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Abstract

The Statistical Query (SQ) model provides an ele-
gant means for generating noise-tolerant PAC learn-
ing algorithms that run in time inverse polynomial
in the noise rate. Whether or not there is an SQ
algorithm for every noise-tolerant PAC algorithm
that is efficient in this sense remains an open ques-
tion. However, we show that PAC algorithms de-
rived from the Statistical Query model are not al-
ways the most efficient possible. Specifically, we
give a general definition of SQ-based algorithm
and show that there is a subclass of parity functions
for which there is an efficient PAC algorithm re-
quiring asymptotically less running time than any
SQ-based algorithm. While it turns out that this
result can be derived fairly easily by combining a
very recent algorithm of Blum, Kalai, and Wasser-
man with an older lower bound, we also provide
alternate approaches to both the upper and lower
bounds that strengthen the results in various ways.
The lower bound in particular is stronger than might
be expected, and the amortized technique used in
deriving this bound may be of independent inter-
est.

INTRODUCTION

studied, elegant abstraction from Valiant's foundatigmab-

The SQ approach to developing noise-tolerant algorithms
was surprisingly successful, so much so that Kearns asked
whether or notthe SQ and PAC+noise models might be equiv-
alent [Kea93]. Blum, Kalai, and Wasserman [BKWO0O0] have
very recently shown that there is a class that is efficiently
learnable with noise but not efficiently SQ learnable. How-
ever, they only show that this class can be learned effigient!
when the noise rate is constant. This leaves open the goestio
of whether or not there is an efficient SQ algorithm for every
function class that is learnable in time inverse polynormal
the noise rate.

Like Blum et al., this paper does not answer this in-
triguing question. However, we do show that using the SQ
model to develop (inverse-polynomial) noise-tolerant PAC
algorithms sometimes does not produce optimally efficient
algorithms. Specifically, a formal definition &fQ-based
PAC algorithms is developed. Informally, SQ-based algo-
rithms are PAC algorithms that are derived through a generic
process from SQ algorithms. This process is even gener-
ous to the SQ-based algorithm in that it assumes that the tar-
get function is noiseless and also assumes that an appropri-
ate sample size for simulating each statistical query does n
need to be computed but is instead known by the algorithm.
Despite the generosity of this definition, we show that the
class of all parity functions on the fir62(log »n) bits of an
n-bitinput space can be learned (inverse-polynomial) noise
tolerantly more efficiently with a custom PAC algorithm than
with any SQ-based algorithm for this class.

We actually present several somewhat different approaches
to this result. First, while the Blurer al. results [BKWOO]

ably approximately correct (PAC) learning model [Val84]. focus on producing a superpolynomial separation between
Kearns showed that any function class efficiently learnable PAC+noise and SQ learning in the constant noise setting,
in the SQ model is also learnable in the PAC model despite they have in fact developed a family of parameterized al-
noise uniformly applied to the class labels of the examples. gorithms that can be used to derive a variety of learnability
His proof essentially outlined a generic method that coeld b results. In particular, some members of this family of algo-
used to simulate an SQ algorithm using a noisy PAC example rithms efficiently tolerate inverse-polynomial noise safer
oracle. The resulting PAC algorithm is efficient in the stan- certain function classes. Given our definition of an SQ-thase
dard PAC parameters as well as in the inverse of the noisealgorithm, itis relatively easy to combine these Blum, Kala
rate. Kearns then developed SQ algorithms for almost all and Wasserman algorithms with a lower bound from an older
function classes known to be efficiently learnable in the PAC Blumet al. paper [BFJ94] to give a polynomial separation
model, providing the first known noise-tolerant algorithms between SQ-based algorithms and inverse-polynomial noise
for some of these classes. tolerant PAC algorithms when learning th¢log n) subclass

of parity functions with respect to the uniform distributio

We then improve on the lower bound. Specifically, a time
bound of2(2"/?) for learning the class of parity functions
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over n bits that can be derived in a fairly straightforward {0, 1} such thatPr, i, [f(x) # h(z)] < e. In this paper
way from [BFJ-94], but improving on this seems to require we consider only the original additive error version of sta-
deeper analysis. We improve this bound¥(2™) using an tistical queries and not the relative error model, whichis i
amortized analysis approach that may also be useful in othersome sense polynomially equivalent [AD98].
settings. These definitions can be generalized to arbitrary proba-
Finally, we show that an algorithm based on the well- bility distributions rather tha/,, in an obvious way. How-
studied Goldreich-Levin parity-learning algorithm, whicn ever, in this paper, our focus is on the uniform distribution
the surface is quite different from the algorithm of Blum, Inthe sequel, probabilities and expectations that do rest-sp
Kalai, and Wasserman, achieves running time sufficient to ify a distribution are over the uniform distributiondf, 1}
also give a polynomial separation result between noisy PAC for a value ofn that will be obvious from context.
learning and SQ-based learning. The fact that Goldreich-  We will also make use of an algorithm that uses queries
Levin can be used without membership queries in this way is to a membership oracle in order to weakly learn certain func-
somewhat interesting in itself. Furthermore, the Goldreic tion classes with respect to the uniform distributionnémn-
Levin algorithm appears to be resistant to much broaderdorm bership oracle for f : {0,1}" — {—1,+1} (MEM(f))

of noise than the Blunar al. algorithm, thus strengthening
the separation between SQ and PAC+noise.

2 PRELIMINARIES

This paper focuses on the learnability of the class of par-
ity functions in various learning models. Following stardia
Fourier learning theory notation, we ugsg : {0,1}" —
{—1,+1} torepresent thgariry function defined as follows:

Xa(#) = (=1)*"

wherea - x represents the dot product of thebit Boolean
vectorsa andz. We define thelass of parity functions on n
bits PAR, ={f | f = xaOr f = —x4,a € {0,1}"} and
theclass of parity functions PAR = UL PAR,,.

The two models of learnability we will focus on are both
variants of Valiant’s Probably Approximately Correct (PAC
model [Val84]. The first question we consider is the PAC
uniform random classification-noise learnability of P AR with
respect to the uniform distribution. In this model, the learn-
ing algorithm.4 is given access to a noisy example oracle
EX"(f,U,). Heren s the noise rate of the oracle (assumed
known, although knowing a lower bound suffices for all of
our results)f is a fixed unknown parity function i® AR,
for some value of:, andU,, represents the uniform distri-
bution over{0, 1}". On each draw from the oracle, a vector
z € {0, 1} is drawn uniformly at random. The oracle then

is an oracle that given any-bit vectorz returns the value
f(z). Afunctionh : {0,1}" — {—1, +1} is aweak approx-
imation with respect to the uniform distribution to a function
{0, 13" — {=1,+1}if Pro~u, [f(z) = h(z)] > 5+ 6,
wheref is inverse polynomial in parameters appropriate for
the learning problem considered (the specific parametéirs wi
not be important for our purposes). A uniform-distribution
learning algorithm for a clasd that produces weak approxi-
mators as hypotheses—rather thiaapproximators as in the
models above—is said teeakly learn A. Learning algo-
rithms that produce-approximators are sometimes referred
to asstrong.

Some of our results will use Fourier analysis. Given a
Boolean functionf : {0,1}" — {—=1,+1} and ann-bit
vectora, we define th&ourier coefficient with index a (f (a))
to beE;[f(») - xo(x)]. Parseval’s identity for the Fourier

transform isE, [f%(x)] = 3, f*(a). For f € {=1,+1},
this gives thaf", f?(a) = 1.

Notice that if a Fourier coefficienf(a) is reasonably
large (bounded away fromhby an inverse polynomial), then

the corresponding parity functiop, is a weak approximator
to the functionf. To see this, note that

Prx[f(x) = Xa(x)] - PI‘x[f(l‘) ;é Xa(x)]
2Pr,[f(z) = xq(x)] = 1.

f(a)

randomly chooses between returning the noiseless example

(z, f(x)), with probability 1 — 5, and returning the noisy
example(z, — f(x)), with probabilityn. A is also given pa-
rameters:,d > 0. The goal of the learner is to produce a
functionh : {0,1}* — {—1,+1} such that, with probabil-
ity at leastl — §, Pr,.p,[f(z) # h(x)] < e. Such ank

is called are-approximator to f with respect to the uniform
distribution.

The second question considered is the Statistical Query

learnability of P A R. A uniform-distribution Statistical Query
(SQ) oracle— denotedSQ(g, 7)—is an oracle for an un-
known target functiorf : {0,1}" — {0,1}. Given a func-
tiong : {0,1}"* — {—1,+1} and atolerance v > 0,
SQ(g, 7) returns a valugi such thalE, .., [g(x, f(z))] —
il < 7, whereE, .y, [] represents expected value with re-
spect to the uniform distribution ovei0, 1}". A Boolean
function clas<’ is uniform-distribution learnable in the Sta-
tistical Query model (SQ-learnable) if there is an algorithm
A that, given any > 0 and access to an SQ oracle tor
for any functionf € C, produces a functioh : {0,1}" —

Therefore, ifl f (a)| > v, then either the parity functiog, or
its negation is &(1 — ~)/2)-approximator tof with respect
to the uniform distribution. We say in this case that thetyari
Xa (Or its negation) isy-correlated with f.

3 AN INITIAL SEPARATION OF PAC AND
SQ-BASED ALGORITHMS

We begin this section by defining our notion of an SQ-based
algorithm and discussing some of the implications of this
definition. We then apply results from Bluemal. [BFJT 94]

and a very simple sample complexity argument to show a
lower bound on the run time of any SQ-based algorithm for
P AR. Next, time bounds on the recent Blunul. [BKWO0O]
family of algorithms for learning parity are compared with
the lower bound in the context of learning parity functions
on the firstO(log n) bits of n-bit input vectors. This com-
parison gives a separation between SQ-based algorithms and
PAC algorithmsresistant to inverse-polynomial clasdiiica



noise. We then improve on this separation in various ways in learned with a polynomial number of statistical queries-hav

subsequent sections. ing polynomial error tolerance. We will be interested intbot
the number of queries made and in the time required to sim-
3.1 SQ-BASED ALGORITHMS ulate these queries with a (noiseless) PAC example oracle.

We begin by formalizing the notion of an SQ-based algo- 321 SQ Learning of PAR
rithm that will be used in the lower bound proofs. The defi-
nition in some ways makes overly simple assumptions about
the difficulty of simulating statistical queries, as diseed
further below. However, these simplistic assumptions @n
made without loss of generality for lower bound purposes
and will streamline our later analysis.

First, consider the SQ learnability with respect to the omif
distribution of the class® AR of parity functions. Letf :
b {0,1}" — {—1,+1} be such a parity function—call i,
whereb is then bit vector indicating which of the: input
bits are relevant tog,—and letf' () = (1 — f(x))/2 be
the {0, 1}-valued version off. A corollary of analysis in
Blum et al. [BFJt94] then gives that for any function :

Definition 1 An algorithm A is SQ-basedf it is a PAC (ex- {0, 1)+ 5 {—1,+1},

ample oracle) simulation of an SQ algorithm S. Specifically, ’ E i /

A is derived from S by replacing the ith query (g;, 7;) to the o~ 1902, 1(2))]

SQ oracle with the explicit computation of the sample mean = §(0n+1) + Z ﬁ(al)EzNUn [f(z)xa (z)]
of g; over m; (noiseless) examples obtained from the exam- aelo,1}n

ple oracle. Given a confidence d, the m;’s must be chosen
such that with probability at least 1 — § all of the simulated
statistical queries succeed at producing values within 1; of
the true expected values. The algorithm A therefore suc-
ceeds with probability at least 1 — .

whereal represents the concatenation of théit vectora
and the bitl. Furthermore, it follows by the orthogonal-
ity of the Fourier basis functiong, that the expectation
E..v, [f(z)xa(?)] = E:nv,[x6(2)xa(2)] IS0 unlessa =
b, in which case it isl. So we haveE, ., [9(z, f/(2))] =
o . o ... §(0n41)+g(b1). This means thatif an SQ learning algorithm
One simplifying assumption made in this definition is \akes aquerfg, 7) andr > |¢(b1)| then the SQ oracle can
that the example oracle is noiseless, while the later PAC al- returng(0,,11). But by standard Fourier analysis (seg
gorithms will be required to deal with noisy examples. Also [BFJ+94]), for any fixed functiony as above there are at
notice that the definition does not require the SQ-based algo mqst~2 distinct Fourier coefficients of magnitude at least
rithm to compute an appropriate valuesef (which would - “Thys a response ¢{0,.,1) by the SQ oracle to a query
be necessary in a typical *real” simulation), but only to use (, - made by the SQ learner allows the learner to eliminate
an appropriate number of examples in its calculations. (“cover”) at mostr—2 parity functions from further consider-
Another point worth noting is that this definition does  ation (those corresponding s such thatg(a)| > 7). This
not exclude the possibility of simulating a number of querie |eayes at least” — 7~ parity functions, any one of which
(9i,7:) as a batch rather than sequentially. That is, while might pe the target function.
the definition does require that all of the statistical ce®ri Therefore, if our goal is to find the actual target function

be simulated, it does not specify the order in which they are gng all of our statistical queries use the same tolerance
simulated, and does not even preclude the computations fofi, the worst case at leagt /72 queries are required. This

different query simulations being interleaved. The ddfunit
does, however, imply that each query should be simulated
by computing the sum of; over m; examples (this is the
intention of the term “explicit computation” in the defini-
tion). That is, we do not allow any clever use of compu-
tations related tgy; to be used in the computation of the
sample mean of;, ¢ # j. This is because our goal is
to capture the essence of a generic simulation of statistica 3.2.2 SQ-Based Learning of PAR

queries, and any cleverness introduced would presumably beye can obtain a lower bound on the run time of any SQ-

also implies that if we were to set the tolerance 2-"/2,

then conceivably we could learn the target parity function

in a single statistical query. So sample complexity alone is

not enough for our SQ-based lower bound argument; we also
need to consider the number of examples required to simu-
late a query.

problem-specific rather than generic. based algorithm fo> AR by combining the above analy-
Finally, notice that this definitiodoes allow for the reuse  sis with consideration of the number of examples needed to
of examples between simulations of queriemdj, i # j. simulate a statistical query. Clearly, to simulate a stiati

So the sample complexity of an SQ-based algorithm may be query(g;, ;) requiresm; = Q(1/7;) examples; fewer than
much less thar) _, m;. However, a key to our lower bound  this means that even the discretization error of the sample
arguments is to note that the time complexity of an SQ-basedmean is larger than.. Thus, even in the case of a single sta-
algorithm is (at least) the sum of the times required to sim- tistical query being used with toleranze™/2, an SQ-based
ulate all of the queries made by the algorithm, and therefore algorithm will require time at leas®(27/2). We therefore

is at leasty ", m;. have

3.2 A SIMPLE LOWER BOUND Theorem 2 Let n represent the number of input bits of a

. } : . Sfunction in PAR. Every SQ-based algorithm requires time
We now consider SQ-based learning algorithms ot /2. Q(?”/Z) to PAC learn the class PAR with respect to the

Our analysis makes heavy use of Fourier-based ideas from "\, distributi
Blum et al. [BFJt94], who showed that any class containing uniform distribution.
super-polynomially many distinct parity functions canbet We will improve on this bound in section 4.



3.3 NOISE-TOLERANT PAC ALGORITHMS FOR
PAR

Blum, Kalai, and Wasserman [BKWO0O], as part of their re-
sults, prove the following:

Theorem 3 (BKW) Let n represent the number of input bits
of a function in PAR. For any integers a and b such that
ab = n, the class PAR can be learned with respect to
the uniform distribution under uniform random classification
noise of rate 1 in time polynomial in (1 —21)~ ") and 2° as
well as the normal PAC parameters.

While Blumer al. used this theorem to analyze the case
in which « is logarithmic inn, note that choosing to be
a constant gives us an algorithm with running time polyno-
mial in the inverse noise rate a(2"/¢) in terms ofn. In
particular, choosing > 2 gives us an algorithm that has
better asymptotic performance inthan the best possible
SQ-based algorithm faP A R with respect to uniform. Fur-
thermore, the algorithm’s run time does not depend on the
PAC parametet, as it produces a single parity function as
its hypothesis, which is either(aapproximator to the target
f oris not at all correlated wittf with respect to the uni-
form distribution. And the algorithm can be shown to have
run time logarithmic in terms of /4, as is typical of PAC
algorithms.

Given this understanding of the Bluen al. results, we
are ready for a formal comparison of this PAC algorithm with
the SQ-based algorithm above.

3.4 COMPARING THE PAC AND SQ-BASED
ALGORITHMS

Comparing the bounds in Theorems 3 and 2, it is clear that
the carefully crafted PAC algorithm of Blurr al. with «
constant runs in polynomial time in all parameters on the
class of parity functions over the fir6)(log »n) input bits,
and that this algorithm is generally faster than any SQ-base
algorithm. However, the PAC algorithm bound includes the
noise rate while our SQ analysis did not, so the PAC algo-
rithm is not necessarily more efficient regardless of the@oi
rate. But note that if the noise teriy (1 — 27) is polyno-
mially bounded im, say isO(n*) for some constark, then
there is a constant such that the PAC algorithm on parity
over the firstc - k£ bits will be asymptotically more efficient
than any SQ-based algorithm. This polynomial restriction o
the noise term is relatively benign, particularly considgr
thatn is exponentially larger than the size of the functions
being learned. In any case, we have

Theorem 4 For any noise rate ) < 1/2 such that 1/(1—2n)
is bounded by a fixed polynomial in n, and for any confidence
d > 0 such that 1/§ is bounded by a fixed exponential in n,
there exists a class C of functions and a constant k such that:

1. C can be PAC learned with respect to the uniform dis-
tribution with classification noise rate 1 in time o(n")
for some constant k; and

2. Every SQ-based algorithm for (noiseless) C with respect
to the uniform distribution runs in time Q(n*).
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We now turn to some improvements on this result. First,
we show a stronger lower bound on the running time of SQ-
based algorithms foP AR of ©(2”). We then show that
a different algorithm forP AR that has running time dom-
inated by27/2. In conjunction with the improved lower
bound, this algorithm is also asymptotically faster thap an
SQ-based algorithm for parity with respect to the uniform
distribution. We also note that this algorithmis robustiaga
noise other than uniform random classification noise, and so
appears to generalize somewhat the results obtained thus fa

4 A BETTER LOWER BOUND ON
SQ-BASED ALGORITHMS

Our earlier analysis of the number of examples needed to
simulate a statistical query was extremely simple, butsmar
Here we give a much more involved analysis which shows,
perhaps somewhat surprisingly, that time fub§2" ) is needed
by any SQ-based algorithm to leaft4 R. Our approach is

to consider many cases of statistical queries and to shaw tha
in every case the number of parity functions “covered” by
queryi is O(m;), wherem; represents the number of ex-
amples needed to simulateSince by our earlier discussion
essentially alb™ parity functions must be covered by the al-
gorithm, the overall result follows.

We will need several technical lemmas about the bino-
mial distribution, which are stated and proved in the Ap-
pendix. Given these lemmas, we will now prove a general
lower bound on the sample complexity—and therefore time
complexity—needed to approximate certain random vargable

Lemma 5 Let X be a random variable in {0, 1} such that
Pr[X = 1] = p, that is, a Bernoulli random variable with

Jixed mean p. Denote the mean value of a sample of X (of

size m to be determined) by X. Assume that either or both
of the following conditions hold: 1) 1/3 < p < 2/3;2) It is
known that m and p are such that mp(1 — p) > 1. Then for
any 0 < 6 < 0.05and any 0 < X < 1/8, a sample of size
m > p(1 — p)/(2)\?) is necessary to achieve Pr[|X — p| <
Al >1-6.

Proof: Letg = 1 — p. Note that ifmpg < 1 and
1/3 < p < 2/3 thenm < 9/2. For such smalln, X can
take on only a small number of values, and the bound on
implies that at most one of these values can be withof
fixed p. A simple case analysis for. = 2,3,4 applying
Lemma 11 shows that the probability of occurrence for the
pertinent values o is much less thaf.95, and the case
m = 1 isimmediate. Therefore, a sampile> 5 is required,
and it must also be thakpg > 1. That is, in order for the
Lemma to hold for condition 1), it must be that condition
2) holds as well. Thus we will assume below thapg >
1. Furthermore, note that this condition implies that>
5 since the maximum value qfq is 1/4, so we will also
assumen > 5. .

Next, note that if the sample is of size thenm X, the
sum of the random variables in the sample, has the bino-
mial distributionB(m, p) with meanmp. By Lemma 9, for
p < 1, the maximum value of this distribution occurs at
the first integer greater thanm + 1) — 1, and this max-
imum value was shown in Lemma 13 to be no more than



0.41/y/mpq — 1 for mpq > 1. Now the probability that
mX is within \/mpg — 1 of the true mean is just the inte-
gral of the distributionB(im, p) from mp — /mpg — 1 to
mp + +/mpg — 1. Using the maximum orB(m, p) given
above, this probability is bounded above 2. Therefore,

we have that the probability than X — mp| > /mpq — 1
is at least).18. In other words,

vmpg —1
m

Pr||X —p|> > 0.05.

So in order to achievPr[| X —p| < A] with sufficiently high
probability, we need to choose such that/mpg — 1/m <
A. Solving this inequality, we see that it holds if either

— /p2g? — 4)2
<Pq pq

- 2A?

m

or
P+ VpPg* — AN

2A?
Note that real-valued solutions exist onlyXf< pq/2, and
that given this conditiomn < (pg — \/p2q? — 4A2)/(2\?)
impliesm < 1/A.

Now if m < 1/), sinceX is an integer divided byn,
there are at most two values af that differ fromp by no
more than\. But since we know thatapg > 1, Lemma 13
gives that the maximum probability of any one value of the
binomial distribution—and thus the maximum probability of
any one value of{ occurring—is at most.46. Thus the
maximum probability on two values of is at most0.92,

and a value ofn less thar{pg — \/p?q? — 4A2)/(2\?) can-

not satisfy the lemma’s requirements Be[|.X — p[] with
sufficiently high probability. Therefore,

m >

P+ VpPg* — AN
= 22 '

that each uninformative quelyQ (g, 7) eliminates at most
7~ 2 parity functions from further consideration as possible
targets.

Based on (3.2.1) and the subsequent analysis of statisti-
cal queries onP AR, we know that in the worst case a sta-
tistical query differs by more than from ¢,(0,,41) only if
|g:(b1)| > 7, wherex, is the target parity. Thus we de-
fine the(worst-case) coverage C; of a query SQ(ygi, ;) to
beC; = {a | |g(b1)| > 7:}. Any SQ algorithm for the parity
problem mustin the worst case make queries that collegtivel
cover all but one of the set & parity functions in order
to with probability1 successfully find a good approximator
for e < 1/8. Thatis, in the worst caseu; C;| = Q(2").
Also note that in the worst case only the last of the covering
gueries—and possibly not even that one—will be informa-
tive.

We will also assume without loss of generality that the
algorithm chooses; for each query such that

7 = min {|gi(al)| | a € Ci — u;;ll(]j} .
That is, eachr; is chosen to optimally cover its portion of the
function space. This change makes no difference in the total
coverage after each query, and it will be seen below that it
can only improve the run-time performance of the SQ-based
algorithm.

Our goal now is to show that the time required by any
SQ-based algorithm to simulate the queries made by any
SQ algorithm for parity iS2(2"). The analysis is similar
in spirit to that of amortized cost: we show that each query
SQ(g;, ) simulated by the SQ-based algorithm must “pay”
an amount of running time proportionate to the coverage
|C5].

We consider two different cases based on the nature of
the queries made by the SQ algorithm. Let

p=, [tldE) 4],

where f is the {0, 1} version of the target,, so thatp is
the mean of &0, 1}-random variable. Then if the quepy

With these lemmas in hand, we are ready to prove the and targetf are such that/3 < p < 2/3, by Lemma 5 we

main theorem of this section.

Theorem 6 Every SQ-based algorithm requires time §2(27)
to PAC learn the class P AR of parity functions with respect
to the uniform distribution.

Proof: We begin by considering the SQ algorithth
that will be used to lear® A R, formalizing some of the ear-

need an estimate of the mean valug ofrer a sample of size
Q(1/7?) in order to have high confidence that our estimate is
within = /2 of the true mean (note that estimatintp within
T/2 is equivalent to estimating, [¢(z, f(«))] to within 7).
In other words, for queries satisfying the conditiongrour
SQ-based algorithm must pay a time costxi /72) in or-
der to coverO(1/7%) parity functions.

On the other hand, assume without loss of generality that

lier discussion. The algorithm must produce a good approx- the SQ algorithm makes a quesy) (g, 7) such thap < 1/3

imator to the (noiseless) target—callit—which is one of
the 2™ parity functions, with probability at leadt — §. By
standard Fourier analysis based on Parseval’s identitysif
such thaPr[h = x] > 7/8 thenh cannot have a similar
level of correlation with any other parity function. So clseo
ing e < 1/8 for our PAC algorithm requires that the learning
algorithm produce a hypothesis that is well correlated with
single parity function.

Now as indicated above, each SQ quergf tolerance
7 will either get a response that differs by at leastrom
3(0n41) or one that does not. We will call the former re-
sponsanformative and the lattenninformative. Also recall
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(thep > 2/3 case is symmetric). By (3.2.1) this implies that
either the magnitude gf(0,,+1) or of g(b1), or both, is larger
than a constant. This in turn implies by Parseval’s identity
that there can be fewer additional “heavy” coefficientg.in
In other words, even though we may be able to simulate the
querySQ(g, 7) with a sample smaller thar¥, we will also
be covering fewer coefficients than we could {f),, 1) and
g(b1) were both small.

We formalize this intuition by again considering several
cases. First, again given that the target parity,isnote that

_ 3(04) + (b)) +1
_ : |




We may assume thaj(b1)| < r. Thisis certainly true ifthe ~ Invocation: S < we(n, M EM(f),0,0)

query is uninformative, and it is true in the worst case for an Input: Numbern of inputs to functionf : {0,1}" —
informative query by our assumption abauearlier. This ~ {—1,+1}; membership oraclé/ EM (f);0 < <1;6 >0
then gives thag (0, 41) < 2p— 1+ . TakingC to represent Output: SetS of n-bit vectors such that, with probability at

the coverage of (g, 7), Parseval’s identity gives that leastl — 4, everya such thatf(a)| > 6 isin S, and for every
| 1= §%(0,41) a €S, |f(a)l>0/V2.
< —.
- 7 1. return  wp-aux(l,0,n, MEM(f),0,6) U
Now because < 1/3, ~ would need to be at leas¥/3 in wp-aux(1,1,n, MEM(f),6,0)

order for2p — 1 + 7 > 0 to hold. But in this case only
at most9 coefficients can be covered, obviously with at least Invocation: S «+ Wp-aux(k,b,n, M EM(f),6,0)

constant run-time cost. So we consider the @sel+ 7 < Input: Integerk € [1, n]; k-bit vectorb; numbern of inputs
0. Thisimpliesthag?(0,+1) > (2p—1+7)% and aftersome  to functionf : {0,1}" — {—1,+1}; membership oracle
algebra and simplification gives MEM(f);,0<60<1;6§>0
4pq 2 Output: SetS of n-bit vectors such that, with probability at
|C| < == —|— — leastl — §, for everya such that the first bits of « match

To convert this to a bound in terms of, we consider Input vectors and|f(a)| 2 0, aisin 5, and for everys € ,

two cases for the value ofipq. First, consider the case in (@)l > 6/v2.
which m is chosen such thatpg < 1, and assume for sake

. -4 2
of contradiction that alse» < 1/(2r). Such a smalin im- % 15,0;7?'“7:18:(1:329 In(4n/00%)
plies again that at most on€ will be within = of the true 3: Drawz € {0,1}"=%, y,z € {0,1}* uniformly at
meanp. Furthermore, sincewp < 3/2, itis easy to see from random. ’ T ’
Lemma 9 that the sum:.X attains its maximum probability 4. s s+ flyx)fza)ys(y @ 2)
at either0 or 1. Consider first the case where andp are 5. enddo
such that the maximum is at The probability of drawing 6. u — s/m
m consecutived’s from a Bernoulli distribution with mean 7. if 4/ < 36%/4 then
pis (1 —p)™ > 12e~™" (this form of the bound comes 8. return
from [CBDF+99]) Sincem < 3/(2p), this means that the 9. elseif . = n then
probability of seeing all’s is 5 over(.2. Thus the probabil- 10.  return {b}
ity thatmX = 1 is less thar).8, so a largenn would be 11. else
required in order for the sample mean to be withiaf the 12. return WP-aux(k + 1,60, n, MEM(f),0,6) U
true mean with more than constant probability. If instead WwpP-aux(k + 1,01, n, MEM(f),6,0)
andp are such that the maximum of the binomial i9ait 13. endif

must be thatnp < 1. We consider a Bernoulli random vari-

able with mearp + r. If m examples are chosen from this ) ) _

random variable then with probability at leagte="(+7) Figure 1: Thewp weak-parity algorithm.

all m examples ar@’s. This quantity is again ovep.2 if

m < 1/(2r). Thus we would need many more examples

than1/(2r) in order to have better than constant confidence

that our sample came from a distribution with mearather 5 A MORE ROBUST NOISE-TOLERANT

than one with meap + 7.
We conclude from this that jf < 1/3 andmpq < 1then PAC ALGORITHM FOR PAR

it must be thain > 1/(27) in order for the PAC algorithm’s
sampling to succeed with sufficiently high probability. Ehu

we get that in this case, In this section we present another noise-tolerant PAC algo-
4 2 4 rithm for learning the clas$ AR of parity functions with
|C| < ﬂ _|_ S < — +4m < 20m. respect to the uniform distribution. While the algorithm’s
mT -

running time isO(2"/?) in terms ofn, by the lower bound
Therefore, once agaln the coverage is proportional to the on SQ-based algorithms of the previous section and an anal-
sample size used. ysis similar to that of Theorem 4, the algorithm can be shown
Finally, if mpg > 1 then we can apply Lemma 5 with  to be asymptotically faster than any SQ-based algorithm for
A = /2. This gives thatn > 2pq/7?, and combining this  this problem. Furthermore, the algorithm can be shown to be
with mpq > 1 implies thatm+/2 > 2/7. Further applying  tolerant of a wide range of noise, not just uniform random
Lemma 5 gives classification noise.

|C| < < 2 _|_ < (2+V2)m. Our algorithm is based on one by Goldreich and Levin
[GL89] that uses membership queries. We first review the
So in all cases run tlme is proportional to the coverage Goldreich-Levin algorithm and then show how to remove the
|C|, and the total coverageJ; C;| has already been shown need for membership queries when large samples are avail-
to be2(2") in the worst case. n able.
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5.1 GOLDREICH-LEVIN WEAK PARITY Itis well known that this algorithm can be used to weakly
ALGORITHM learn certain function classes with respect to the unifasn d

A version of the Goldreich-Levin algorithm [GL89] is pre-  {ributionusing parity functions as hypotheses [KM93, J4c9
sented in Figure 1. The algorithm is given a membership ora- HOWever, we note here that it can also be used to (strongly)
cle M EM () for a target functiorf : {0, 1} — {—1,+1} learn P AR with respect t(_)_the_ unlfo_rm distribution in the
along with a threshold and a confidencé. Conceptually, ~ Presence of random classification noise. Fetepresent the
the algorithm begins by testing to see the extent to which the Fndomized Boolean function produced by applying classifi-
first bitis or is notrelevant to f. A bitis particularly relevant ~ C&tion noise of ratg to the target parity functioffi. That is,

if it is frequently the case that two input vectors that diffe 2SSume thaton each call¥6 EM (f7) the oracle returns the
only in this bit produce different values ¢t The function ~ value ofM EM(f) with noise of rate) applied, and noise is
call applied independently at each callME M (f"). LetE, [ ]

wp-aux(l,0,n, MEM(f),0,0) represent expectation with respect to noise of raégplied

will, with high probability, return the empty set if the first to /. Then itis straightforward to see that

bit is particularly relevant. To see this, notice that if firet 1 —(1— F

bit is 5ery relevgnt, then with high probability over unifor By [Bonrr, 7 (@@ = (1 = 20)7(0).

choice of(n — 1)-bit « and1-bit y andz, Furthermore, the only use thee algorithm makes of

MEM(f) is to computeu’ in wP—aux, which is an esti-

o) F2)o ) = F(3e) (=2) mate OFB o+ ot L) e & ) R

will be very small. This is because with probabilifyy = = placing f by f7 in this expression, we get an expectation

and with probabilityl y # =, and whery # - the highrele- ~ that also depends on the randomnesg’ofHowever, since

vance of the first bit implies that frequentlyyz) # f(zz). classification noise is applied independently/to(yx) and

Thus approximately half the time we expect that the prod- /" (:z)—even ify = z, as long as the value§' (yx) and
uctis1 and half—1, giving an expected value nearAsthe  f”(zz) are returned from separate calls 3L M (f7)—

loop inwP-aux is estimating this expected value, we expect it follows thatE,, .., . [f" (yz) " (z2)xs(y & 2)] = (1 —
that the condition at line 7 will typically be satisfied. 20)*Eq y . [f (y2) f(z2) x5 (y & 2)], where the first expecta-
On the other hand, consider the function tion is over the randomness ¢f as well as the inputs. Fi-

nally, none of the analysis [Jac97] used to prove properties
we-aux(l,1,n, MEM(f),0,4). about the output of thap algorithm precludes the targgt

Now the loop inWP-aux is estimating the expected value of from being randomized; independence of samples and the
range of values produced lfyare the key properties used in

Flyz) fze)xa(y @ 2). the proof, and these are the same foras they are for the
Sincey: (y & z) is 1 wheny = z and—1 otherwise, we now  deterministicf. _ _
expect a value fog’ very nearl. Thus, in the situation where In short, runningsp with # = 1 — 25 and membership

the first bit is highly relevant, we expect that every Fourier oracle M M (f7) representing a targgt = y, will, with
indexa in the setS returned bywp will begin with al. To high probability, result in an output list that contains~ur-
determine exactly what these coefficients are,itheaux thermore, since by Parseval’s identity and the above aisalys
function calls itself recursively, this time fixing the firsto E,[Ec~v, [f7(x)xa(2)]] = 0 forall a € {0,1}" such that
bits of the subset of coefficients considered to eitteor a # b, with high probability only index will appear in the
11. output list.

Thus we can intuitively view th&p algorithm as fol- Of course, a noisy membership oracle as above can be
lows. It first tests to see the extent to which “flipping” the used to simulate a noiseless oracle by simple resampling, so
first input bit changes the value of the function. If the bitis the observation that thgp algorithm can be used to learn
either highly relevant or highly irrelevant then half of tte PAR in the presence of noise is not in itself particularly
efficients can be eliminated from further consideratiom-Si  interesting. However, we next show that we can simulate
ilar tests are then performed recursively on any coeffisient the wp algorithm with one that does not use membership
that remain as candidates, with each recursive call leading queries, giving us a uniform-distribution noise-tolereAC
one more bit being fixed in a candidate parity indexfter algorithm for P AR that will be shown to be relatively effi-

n levels of recursion alh bits are fixed in all of the surviv-  cient compared with SQ-based algorithms.

ing candidate indices; these indices are then the outpheof t
algorithm. With probability at least—§, this list contains in- 5.2 REMOVING THE MEMBERSHIP ORACLE

dices of all of the parity functions that afecorrelated withf As discussed above, Goldreich-Levin uses the membership
and no parity function that is not at ledgy//2)-correlated, oracle M EM (f) to perform the sampling needed to esti-
and runs in time) (nf~° log(n/6)) [Jac97]. mate the expected valde, , .[f(yz)f(zz)xs(y & z)]. At

Furthermore, &~2 factor comes from the fact that in  the first level of the recursionz| = n — 1, we (conceptu-
general the algorithm must maintain up to this many can- ally) “flip” the first bit (technically,y andz will often have
didate sets of coefficients at each level of the recursion. Inthe same value, but it is the times when they differ that infor
the case of learning parity, it can be shown that with high mation about a deterministic function is actually obtained
probability only one candidate set will survive at each leve Notice that we would not need the membership oracle if we
Therefore, when learning AR, the running time becomes  had—or could simulate—a sort of example oracle that could
O(nf="*log(n/86)). produce pairs of examplééyz, f(yz)), (zx, f(zx))) drawn
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according to the uniform distribution over, y, andz. We
will denote byD; the induced distribution over pairs of ex-
amples.

Lemma 8 in the Appendix proves that3f/2t! k-bit
vectors are drawn uniformly at random, then with probabil-
ity at least1/2 one vector will occur twice in the sample.
Therefore, if we draw a sample of examples off of size
2(n+1)/2 then with probability at least/2 a pair of exam-
ples will be drawn having the same final- 1 bits. And for
any such pair, it is just as likely that the first bits of the two
functions will differ as it is that they will be the same. Thus
with probability at least /2 we can simulate one draw from
D1 by creating a list of all pairs of examples $hthat share
the same values on the final— 1 attributes and choosing
one of these pairs uniformly at random.

Slightly more precisely, we will dra@(*+1)/2 examples
and record in a list each — 1 bit pattern that appears at the

formly at random without replacement.
Note that the probability of selecting any particutar 1

tern. Therefore, we are selecting this pattern—corresipgnd
to the choice ofr in the expectation above—uniformly at
random. Note also that our method of choosing the two ex-
amples ending with this pattern guarantee that the firsobits
these examples—correspondingsjtand > above—are inde-
pendently and uniformly distributed. Therefore, with prob
ability at leastl/2, this procedure simulate®,. Further-
more, if a particular sef fails to have an appropriate pair
of examples, we can easily detect this condition and simply
draw another set of examples. With probability at Idast,
we will obtain an appropriate set withiag(1/6) draws.

Now let D- represent the the probability distribution on
pairs of examples corresponding to choosindar- 2)-bit
z uniformly at random, choosing 2-bjtand > uniformly at
random, and producing the paifyz, f(yx)), (zz, f(zz))).
The procedure above can be readily modified to simulate a
draw from D5 using draws of only2”/2 uniform examples.
Similar statements can be made for the other distributions t
be simulated.

In short, we have shown how to simulate draws from any
of the probability distributions induced by the weak parity
procedure, at a cost of rought§}/? draws from the uniform

distribution. Also note that the argument above has nothing [CBDF+99]

to do with the labels of the examples, and so holds for ran-
domizedf” as well as for deterministi¢. Thus we have the
following theorem.

Theorem 7 For any noise rate 1) < 1/2 and confidence é >
0, the class P AR of parity functions can be learned in the
uniform random classification-noise model with respect to
the uniform distribution in time O(2"/*n6=*log*(n/30)),
where § =1 — 2.

5.3 IMPROVED NOISE TOLERANCE

Consider the following noise model: given a target parity
function f = x,, the noise process is allowed to generate a
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deterministic noisy functiorf” (n here denotes only that the
function is a noisy version of and not a uniform noise rate)
subject only to the constraints tHRL [ /7 (x) x4 (2)] > ¢ for
some given thresholt] and for allb # a, E, [ " (#)xs(2)] <
0/+/2. That is, f? must be at leagt-correlated withf and
noticeably less correlated with every other parity funetio

It should be clear that the algorithm of this section, giden
can strongly lear® A R with respect to uniformin this fairly
general noise setting in tim@(2"/?n0=%log®(n/56)). The
Blum et al. algorithm, on the other hand, seems to be more
dependent on the uniform random classification noise model.
However, a version of their algorithm is distribution inéep
dent, which raises the interesting question of whether or no
the modifiedwp algorithm above can also be made distribu-
tion independent.
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APPENDIX

This is a lemma that is needed to prove Theorem 7.

Lemma 8 If 2%/2+1 k-bit vectors are drawn uniformly at
random, then with probability at least 1 — 1/e one vector
will occur twice in the sample.

Proof: The proofis similar to that of the birthday para-
dox. First, note that the probability that two randomly dnaw
k-bit vectors do not match i$ — 1/2%. The probability
that a third vector does not match either of the first two is
1 — 2/2%, and thus the probability that none of the vectors
match is(1 —1/2%)(1 —2/2%). In general, i2*/2+! vectors
are drawn, then the probability that none match is

ok /241 . 9.9k/2 . o/ ok /2 )
ITi-gec [T i-5es(1-%) <t
i=1 j=2k/2

Thus the probability of a match is at ledst- 1/e. [ |

The following technical lemmas about the binomial dis-
tribution are used in Section 4. The firstlemma is well known
(for a proof, seeg.g., [Bol85]).

Lemma9 Let B(k;m,p) = (f)pk(l—p)m_k represent the
binomial distribution. For m and p < 1 fixed, the maximum
value of the binomial distribution occurs at the first integer
k = ky, greater than p(m + 1) — 1.

Lemma 10 For m > 0 and p < 1 fixed, the maximum
value of the integer ky, at which the maximum of the bino-
mial distribution occurs is such that (ky, /m)(1 — kpy /m) >

p(l—p)—1/m.

Proof: By Lemma 9, thek,, that maximizesB(k;m, p)
satisfiep(m+1)—1 < ky, < p(m+1). Some algebra and
simplification then gives the result. [ |

Lemma 11 For any integer m > 1, integer 0 < k < m, and
real 0 < p <1,

B(k;m,p) < B(k;m, k/m).
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Proof: We want to know the value qf that maximizes
B for fixed k andm satisfying the constraints above. We can
find the maximizing value gf by examining values gf that
make the derivativé B/dp zero. It is easily shown that the
derivative is zero only ab = k/m, p = 0, andp = 1 and
thatp = k/m is the only local maximum. |

Lemma 12 For any integer m > b, integer 0 < k < m, and
real 1/3 < p < 2/3,
4
B(k;m,p) < S
mp(1 —p)—1

Proof: We will maximize B(k;m, p) over bothk and
p, then develop a bound on this maximized quantity.

We already showed in Lemma 11 that maximizing the
binomial distribution ovep givesp = k/m. Using a fairly
tight version of the Stirling bound

m" e\ 2rmet/ (12D <t < e 2rmel /127
we get that for any) < k& < m andm > 1,
m
k

and

el/12m

S T k) (o) (L= k) E (k)

0.45
Vm(k/m)(1 —k/m)

B(k;m,k/m) <

Thus we have that

B(k;m,p) <  B(km;m,p)
< Blkm;m, kny/m)
< 0.45
= mkn/m)(1 — ky/m)
S
- mp(l —p)—1

where we applied Lemma 10 in the final step. Finally, note

that\/mp(1 — p) — 1 is well-defined for all» andp as con-

strained by the statement of the lemma. [ |
Similarly, we can show

Lemma 13 For any integer m and any real 0 < p < 1,
mp(1 — p) > 1 implies that B(k; m,p) < 0.46. Further-
more, in terms of p,

0.406

P S T

<

Proof: Note that ifmp(1 — p) > 1 thenm > 1/p
and the value: = k,,, at which the binomiaB(k;m, p) is
maximized must be at least 1. Similarly, sinee> 1/(1 —

p), km < m — 1. Itis easy to see that, as a function of
Emy /m(kp /m)(1 — ky,, /m) is minimized at its extremes,
which we have just shown to be at wokst = 1 andk,,, =
m — 1. Noting thatm > 1/(p(1 —p)) > 4 and plugging into
the analysis above gives thB{k; m, p) < 0.46. The bound

in terms ofp is obtained by simply plugging the better bound
onm into the analysis of the previous lemma. [ |




