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Abstract

In the literature a number of relative loss bounds
have been shown for on-line learning algorithms.
Here the relative loss is the total loss of the on-line
algorithm in all trials minus the total loss of the
best comparator that is chosen off-line. However,
for many applications instantaneous loss bounds
are more interesting where the learner first sees a
batch of examples and then uses these examples
to make a prediction on a new instance. We show
relative expected instantaneous loss bounds for the
case when the examples are i.i.d. with an unknown
distribution. We bound the expected loss of the al-
gorithm on the last example minus the expected
loss of best comparator on a random example. In
particular, we study linear regression and density
estimation problems and show how the leave-one-
out loss can be used to prove instantaneous loss
bound for these cases. For linear regression we
use an algorithm that is similar to a new on-line
learning algorithm developed by Vovk.

Recently a large number of relative total loss bou-
nds have been shown that have the f@pifin T7),
whereT' is the number of trials/examples. Stan-
dard conversions of on-line algorithms to batch al-
gorithms result in relative exEF)ected instantaneous
loss bounds of the forn®('2L). Our methods
lead toO () bounds. We also prove lower bounds
that show that our upper bound on the relative ex-
pected instantaneous loss for Gaussian density es-
timation is optimal. In the case of linear regression
we can show that our bounds are tight within a fac-
tor of two.
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A learning algorithm is a strategy for choosing predic-
tions. The discrepancy between a predicijpof the learner
and a correct outcomg; is measured by a loss function.
The learner wants to make use of “correlations” between in-
stances and outcomes for the purpose of keeping the loss as
small as possible. To model such correlations we compare
the loss of a learning algorithm against the loss of the best
function from acomparison class of predictors.

In this papers we are mainly interestedviff-line learn-
ing where the learner has to make one prediction in the last
trial 7. On-line algorithms must predict in all trials. For off-
line algorithms we focus on thestantaneous 10ss in the last
trial and for on-line algorithms on theral loss of all trials.
We always consider the loss of the algorithm minus the loss
of the best comparator. Such bounds are called relative loss
bounds. They might be shown for worst-case sequences of
examples or for the case when the examples are i.i.d. with a
fixed but unknown distribution. The main focus of this paper
is to prove relative expected instantaneous loss bounds.

We obtain such bounds without using the powerful but
rough machinery of the fat shattering dimension (See, e.g.,
Anthony and Batrtlett [1]). Instead we want to build on the
recent successes in proving relative total loss boundsfor o
line algorithms. These bounds hold for worst-case seqgence
and they grow a®(In T') (See Foster [5], Vovk [14], Azoury
and Warmuth [2], Forster [3], Gordon [6], Yamanishi [16],
[17]). There are standard conversions of on-line algorithm
to off-line algorithms (See Helmbold and Warmuth [9] and
Kivinen and Warmuth [10]). These conversions would pro-
duce complicated algorithms and their relative expected in
stantaneous loss bounds would have the fer#:L). In-
stead we prove bounds of the fori{ ).

We first do this for Gaussian density estimation by an
exact calculation. In the case of Bernoulli density estiorat
and linear regression we use a generalization of an ingguali
from Haussler, Littlestone and Warmuth [8] that is based on

1 INTRODUCTION the leave-one-out loss.

Consider a sequence of trigls= 1,2,...,7. In each trial We also give a lower bound that shows that our result

an example is processed. Such an example consists of afor Gaussian density estimation is tight. For linear regres
instance vector x; and anoutcome y;. For some trialg the sion our lower and upper bounds are within a factor of two.
learner has to make @rediction 3, for the outcomey,. The We believe that the upper bound for linear regression can be
learner must do this based on the examples from the previoudmproved so that it meets the lower bound.

t—1 trials plus the current instaneg. This means that as the All algorithms we use in this paper are subtle modifica-
number of trials increases, the learner has more informatio tions of previously introduced algorithms. We chose these
at its disposal. modifications to optimize our bounds. It remains to be seen
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whether these modifications result in improved performance this case the prediction spageand the outcome spage

on natural data. are bothR™ for a fixed dimensiomn € N. The loss function
An interesting application of our new linear regression is the squared Euclidean norb{y, y) = ||y — y||* and the

algorithm is the case when the instances are expanded taomparison class for the best mean vector is agah?.

feature vectors and the dot product between two feature vec-  For Gaussian density estimation the comparison term in

tors is given by a kernel function (See Saunders, Gammer-(1) is the variance of the unknown distributitni.e.

man & Vovk [13]). Also Fourier or wavelet transforms can . . .

be used to extract frequency-dependent information frem th _inf Ey~p (||C ol ) = Ey~p (||3/|| ) — [Ey~pW)II”

instances, see, e.g., Walker [15] and Graps [7]. Theserlinea (2)

transforms can reduce the dimensionality of the comparisonand the infimum is attained wheris chosen as the expecta-

class which leads to smaller relative loss bounds. One oftjgn E,~p(y) of D. To see this note that

the most salient properties of our bound for linear regogssi

is the fact that it is linear in thexpected dimension of the Ey~p (||c — y||2)

instances (or feature vectors). lell? — 2¢ - E W)+ B WP @
= |le||” — 2¢ - Eyap(y y~DY

2 NOTATION AND PRELIMINARIES is convex inc. Setting the gradient of (3) with respect to

¢ to zero shows that the infimum of (3) is attained fox

In our setting, Instances, predlctlonsy and outcomesg are EyN’D(y)- For thisc, (3) is equal to

elements of arinstance space X, aprediction space Y and
an outcome space Y, respectively. Arexample z is a pair Eyp (Hsz) — [Eyen )]

(z,y) of an instance: € A and an outcomg € Y. Loss

functions map tuples of predictions and outcomes to the non-

hegative reals. For such a loss funCtbﬂbe learner incurs Theorem 3.1 Consider the following prediction algorithm
lossL(y, y) if it makes the predictioy € J and the correct () for Gaussian density estimation
outcome igy € Y. The comparison clagsconsists of func-

~ T—-1
tionsc that map instances to predictions, ie: X — ). Q... yr—1) == t=1 Yt .
Such a function is called @mparator. The loss of a com- Y T—-14+VT -1

paratorc on examplez, y) is L(e(z), y).
A learning algorithm() is a function that maps a batch
of examples and an instance to a prediction. If the learner is

Then for any distribution D on IR™ the relative expected in-
stantaneous loss of @ is

given the examples; = (z1,y1),...27—1 = (x7—1,y7r-1) E(y, .. yr)~D7 (||Q(y1, e YT—1) — yTIIZ)
€ X x Y intrials 1 throughl’ — 1 and the instancer € X
in trial T, then its prediction i€)(z1, ..., zr_1, z7) € V. — inf Ey.p (||C - y||2)
The loss of algorithnd) in trial 7" is Cel
= —F——F,~ %) .
L(Q(z1, .- zr -1, 27), y1) Tro/T=1 p(ll9ll°)

Under the assumption that the examples are i.i.d. with Proof. Lety = (T — 1+ \/ﬁ)—1_ The relative ex-

unknown distributionwe want to find learning algorithms for pected instantaneous loss (1) for Gaussian density e&imat
which we can prove that the expected loss of the learner in;

is
trial 7" on a random example is not much larger than the ex- _—
pected loss of the best function from the comparison class. B 9
Formally we want to bound theelative expected instanta- o Z ye =yl
neous loss =1
— inf E ND( c—y 2)
| DTN & (L(Q(Zla~~~,ZT—1,9€T),3/T)) cekm Y H H
T-1
. 2
- cHElg E(x,y)ND (L(C(l‘), y)) (1) - E(yl,...,yT)NDT (772” Z yt||2
t=1
for any distributiorD on the set of example x ). Here T-1
E(., ... 2r)~pr denotes the expectation over random vari- —2n Z ye - yr + ||yT||2)
ablesz; = (#1,11), ..., 27 = (27, yr) which are i.i.d. with =1
distribution?, andE, ,~p denotes the expectation over B 2 B 2
the random variablér, y) with distributionD. The infimum P (||3/|| ) 1By~ W
in (1) is called thecomparison term.

@) 4 = (T = )Eyen (I911°) + [Eyn ()]
3 GAUSSIAN DENSITY ESTIMATION (AT =1)(T = 2) — 29(T — 1) + 1)
In density estimation problems we do not use the instance =0
spaceX. One of the simplest density estimation problems B 1 E 9
is the prediction of the mean of a unit variance Gaussian. In T T4 /T—1 y~D (||3/|| ) :
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For the second equality we used <E¢,,. . zp)~DT

T-1 T-1 T-1 (L (z zp) — inf Le ez z ))
Q,loo\#1y .- <T c,sel<ly -y <1
1D well =D lwelP+ > ws - - c€C
t=1 t=1 s,1=1 < sup
s#t 21,..,27E€EX XY

O .
(LQ,IOO(ZL ey ZT) - igg Lc,se(zla ey ZT)) .
The prediction used in Theorem 3.1 is a special case of ) _
CYo + Z?:_ll Yt E(21,~~~,ZT)NDT (L(Q(’Zla <.y RT -1, xT)a yT))
c+T -1

Herey, is an initial mean and > 0 is the multiplicity of =7 ZE(zl,...,zT)NDT
this mean. We chosg = 0 andc = /7T — 1. In Azoury t=1
and Warmuth [2] worst-case on-line total loss bounds were (L )
proven for the algorithm that usgs = 0 andc = 1. The (@1, 2em1, 24, 27, 20), 1)

relative expected instantaneous loss bounds for the Htter
gorithm are slightly weaker.

In Section 7 we show that the prediction algorithm of g of
Theorem 3.1 is optimal in a very strong sense: For every

=

(21,...,27)~DT (LQ,IOO(ZL sy ZT))

learning algorithn)’ for Gaussian density estimation there - ing E(z,y)~p (L(c(x), y))

is a simple distributio® on two points for which the relative €

expected instantaneous loss@fis at least as large as the ® _ . rE . ( Lese(z1 ZT))
bound of Theorem 3.1. cec Frmzm)nDE e st e

4 THE LEAVE-ONE-OUT LOSS < =By, )T (ggg Lege(z1, -, ZT>)

The bound for Gaussian density estimation given in the pre- O

vious section was proven by an exact calculation. For the rel

ative expected instantaneous loss bounds for Bernouliden  The bound in terms of the supremum has the advantage
sity estimation and linear regression we need to use a denerathat it does not contain an expectation over an unknown dis-
inequality given in Theorem 4.1 of this section. Thistheare  tribution. In the original theorem of Haussler, Littleseoand

is a generalization of a similar theorem given in Haussler, Warmuth [8] the comparison term is zero.

Littlestone and Warmuth [8]. Theorem 4.1 gives a bound For Gaussian density estimation the infimum of the sam-

on the relative expected instantaneous loss (1) in terms ofple error that appears in the bounds of Theorem 4.1 is the
the leave-one-out loss of a learning algorithm. The leave- sample variance:

one-out loss of a learning algorith@ on a sequence df

examples:, ..., zpr € X x Y is the average of the losses of . 1 & 1 & 9

the learning algorithm on the last example of certain permu- cé%fm Lese(yr, - oyr) = T Z lye — T Z ysll” -

tations of the sequence: =1 s=1

o This follows because
LQ,loo(Zl, ceey ZT) =

T
T 1
1 5 1 2
_ZL(Q(’Zla"'azt—lazt-l—la""ZTaxt)ayt) . Lc’se(yl’...’yT) - TZHC yt”
T =1 t=1
(4) 1 o 1 o
N = llell* =26 = > w7 3 llwell®
The sample error of a functionc : X — Y on’I" examples t=1 t=1
71,027 €X X VIS is convex inc and its gradient with respect tovanishes for
1 the sample mean = %Zle yr. Plugging this value of
Lese(z1,...,27) = T Z Lc(ze), ye) - (5) into the above expression gives the sample variance.
t=1
5 BERNOULLI DENSITY ESTIMATION
Theorem 4.1 The relative expected instantaneous loss (1) of For Bernoulli density estimation the outcomes are coin flips
any learning algorithm Q) is bounded as follows: (i.,e. Y = {0,1}). The probability of the underlying coin
is hidden and the comparison class consists of all possible
B, er)~pT (L(Q(Z1, s ZTo1,2T), yT)) choices for the hidden coin (i.€.= [0, 1]). The predictions
) are estimates of the probability of the hidden coin (Je=
- ;gg E(zy)~p (L(C(l‘)a y)) [0, 1]). If the learner makes the predictigrihis means that it
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assigns probability to the outcome 1 and probability— 3
to the outcome 0. The loss function

L(y,y) = —ylnyg — (1 —y)In(1 — ) (6)

is the negated logarithm of the probability that the leaaser

signed to the correct binary outcomeWe use the notation

0-In¢ :=0forall¢ € R,ie. L(0,0) = L(1,1) = 0 and

L(0,1) = L(1,0) = co. Note that as for Gaussian density

estimation we do not use the instance sp#ce

Theorem 5.1 Consider the following prediction algorithm
Q for Bernoulli density estimation

1+Zt 1 Y
Q- 2=z

Then for any distribution’D on the outcome space the relative
expected instantaneous loss of () is bounded as follows:

E(yl,...,yT)NDT (L(Q(yla ey yT—l)a yT))

- inf Boep (21c.)

<1 1—1—1 <1
n —= — .
- ™) — T

ayT—l) =

Proof. Because of Theorem 4.1 it suffices to show that

for anyl outcomesyy, . . ., yr the term

Lg ooy, yr) — elflf Lese(yr, - yr)

0,1]
is equal tdn (1 4 ). The infimum can be written as

lnf]Lcse(y1a~~~ayT) == _glng_(l_g)ln(l_g) 3

c€elo

wherey := % thl y: is the average of the examples. This

holds because

T
(5) 1
Lc,se(yla”'ayT : ZLcyt
t:l

i ( Zyﬂnc—Zl—yt)ln(l—c))

t=1
—ylne—(1 —g)In(l —¢) .
is convex inc € [0, 1] and its gradient with respect tosan-

ishes fore = .
The leave-one-out loss of the learning algoritiyron the

outcomesyy, ..., yr is
Lg ooy, - yr)
T
@ 1 ZL(l + 2 e, T Ys )
B T t=1 T + 1 e
1 Ty
S NCN)
P DR oy
te{l,;.l,T}
1 1+7Ty
7 2 o)
> T11
te{l,._l.],T}

Thus
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Lgoo(y1, .- yr) — CéPf]Lcse(y1a~~~ayT)
T
— g ()~ (1 —p)In [ ——
yin 77 y)n<T+1)
1

As in the case of Gaussian density estimation our algo-
rithm again uses a prediction of the form

cYyo + ZtT:_ll Yt
c+T -1 '

The initial mean is chosen to be unbiased, yg.= % In

our prediction we chose = 2 for the multiplicity of the
mean. This is different from the standard Laplace estimator
for which ¢ = 1. For the Laplace estimator we could only
prove a slightly weaker bound.

6 OVERVIEW OF OLD AND NEW
RESULTS FOR LINEAR REGRESSION

6.1 KNOWN RESULTS

In linear regression the instance spac&’is- R™ for a fixed
dimensionn. The prediction space ¥ = R and the out-
come space i¥ = [-Y, Y] C R. This means that we make
the assumption that the outcomes are bounded by some con-
stantY. However, the learner does not need to kriowrlhe

loss functionL is the square loss, i.€.(7,y) = (¥ — y)*.

The comparison class consists of the linear functions:

k™ — IR, Thus for off-line linear regression the relative ex-
pected instantaneous loss (1) of a learning algorithis

Eiyemy~pr ((Q(21, -

= nf B yep (w2 —y)*)

2P, %) — yT)Z)

(7)

whereD is an unknown distribution of the examples. For the
comparison term we represent linear functionsR™ — &
asn-dimensional vectors..

For on-line linear regression thelative total loss of a
learning algorithng is

T

> @z,

t=1

Zt—1, l‘t) - yt)2

T
s . _ 2 2
inf (;w — +a||w||) G
wherez; = (1, y1), . zT_(xT,yT)arethéTexamples

of trials 1 throughT Herea > 0 is a constant and the
termal|w||? is a measure of the complexity of the vector
The largera, the smaller the expression (8). Bounds on (8)
that hold for almost arbitrary sequences of examples have
only been shown for the case> 0. Note that we will not
need a term liker||w||? in (8) to show our relative expected
instantaneous loss bounds for off-line linear regression.
Vovk [14] proposed a learning algorithm for on-line lin-
ear regression for which he showed that the relative logs (8)



atmostY 2 In(1+ Ta—)ff) for all example sequences of length
T for which the Euclidean norm of the instances is bounded
by a constantX. For the cases = 0, he also showed that
for any learning algorithm there is a distributi@hon the
examples for which the expectation of (8),

T
E(zl,...,zT)NDT (Z(Q(Zl, sy Rt—1, l‘t) - yt)2
t=1 )
S 2 — u)?)

t=1

— inf
weR™

(9)

is at least(n — o(1))Y?In7T" as7T — oco. Forster and War-

muth [4] give a corresponding upper bounchof?(1+1n 7'

on (9) that holds for any distributiaR on the examples.
Vovk’s algorithm for on-line linear regression and the

boundnY?(1+1InT) on (9) can be converted to a learning al-

gorithm for off-line linear regression with a relative exped

instantaneous loss boundm]”ﬁ#l.

In Theorem 6.2 we propose a new learning algorithm for
linear regression and prove that its relative expectedimst
taneous loss is at mo%hYz% . Note that for any particular
distribution? the dimensiom in this upper bound can be
replaced by the expected dimensiorifbfandom instances.

In Section 7 we also show a lower bound on the relative
expected instantaneous loss of any learning algorithnms Thi
lower bound is(n — o(1))Y? - asT — oc. This shows that
our upper bound cannot be improved by more than a factor
of 2.

An overview of upper and lower relative loss bounds for
linear regression is given in Figure 1.

6.2 NEW ALGORITHM AND PROOFS

We need some notations: For afiyexamples:; = (z1, 1),
R (l‘T,yT) e xY=R"xRlet

T
br = Zytl‘t ceRrR”,

t=1

T
Ap = thl‘; cRrR»xn

t=1

(10)
Ar is a positive semi-definite matrix that might not be in-
vertible, but the pseudoinversfﬁe}r e R™*"™ of Ar is al-
ways defined. For the definition of the pseudoinverse of a
matrix see, e.g., Rektorys [12]. There it is also shown how
the pseudoinverse of a matrix can be computed from the sin-
gular value decomposition. The pseudoinvedseis posi-
tive semi-definite andi} Arx = = = Ay A% = holds for all
x € span{xy,...,ep}. Forallt € {1,...,T},

wiAde, €10,1] (11)

and ifz, is linearly independent of the remainifig— 1 vec-
tors thenz, A%z, = 1. (Details are given in Appendix A.)
We also need the following inequality.

Theorem 6.1 (Forster and Warmuth [4]) For any T vec-
tors x1, ..., xp € R™ and for Ar given by (10):

T
Z vy At e, = dim(span{z,...,27}) <n .
=1

94

Vovk [14] proposed the predictids}._, ATz for trial T
in the on-line linear regression setting. Our new predittio
algorithm multiplies Vovk’s prediction by the factor

11
1= 2l Aber o,

This new prediction was chosen so that in the the proof of
following theorem all terms that are linear §n cancel out.
It remains to be seen whether the factor improves the perfor-
mance on some natural data.

The relative expected instantaneous loss bound we prove
for the new algorithm s of the for@ (). We were not able
to prove a bound of the same form for Vovk’s algorithm nor
for the standard least squares algorithm.

Theorem 6.2 Consider the following prediction algorithm
Q for linear regression

Q(Zl, ..

Then for any distribution D on the examples with outcomes
in [=Y,Y] the relative expected instantaneous loss of Q is
bounded as follows:

E¢y, . zr)~DT ((Q(Zl, e 2T_1,%T) — yT)z)

_ wiélﬂgnE(x,y)ND«w L — y)z)

T
1
< QTE(zl,...,zT)NDT (Z y?l‘;A}_l‘t)

t=1

sero1,er) = (1 — x’TA'iT'J:T)b/T_lA'IT'xT .

<2Y21
= T
51
< 2nY“"— .
= T

By, op)~DT (dim(span{xl, Cel J:T}))

Proof. Because of Theorem 4.1 it suffices to bound the
term

LQ,loo(Zla”'aZT) _igg Lc,se(zla”'aZT) (12)
for any T' exampleszy = (#1,41),...,27 = (2p,y7) €
X x Y. Let

/
& = QL‘QA-IT—l‘t , G = Z YsZs A}—$t
se{1,.., TI\{t}
fort € {1,...,T}. The learner’s prediction can be written
as(l — gT)CT-

The linear function with minimal sample error on the ex-
ampleszy, ..., zp ISR™ 5 x — b’TA"T'x € IR. Because of
I)’TA}r xe = Y& + ¢ we can write the infimum in (12) as

T
ilelg Lese(z1, ... 21) & %;((yt& +G) —w)® . (13)
Thus
Loioo(#1, .-y 21) — (1:1615 Lese(z1,...,27)
1

(4),(13)

Z (((1 — &) — yt)2

t=1

T



Relative loss bounds

for linear regression Upper bound Lower bound

. 1 1
Expected instantaneous 2nY2T (n— o(l))YZT

an

. TX?
Worst case on-line total nY?In (1 + )
Expected case on-line tota| nY?(141InT) (n—o(1)Y*InT

Figure 1: Upper and lower relative loss bounds for linearesgjon

— (e + &) — w)?) and for linear regression. We do this by adapting a lower
LT bound for on-line linear regression of Vovk [14] to the off-
=7 Z (Ctz — 267 + E2CF — 2uiCe + 206G line setting.
t=1
242 2 2 Theorem 7.1 For every learning algorithm () for linear re-
~Yr & = 298G — G+ 2y & F Qtht) gression and for everyr)E) >0 th(ffe ifa Ty E%J;uch that for
1 F all T > Ty there is a distribution D on the examples (with
= — Z (—2&@2 + 5?(}2 —y2e? —|—2yt2€t) outcomes bounded by Y ) such that the relative expected in-
T ~ S~ stantaneous loss is at least (n — €)Y ? 1.
(1<1)§tCt 0 For every learning algorithm Q) for one-dimensional Gaus-
—_— sian density estimation there is a distribution D on {—1,1}
<—¢, Cf(1<1)0 such that the relative expected instantaneous loss is at least
7 - 0 (T+2/T—-1)"1
Z A+ i < 2Y2 Z xtA i
- T Proof. For a fixed parametex > 1 we generate a dis-
Theorem 6 1 1 tribution D on the examples with the following stochastic
2nY2T . strategy: A vectof € [0, 1] is chosen from the prior distri-

butionBeta(«a, «)”, i.e. the components @f are i.i.d. with
distributionBeta(a, o). ThenD = Dy is the distribution

Note that the prediction of the learning algorithmin The- for which the examplge;, 1) has probability: and the ex-

O

orem 6.2 is zero ifey ¢ span{zy,...,x7p_1}. If zp € ample(e;, 0) has probablhty— Herees, ..., e, are the

span{z1,...,z7_1}, then the Sherman-Morrison formula unit vectors ofR™. In each trial the examples are generated
(see Press et al. [11]) shows that the prediction of Theoremi.i.d. with Ds. We can calculate the Bayes optimal learn-
6.2 is equal to ing algorithm for which the expectation (over the prior) of

the relative expected instantaneous loss (1) is minimal. We

AT / +
(1 —apAper)by_  Azer show that for the Bayes optimal algorithm the expectation of

I AT 2 1) is
=11- x'TA'iT'_le + —(xT /T__Il_xT)
1+ xTAT—le T—1 T—1—t
/ + whp AL e 4o +2nT-1 t t+ 2« ’
'bT—lAT—le 1-— T A t=0
1+ 2 Af_ 27

The lower bounds for Gaussian density estimation and
— ) linear regression follow by suitably choosingand with an
(1 + xfp AL z7)? affine transformation of the outcomes (using the fact tHat al

Vovk’s original prediction is the same as the above except mstance_s are unit vectors). _ ) .

that the denominator is not squared. The standard least squ- Details of the proof are given in Appendix B. =
ares algorithm is simply the enumerator of the above. For all

of these algorithms the prediction as a function:gfis de-

termined by the pseudoinversg._, . If this pseudoinverse

has been calculated in advani%, then predictions for differ ACKNOWLEDGMENTS

values ofry costs onlyO(n?) time.
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LINEAR FUNCTION WITH MINIMAL SAMPLE
ERROR

Forw € R" letc be the linear function(z) = w - « forz €
IR™. The sample error is minimal far = A}’bT because

T
Tlese(z1, .o 2r) 23 (elar) = w)?
t=1
T
=w'Arw — 2bp ~w—|—Zyt2 )
t=1
is convex inw (becauselr is positive semi-definite) and its
gradient with respect te vanishes fokw = A% br.

PREDICTION IS ZEROIF z7 ¢ Xp_;

Because of{r \ X7_; # () there existsa € Xr N Xq%_l,
z # 0. For thisz

ZEX’JJ:—I /
Tz =  apxpz=(z-x7)CT .
Thus

(z - xp) Aty = A Arz AT e X7\ {0} .
This shows thati} zr € X+ _,. Because Obr_; € X7
the prediction is zero in this case.
SHERMAN-MORRISON FORMULA

If 7 € span{ay,...,2r_1}, then the Sherman-Morrison
formula (see Press et al. [11]) applied to the linear fumctio
Ap = Ap_1 + 2yl onXr_; = X7 shows that

(¢ AF_yor) (AT or)
14 x’TA'iT'_le

axT}-

APPENDIX B: PROOF OF THEOREM 7.1

THE BETA DISTRIBUTION

For parameters, 8 > 0, the distributiorBeta(«, 3) has the
density function

ge—1(1— )Pt
B(a, 3) ’

with regard to the Lebesgue measure on [0,1]. Here

' L(a)T(P)

B = [ 7 1-0)f"tdo = ————=

@m= [ ota-0 e

is the beta functionl’ is the gamma function which satisfies
Ia)=(a— D' (a—1)

fora e R\ {1,0,—-1,-2,-3,.. }.
For everya > 0:

c’A"T'd = c’A"T'_ld —

forall ¢,d € span{zy,. ..

0€10,1] ,

(14)

14) Bla+1,a) 14) « 1
E€~Beta(oc,oc)(6) (:) Q (:) a8 — 5

Ba, a) a2
Bla+2,a)
- 02 (1:4) it Sl it ¥
0 Beta(oc,a)( ) B(Olaa)
11y (a+ Lo a4+l

(20 +1)(2a)  da+2

1 oa—+1

BpnBeta(a,a) (0 —0%) = 5 = da+2
_2a+1—a—1_ o

o 4o 42 T 442
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THE BAYES OPTIMAL LEARNING ALGORITHM
We show that the learning algorithm

Qeromroan) = (1)
where
T—1 T—1
KT:Zl‘t'l‘T, kT:Zytl‘t'l‘Ta
t=1 t=1

has minimal expected relative expected instantaneous loss
in the stochastic setting we consider hefér counts how
often the instancer occurs among the previous instances
z1,...,zp_1 andkp counts how often the exampler, 1)
occurs amongazy, y1), ..., (¥1—1, Yr—1).

The expected loss of any learning algorithm in tifails

E€~Beta(oc,oc)"E(z1,...,zT)NDeT ((gT - yT)z)

_ T (6= 65
_/[0,1]n (H B(a, ) )

i=1

n 1— 0 i (I—ye)zeee; 0; o YiTies
(") (%)

(yr —yr)*do

ﬁ Bla+ YT, vizres,at D TL, (1—y)ze )
B(a,a)

i=1
(gr —yr)* .
From this formula we see what the best learning algorithm

in this setting is: For fixed:, ..., xp andy,, ..., yr_1 the
sum of the terms that depend on the prediction

@T(l‘l,~~~,$T,y1,~~~,yT—1)
is a positive constant times
B(a +kr,a+ Kr — kr + 1)5
+B(a+kp+ 1,0+ Kp — kp)(Gr — 1)* .
This is minimal if
R B(a+kp, o+ Kp — kp + 1) !
vr = (B(a—i—kT—i—l,a—i—KT—kT) +1)
+ 1) LR
Kp + 2«

[« + Kp — ky
a o+ kr
LOSS OF BAYES OPTIMAL ALGORITHM
Let Ber(p) denote the Bernoulli distribution of0, 1} with

meanp € [0, 1]. The expected loss of the optimal learning
algorithm (15) is

kr + « .
EgnBeta(a,a)n Bz, )T ((m - yT) )

E€~Beta(oc,oc)"



Ey ~Ber(8e1) BypaBer(d.or) Integrating this ovef ~ Beta(a, «)” shows that the expec-

( k4 a )2 tation (over the prior) of the comparison termgé&—.
T 1o, Yr
Kr 4 2a LOWER BOUND ON RELATIVE LOSS
_ a1 Z 14 1 Subtracting the expectation of the comparison term from the
T da+2nT Kr+2a)/) expected loss of the Bayes optimal algorithm shows that the
€lers ey expectation of the relative expected instantaneous Igss (1
For the last equality fi¥, z1, ..., z7. The instance:r the optimal learning algorithm is exactly
is some unit vectoe;. Thusf - xp = 6;. Since ) )
Ey,~Ber(6-« =By, ~Ber(-z 5 L— -_ . 16
yr~Ber(d T)(yT) yr~Ber(d T)(yT) doa+ 20T Z (I(T-i-QOz) ( )
=0 -z =0 , €lerlneny
Ey1~Ber(€~x1) o EyT_1~Ber(€~xT_1)(kT)
= Kp6; LOWER BOUND FOR LINEAR REGRESSION
By nBer(d-01)  Bys_y~Ber(sor_y) (K7) The lower bound (16) can be written a$- times
= (K% — K7)0? + K70; | T-1 T_1—t
it follows that L (i | G T
2 nT-1 t t+ 2«
. . (( kr 4+ o ) ) t=0
y1~Ber(f-z1) " Hyp~Ber(6-z7) o Yyr o
! ! Kt +2a We show that this is at least
. ([{% — [{T)HZZ + Kp0; + 20 K70; + a? n 1 T 2
20, Krbi + o + 0
"Kp+20 This proves the lower bound of Theorem 7.1 for linear re-
1 gression. (We use an affine transformation of the outcomes
=6; — 07 + ey 0? ((KT + 2a)? from [0, 1] to [-Y, Y]. This transformation leads to a factor
(K7 + 20 of 42 in'the lower bound.)
VK2 — Kp — 2K7(Kp + 2@)) (18) is a lower bound on (17) because
! 2a — 1
+0; (KT + 2aK7 — 2a(Kp + 2a)) n oﬂ) (+20 (+1  (+1){+20)
a§1 1 200 — 1
7 2 2 -
=0y (14 AL )« TotHL D+
(K7 + 2a)? (K7 4 20)? q
Integrating the above ovére Beta(a, a)™ gives an
o 1+I(T—4?z2+4a2+2a 1 Tz:—l T_-1 (n_l)T—l—t
4o+ 2 ([XT—l—QOz)Z nT-1 { t+1
t=0
«@ 1
— 1 ) T-1 t+1 T—(t+1)
4a+2<+KT+2a) 2y (L I
T t+1 n n
THE COMPARISON TERM =0 .
For a fixed distributioDy, 6 € [0, 1], the comparison term _"li_(1= 1
is T n ’
Jnf By, (w2 = y)’
- 1—6; 0; T-1 _ _ 1\T—-1-t
= inf ( wi2 + —(w; — 1)2) % (T 1) M
wekriz\ n nT =\t Jt+1)(t+2)
1 i 2 T-1
= inf =" (w] — 6w} + 6iw] — 20;w; +6;) "
wertn T(T+1)
t=0
n t+2 (T+1)-(t+2)
= — inf ((wl—gz)z—l—gz(l—gz)) T+1 l 1_1
n wekn ] t4+2 n n
1 n 77,2 < 77,2
== 0:i(1—0) ST(T+1) = 17
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LOWER BOUND FOR GAUSSIAN DENSITY
ESTIMATION

Forn = 1 the lower bound (16) is equal to

o 1

) = a3t —152a -
To find the maximum off we calculatef’ («):

, 4o+ 2 — 4o 1
o) =97 T=112a
«@ -2
da+2 (T — 14 2a)?

2
(da+2)2(T — 14 2a)
2a0
(da+2)(T — 1+ 2a)?
_2T—2—|—4a—8a2—4a
T (o +2)2(T — 11 2a)
27 — 2 — 8a?
(da+ 22T — 1+ 2a)%

_|_

Thus’(«) = 0 holds if and only ifa = ¥L=L. For thisa:

VI=1,  JT-1 1

2 )_z(zmH)T—Hm
1 1 1

TANT —1+1? AT /T-1

This proves the lower bound for Gaussian density estima-
tion. (Again we have to use an affine transformation of the
outcomes that gives a factor of 4.)

I
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