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Abstract

We combine the results of [5] and [3] and derive
a continuous variant of a large class of drifting
games. Our analysis furthers the understanding of
the relationship between boosting, drifting games
and Brownian motion and yields a differential equa-
tion that describes the core of the problem.

1 Introduction

In [2], Freund shows that boosting is closely related to a two
party game called the “majority vote game”. In the last year
this work was extended in two ways.

First, in [5] Schapire generalizes the majority vote game
to a much more general set of games, called “drifting games”.
He gives a recursive formula for solving these games and
derives several generalizations of the boost-by-majorityal-
gorithm. Solving the game in this case requires numerical
calculation of the recursive formula.

Second, in [3], Freund derives an adaptive version of the
boost-by-majority algorithm. To do that he considers the
limit of the majority vote game when the number of boosting
rounds is increased to infinity while the advantage of each
vote over random guessing decreases to zero. Freund de-
rives the differential equations that correspond to this limit
and shows that they are closely related to the equations that
describe the time evolution of the density of particles under-
going Brownian motion with drift.

In this paper we combine the results of [5] and [3] and
show, for a large set of drifting games, that the limit of small
steps exists and corresponds to a type of Brownian motion.
This limit yields a non-linear differential equation whoseso-
lution gives the min-max strategy for the two sides of the
game.

We derive the analytical solution of the differential equa-
tions for several one-dimensional problems, one of which
was previously solved numerically by Schapire in [5].

Our results show that there is a deep mathematical con-
nection between Brownian motion, boosting and driftinggames.
This connection is interesting in and of itself and might have
applications elsewhere. Also, by using this connection we
might be able to derive adaptive boosting algorithms for other
problems of interest, such as classification into more than
two classes and regression.

The paper is organized as follows. In Section 2 we give
a short review of drifting games and their solution using po-
tential functions. In Section 3 we restrict our attention to
drifting games in which the set of allowed steps is finite
and obeys conditions that we call “normality” and “regular-
ity”. We show that the recursive equation for normal drifting
games, when the drift parameter� is sufficiently small, have
a particularly simple form. In Section 4 we show why it
makes sense to scale the different parameters of the drifting
game in a particular way when taking the small-step limit. In
Section 5 we take this limit and derive the differential equa-
tions that govern the game in this limit. In Section 6 we give
a physical interpretation of Equations and the game. We con-
clude with some explicit solutions in Section 7.

2 Background

2.1 The Drifting Game

The drifting game is a game between two opponents: “shep-
herd” and an “adversary”. The shepherd is trying to getm

sheep into a desired area, but has only limited control over
them. The adversary’s goal is to keep as many of the sheep
as possible outside the desired area. The game consists ofT

rounds, indicated byt = 1; : : : ; T .
The definition of a drifting game consists of the follow-

ing things:

� Z an inner-product vector space over which the norm
k�k

g

is defined.

� B a subset ofZ which defines the steps the sheep can
take.

� L : Z ! R a loss function that associates a loss with
each location.

The game proceeds as follows. Initially, all the sheep
are in the origin, which is indicated bys0

i

= 0 for all i =

1; : : : ;m. Roundt consists of the following steps:

1. The shepherd chooses weight vectorsw

t

i

for each sheep
i = 1; : : : ;m.

2. The adversary chooses a step vector for each sheep�
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3. The sheep move:st+1
i

= s

t

i

+ �

t

i

.

After the game ends, and the position of the sheep are
s

T+1

i

, the shepherd suffers the final average loss:

L =

1

m

m

X

i=1

L(s

T+1

i

)

.

2.2 Analysis by Potential

In [5] Schapire shows that drifting games can be solved by
defining a potential function�

t

(s). Setting the boundary
condition�

T

(s) = L(s) and solving the recursion:

�

t�1

(s) = min

w

sup

z

n

�

t

(s+ z) +w � z� � kwk

g

o

(2)

The minimizing vectorw defined the weight vectors that are
the min/max strategy for the shepherd.

One can show that the average potential is non increasing
X

i

�

t

(s

t+1

i

) �

X

i

�

t�1

(s

t

i

)

Hence, one gets the bound on the average loss

1

m

m

X

i=1

L(s

T+1

i

) � �

0

(s = 0) (3)

3 Normal and regular lattices

We assume that the sheep positionss

t

i

are vectors inRd. We
restrict the set of allowed stepsB to be a finite set of size
d + 1 z

0

; : : : ; z

d

which spans the spaceRd and such that
P

d

i=0

z

i

= 0. We call a setB that satisfies these conditions
is normal.

If the setB is normal and, in addition, satisfies the fol-
lowing two symmetries for some positive constantsa andb,
we say it isregular.

1. For anyi 2 0; : : : ; d, z
i

� z

i

= a

2. For anyi; j 2 0; : : : ; d such thati 6= j, z
i

� z

j

= �b

For example, a regular set inR2 is

z

1

= (0; 1); z

2

=

1

2

(

p

3;�1); z

3

=

1

2

(�

p

3;�1) (4)

Given an inner-product vector space whose dimension is
at leastd it is easy to construct a regular setB of sized + 1

for this space. For any orthonormal set of sized, v
1

; : : : ;v

d

we can derive a regular set by settingz
0

; : : : ; z

d

to be

z

0

= �
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d
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j
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8i = 1; : : : ; d; z
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=
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Given that the setB is normal, we can show that, for
sufficiently small values of�, the solution of the game has a
particularly simple form.

Theorem 1 Let B be a normal set of steps. Then there exists
some �

0

> 0 such that for any potential function �

t

and
location s and any �

0

� � � 0 the solution to the recursive
definition of �

t�1

satisfies

�

t�1

(s) =

P

d

i=0

�

t

(s+ z

i

)

d+ 1

� � kw

�

k

g

(5)

and w� is the local slope of �
t

(s), i.e.

�

t

(s+ z

i

) = C +w

�

z

i

; C

:

=

P

d

j=0

�

t

(s+ z

j

)

d+ 1

(6)

If, in addition, the set B is regular, then one can set

�

0

=

1

d

min

w 6=0

kwk

2

kwk

g

Before we prove this theorem, it is interesting to consider
its implications on the (close to) optimal strategies for the
two opponents in the drifting game. What we have is that,
for sufficiently small values of�, the optimal strategy for the
shepherd is to set the weight vectorwt

i

for sheepi at round
t to be theslope of the potential function for roundt + 1 as
defined for thed + 1 locations reachable at roundt + 1 by
sheepi.

Next consider the adversary, we apply the adversarial
strategy described by Schapire in [5] to our case. Consider
the case where the number of sheepm is very large (alterna-
tively, one can consider “infinitely divisible” sheep.) In this
case an almost-optimal strategy for the adversary is to select
the step�t

i

of sheepi independently at random with a distri-
butionpt

i;j

over thed+ 1 possible stepsz
0

; : : : ; z

d

such that
for all sheepi

d
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For some small� > 0.
It follows that the expected value of the required average

drift is
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Asm is large and the steps are chosen independently at ran-
dom the actual value of

P

m
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i

�
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is likely to be very close
to its expected value and thus, with high probability
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. Asm ! 1 we can let� !
0 and so, in the limit of very many sheep, the strategy satis-
fies the drifting requirement exactly.

Assuming that the adversary uses this strategy with� =

0 yields an interesting new interpretation of the potential
function. It is not hard to see that�

t

(s) is the expected fi-
nal loss of a sheep conditioned on the fact that it is located at
s at roundt.The recursive relation between the potential in
consecutive rounds is simply a relation between these condi-
tional expectations.

We now prove the theorem.
Proof:
We fix a locations and consider the recursive definition of
�

t�1

(s).
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Consider first the case� = 0. In this case the min max
formula (2) can be written as

�

t�1

(s) = min

w

F (w) (8)

F (w) = max

i=0;:::;d

f

i

(w); f

i

(w) = f�

t

(s+ z

i

) +w � z

i

g

Note that for eachi, f
i

(w) is a simple affine function whose
slope isz

i

. ThusF (w) is a convex function which implies
that its minimum is achieved on an affine subspace (a trans-
lation of a linear subspace). We shall now show that this
subspace consists of a single point.

To test whether a pointw is a local minimum we con-
sider the restriction of the functionF (w) on rays emanat-
ing fromw. Given a pointw and a direction vectorv such
that kvk

g

= 1, we define the functiong
w;v

: [0;1) !

(�1;+1) asg
w;v

(x) = F (w + xv)� F (w).
Let w� be a point on which the minimum ofF (w) is

achieved and letv be an arbitrary direction. It is easy to
verify that g

w;v

(x) = xmax

i

z

i

v. Thusg
w;v

is constant
if and only if max

i

z

i

v = 0. Written in another way, this
means thatz

i

v � 0 for all i = 0; : : : ; d. Consider the two
possibilities. Ifz

i

v = 0 for all i thenv is orthogonal to the
space spanned by thez

i

’s, which contradicts the assumption
that the setB is normal and thus spans the space. If there is
somei for which z

i

< 0 thenv
P

i

z

i

< 0 which implies
that

P

i

z

i

6= 0 which again contradicts our assumption that
B is normal. We conclude thatg

w;v

is a strictly increasing
function for allv and thusw� is the unique minimum.

The fact that the minimum is unique implies also that at
the minimum all the affine functions on which we take the
max are equal,f

i

(w

�

) = c for all i = 0; : : : ; d. Summing
overi , and recalling that

P

i

z

i

= 0 we find that

(d+ 1)c =

d

X

i=o

f

i

(w

�

) =

d

X

i=0

(�

t

(s+ z

i

) +w

�

� z

i

)

=

d

X

i=0

(�

t

(s+ z

i

))

and thus the recursion yields

�

t�1

(s) =

1

d+ 1

d

X

i=0

(�

t

(s+ z

i

))

f

i

(w

�

) = �

t�1

(s) 8i = 0; : : : ; d

completing the proof of the theorem for the case� = 0.
We next consider the case� > 0. In this case we redefine

f

i

(w) in Equation (8) to be

f

i

(w) = f�

t

(s+ z

i

) +w � z

i

g � � kwk

g

:

In what follows, we will refer to the definition ofF when
� = 0 asF

0

.
We will now show that for sufficiently small values of�

the minimizer vectorw� is the same as it was for� = 0. To
see that, consider the directional derivative ofF at a pointw
and directionv:

D

w;v

(F )

:

=

dg

w;v

(x)

dx

�

�

�

�

x=0

Clearly, the functionF (w) is continuous and has a direc-
tional derivative everywhere, thus a pointw is a local min-
imum of F (w) if and only if D

w;v

(F ) � 0 for all direc-
tionsv. As the directional derivative is a linear operator, the
directional derivative ofF (w) is the sum of the directional
derivative ofF

0

(w) and the directional derivative of� kwk
g

.
We start withF

0

. As shown earlier, the ray functions
g

w

�

;v

for F
0

are equal tog
w;v

(x) = xmax

i

z

i

w

�. This
implies two facts:

� For w = w

� thenD
w

�

;v

(F

0

) = max

i

z

i

v > 0 and
thusmin

v

D

w

�

;v

(F ) = a > 0 wherea depends only
on the setB and is independent of potential function�

t

.

� For w 6= w

� there is a line segment betweenw and
w

� on which the functionF is defined by the ray func-
tiong

w

�

;v

wherev = (w

�

�w)= kw

�

�wk

g

and thus
D

w;v

(F

0

) = �D

w

�

;�v

(F

0

) < a < 0.

Consider now the directional derivative of� kwk
g

. As
kwk

g

is a norm,kw + xvk

g

� kwk

g

+x kvk

g

= kwk

g

+x.
ThusjD

w;v

(� kwk

g

)j � �.
Combining these two observations we conclude that, if

� < a then

� Forw = w

�,D
w

�

;v

(F ) > 0 for all v, i.e.w� is a local
minimum ofF .

� Forw 6= w

�, D
w;w

�

�w

< 0, i.e. w cannot be a local
minimum ofF .

We conclude that if we set�
0

= a then for any� < �

0

the minimizerw� is the slope of�
t

(s) and the formula for
�

t�1

(s) is as stated in the theorem.
Finally, we identify the setting of�

0

for a regular set
B. This setting follows directly from observing that in this
case the vectorsv that minimizesmax

i

z

i

v are�z
i

and
z

i

z

j

= kz

i

k

2

= 1=d for any i 6= j in a regular set of vectors.

4 Exploring different limits

Given that the solution we found for the shepherd has a nat-
ural interpretation as a type of a slope or local gradient, it
is natural to consider ways in which we can generalize the
game from its original form in discrete time and space to con-
tinuous time and space. Also, as was shown by Freund [3],
when applying the drifting game analysis to boosting meth-
ods, it turns out that the continuous limit corresponds to the
ability to make the algorithm “adaptive”.

The way in which we design the continuous version of
the drifting game is to consider a sequence of games, all of
which use the same final loss function, in which the size of
the steps become smaller and smaller while at the same time
the number of steps becomes larger and larger.

Fix a loss functionL : R

d

! R and letB be a normal
step set. We define the gameG

T

to be the game where the
number of steps isT and the step set is�

T

B = f�

T

z

i

; i =

0; : : : ; dg where�
T

> 0 and�
T

! 0 asT ! 1.To com-
plete the definition of the game we need to choose�

T

and
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�

T

. We do this under the assumption that�

T

is always suf-
ficiently small so that the solution described in the previ-
ous section holds and we base our argument on the almost-
optimal stochastic strategy of the adversary described there.

First, consider�
T

. If all of the drift vectors point in
the same direction then the expected average location of the
sheep afterT steps is distanceT�

T

from the origin. IfT�
T

!

1 then the average total drift of the sheep is unbounded and
the shepherd can force them all to get arbitrarily far from
the origin. On the other hand, ifT�

T

! 0 then the shep-
herd loses all its influence asT !1 and the sheep can just
choose a step uniformly at random and, in the limit, reach
a uniform distribution over the space. We therefore assume
that�

T

= c

1

=T .
Next we consider�

T

. In this case the strategy of the ad-
versary corresponds to simple random walk. Thus afterT

steps the variance of sheep distribution isT�

2

T

. Similarly to
the previous case, ifT�2

T

! 0 then the adversary has too
much power while ifT�2

T

! 1 the adversary is too weak.
We therefore set�T = c

2

=

p

T .
Finally, as we let the number of rounds increase and the

step size decrease, it becomes natural to define a notion of
“time” � to bet=T .

We can re-parameterize this limit by setting� = 1=

p

T ,
and absorbingc

2

into the definition ofz
i

. We thus get a
scaling in whichz0

i

= �z

i

, �0 = �

2

� andd� = �

2. Letting
� ! 0 we get a continuous time and space variant of the
drifting game and its solution. Assuming also that the num-
ber of sheepm grows to infinity we have an optimal strategy
for the adversary. This strategy, in the limit, corresponds
to Brownian motion of the sheep with a location-dependent
drift component.

5 Continuum limit

We will now show that the latter definition of a continuum
limit also leads to a natural limit of the recursion (5) by a
partial differential equation.

With the replacementz0
i

= �z

i

and�0 = �

2

�, assuming
that� can be extended to a smooth function of the continuous
variables, we expand the right hand side in a Taylor series
up to second order in�.

�

��1

(s)� �

�

(s) = �

1

jBj

X

i

z

i

� r�

�

(s) + (9)

�

2

2jBj

X

kl

X

i

z

k

i

z

l

i

@

2

�

�

(s)

@s

k

@s

l

� �

2

� kwk

g

+ o(�

2

)

We introduce the continuous time variable� via t�2, and ex-
pand the left hand side of (9) to first order in�2. Finally,
replacing�

t

(s) by �(s; � ) and dividing by�2, we get

@�(s; � )

@�

= �

1

2

X

kl

D

kl

@

2

�(s; � )

@s

k

@s

l

+ � kw

�

k

g

(10)

where

D

kl

=

1

d+ 1

d

X

i=0

z

k

i

z

l

i

andzk
i

andsk denotes thekth components (k = 1; : : : ; d)
of the vectorsz

i

and s respectively. The linear term in�

vanishes due to the extra condition on the vectorsz

i

. For
the regular set described in (4), we get the diagonal matrix
D

kl

=

1

2

for k = l and zero otherwise. Finally, we get an
explicit form for the drift vectorw� in the continuum limit
by replacingz

i

with z0
i

and expanding the local slope in (6)
to first order in�. This simply yields the gradient

w

�

(s; � ) = �r�(s; � ) (11)

Combining (10) and (11) we find that the recursion for the
potential in the continuum limit is given by the nonlinear
partial differential equation

@�(s; � )

@�

= �

1

2

X

kl

D

kl

@

2

�(s; t)

@s

k

@s

l

+ � kr�(s; � )k

g

(12)

6 Physical interpretation: diffusion processes

We will now come back to the probabilistic strategy of the
sheep discussed in section 3 and show that equation (12)
has a natural interpretation in the context of adiffusion pro-
cess. Physical diffusion processes model the movement of
particles in viscous media under the combined influence of a
thermal random walk and a force field. The process can be
described from two perspectives (see Breiman [1] for a good
introduction to the mathematics of diffusion processes).

From the perspective of each single particle, the diffusion
process can be seen as the continuous time limit of a ran-
dom walk. From this perspective, the limit of the stochastic
strategies for the sheep which is described in 3 is a diffusion
process in which the force field is defined through the weight
vectors chosen by the shepherd and the diffusion is a location
independent quantity defined by the setB. Formally, a dif-
fusion process defines a Markovian distribution over particle
trajectoriess(� ). The trajectories are continuous but have no
derivative anywhere. The distribution over trajectories is de-
fined by the average change in the position (the drift) during
a time intervalh IE[s(� + h)� s(t)js(t) = s] = hA(s; � ) +

o(h) and the variance of the change in the position (the diffu-
sion) IE

�

(s

k

(� + h) � s

k

(� ))(s

l

(� + h) � s

l

(� ))js(� ) = s

�

=

hD

kl

+o(h). Both the drift and the diffusion behave linearly
for smallh. 1

A is usually called thedrift field andD the
Diffusion matrix. Taking the limit of small step size in (7)
we get

A(s; � ) = w(s; � )

kw(s; � )k

g

kw(s; � )k

2

2

(13)

Assuming the 2-norm, the emerging diffusion problem is that
of a particle under an external force of constant modulus.
The optimal strategy of the shepherd amounts in finding the
direction ofA for each position and time such that the ex-
pected loss at the final time is minimal.

The second perspective for describing a diffusion pro-
cess is to consider the temporal development of the particle
density. This development is described by the conditional
densityp(r; � 0js; � ) which describes the distribution at time
�

0 of a unit mass of particles located ats at time� . The time

1Note that on average the displacement (or velocity) is pro-
portional to the Force. This behavior which is unlike the well
known ”accelerationpropto force” describes motion in a a viscous
medium, where motion is strongly damped.
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evolution of this conditional distribution is described bythe
forward or Fokker-Planck equation:
@p(r; �

0

js; � )

@�

0

=

1

2

X

kl

@

2

[p(r; �

0

js; � )D

kl

(r; �

0

)]

@r

k

@r

l

(14)

� [r

r

�A(r; �

0

)]p(r; �

0

js; � )

One can show that the PDE (12) for�(s; � ) naturally comes
out of this diffusion scenario by the interpretation of the po-
tential�(s; � ) as the expected loss at time� 0 = 1 when a
sheep is at time� at the positions i.e..

�(s; t) =

Z

drL(r)p(r; �

0

= 1js; � ) (15)

By using the so calledBackward equation ([4]) which de-
scribes the evolutionp(r; � 0js; � ) with respect to the initial
conditions and� one arrives at (12).

7 Explicit solutions for d = 1

In general, in order to solve partial differential equations like
(12) one has to resort to numerical procedures which are
based on discretization and lead to recursions similar to the
finite step results (5) (6). Nevertheless, for dimensiond = 1

and specific classes of loss functions analytic solutions are
possible.

Settingz
1;2

= �� andD = 1 (12) reads

@�(s; � )

@�

= �

1

2

@

2

�(s; � )

@s

2

+ �j

@�(s; � )

@s

j (16)

Explicit solutions are possible for loss functions where time
independent regions can be found for which
w

�

(s; � ) = �

@�(s;�)

@s

has a constant sign. Constrained to
such regions, (16) islinear. We will discuss 2 cases next:

Monotonic loss: Here we have sign[@L(s;�)
@s

] = const

for all s 2 R leading to sign[w�(s; � )] = const. Special
examples are ”Boost by Majority” lossL

BBM

(x) = 1 for
x < 0 andL

BBM

(x) = 0 else. and the exponential loss
L

e

(y) = e

cy.
Symmetric Loss: L(s) = L(�s) leading tow�

(�s; � ) =

�w

�

(s; � ) whereL(s) monotonic in[0;1). It is often eas-
ier to solve the corresponding Fokker-Planck equation set-
tingA(s; � ) = sign(w�(s; � )). We illustrate this for the case
of increasing loss functionsA(s; � ) = 1 for s � 0.

@P (r; �

0

js; � )

@�

0

=

1

2

@

2

P (r; �

0

js; � )

@r

2

+�

@P (r; �

0

js; � )

@r

(17)

for r; s � 0, combined with the reflecting boundary condi-
tion 1

2

@P (r;�

0

js;�)

@r

+ �P (r; �

0

js; � ) = 0 for r = 0 and all
T > t. This prevents a probability flow fromr > 0 to r < 0.
The initial condition is isP (r; �

0

js; � )! �(r�s) as� 0 ! � .
The Fokker-Planck equation is that of a diffusing particle un-
der a constant gravitational force, wherer = 0 is the surface
of the earth acting as a reflecting boundary. The solution is
found to be

P (r; �

0

js; � ) =

1

p

2���

exp

�

�

(r � s+ ��� ))

2

2�� )

�

+

e

2s�

p

2��� )

exp

�

�

(r + s+ ��� ))

2

2�� )

�

+ (18)

�e

�2r�

 

1� erf

 

r + s � ��� )

p

2�� )

!!

with �� = �

0

� � This solution can be used to compute
�(x; t) for s � 0 via

�(s; � ) =

Z

1

0

drL(r)P (r; 1js; � )

and� is extended to negatives by setting�(�s; t) = �(s; t).
As an example we take the problem of a shepherd who tries
to keep the sheep in an interval of size2a corresponding to a
lossL

a

:

= I

x>a

, whereI is the indicator function.
The following table contains the explicit results for� for

three loss functions. The variable�
:

= 1� � .

Loss �(s; � ) sign[w�(s; � )]

L

BBM

1

2

�

1� erf

�

s+��

p

2�

��

1

L

e

e

c(s���)+

1

2

c

2

2� -1

L

a

1

2

(1 + e

�2a�

) �

1

2

erf

�

a�s+��

p

2�

�

-sign(s)

�

1

2

e

�2a�

erf

�

a+s���

p

2�

�

The potential� for the lossL
a

is shown as the smooth curves
in Fig. 1 for different times. The step functions present the
corresponding solutions for the discrete recursion (5) with a
step size� = 0:1. We also computed� for the two loss func-
tionsL(y) = y

2 andL(y) = min(y

2

; 1) (see Figs. 2 and
3) which maybe of interest in a regression framework. Al-
though in these cases (19) may still be evaluated in terms of
error functions in a complicated way, we have rather evalu-
ated (19) by numerical integration instead.
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Figure 1: The potential�(s; t) for the loss functionL
a

= I

y>a

as a function ofs for � = a = 1 and (from left to middle)� =

0; 0:5; 0:9; 0:99. The step function is a result of a numerical iteration of thediscrete recursion (5) with step size� = 0:1
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Figure 2:The potential�(s; t) for the square lossL(y) = y

2.
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Figure 3:The potential�(s; t) for the lossL(y) = min(y

2

; 1).


