a factor of 4.)


