
7

On the Efficiency of Noise-Tolerant PAC Algorithms Derived from Statistical
Queries

Jeffrey Jackson�

Math. & Comp. Science Dept., Duquesne University
Pittsburgh, PA 15282-1754
Essential Surfing Gear, Inc.

707 Grant St, Pittsburgh, PA 15219
jackson@mathcs.duq.edu

Abstract

The Statistical Query (SQ) model provides an ele-
gant means for generating noise-tolerant PAC learn-
ing algorithms that run in time inverse polynomial
in the noise rate. Whether or not there is an SQ
algorithm for every noise-tolerant PAC algorithm
that is efficient in this sense remains an open ques-
tion. However, we show that PAC algorithms de-
rived from the Statistical Query model are not al-
ways the most efficient possible. Specifically, we
give a general definition of SQ-based algorithm
and show that there is a subclass of parity functions
for which there is an efficient PAC algorithm re-
quiring asymptotically less running time than any
SQ-based algorithm. While it turns out that this
result can be derived fairly easily by combining a
very recent algorithm of Blum, Kalai, and Wasser-
man with an older lower bound, we also provide
alternate approaches to both the upper and lower
bounds that strengthen the results in various ways.
The lower bound in particular is stronger than might
be expected, and the amortized technique used in
deriving this bound may be of independent inter-
est.

1 INTRODUCTION

Kearns’s Statistical Query (SQ) model [Kea93] is a well-
studied, elegant abstraction from Valiant’s foundationalprob-
ably approximately correct (PAC) learning model [Val84].
Kearns showed that any function class efficiently learnable
in the SQ model is also learnable in the PAC model despite
noise uniformly applied to the class labels of the examples.
His proof essentially outlined a generic method that could be
used to simulate an SQ algorithm using a noisy PAC example
oracle. The resulting PAC algorithm is efficient in the stan-
dard PAC parameters as well as in the inverse of the noise
rate. Kearns then developed SQ algorithms for almost all
function classes known to be efficiently learnable in the PAC
model, providing the first known noise-tolerant algorithms
for some of these classes.

�This material is based upon work supported by the National
Science Foundation under Grants No. CCR-9800029 and CCR-
9877079.

The SQ approach to developing noise-tolerant algorithms
was surprisingly successful, so much so that Kearns asked
whether or not the SQ and PAC+noise models might be equiv-
alent [Kea93]. Blum, Kalai, and Wasserman [BKW00] have
very recently shown that there is a class that is efficiently
learnable with noise but not efficiently SQ learnable. How-
ever, they only show that this class can be learned efficiently
when the noise rate is constant. This leaves open the question
of whether or not there is an efficient SQ algorithm for every
function class that is learnable in time inverse polynomialin
the noise rate.

Like Blum et al., this paper does not answer this in-
triguing question. However, we do show that using the SQ
model to develop (inverse-polynomial) noise-tolerant PAC
algorithms sometimes does not produce optimally efficient
algorithms. Specifically, a formal definition ofSQ-based
PAC algorithms is developed. Informally, SQ-based algo-
rithms are PAC algorithms that are derived through a generic
process from SQ algorithms. This process is even gener-
ous to the SQ-based algorithm in that it assumes that the tar-
get function is noiseless and also assumes that an appropri-
ate sample size for simulating each statistical query does not
need to be computed but is instead known by the algorithm.
Despite the generosity of this definition, we show that the
class of all parity functions on the firstO(logn) bits of an
n-bit input space can be learned (inverse-polynomial) noise-
tolerantly more efficiently with a custom PAC algorithm than
with any SQ-based algorithm for this class.

We actually present several somewhat different approaches
to this result. First, while the Blumet al. results [BKW00]
focus on producing a superpolynomial separation between
PAC+noise and SQ learning in the constant noise setting,
they have in fact developed a family of parameterized al-
gorithms that can be used to derive a variety of learnability
results. In particular, some members of this family of algo-
rithms efficiently tolerate inverse-polynomial noise rates for
certain function classes. Given our definition of an SQ-based
algorithm, it is relatively easy to combine these Blum, Kalai,
and Wasserman algorithms with a lower bound from an older
Blum et al. paper [BFJ+94] to give a polynomial separation
between SQ-based algorithms and inverse-polynomial noise-
tolerant PAC algorithms when learning theO(logn) subclass
of parity functions with respect to the uniform distribution.

We then improve on the lower bound. Specifically, a time
bound of
(2n=2) for learning the class of parity functions

8

over n bits that can be derived in a fairly straightforward
way from [BFJ+94], but improving on this seems to require
deeper analysis. We improve this bound to
(2

n

) using an
amortized analysis approach that may also be useful in other
settings.

Finally, we show that an algorithm based on the well-
studied Goldreich-Levin parity-learning algorithm, which on
the surface is quite different from the algorithm of Blum,
Kalai, and Wasserman, achieves running time sufficient to
also give a polynomial separation result between noisy PAC
learning and SQ-based learning. The fact that Goldreich-
Levin can be used without membership queries in this way is
somewhat interesting in itself. Furthermore, the Goldreich-
Levin algorithmappears to be resistant to much broader forms
of noise than the Blumet al. algorithm, thus strengthening
the separation between SQ and PAC+noise.

2 PRELIMINARIES

This paper focuses on the learnability of the class of par-
ity functions in various learning models. Following standard
Fourier learning theory notation, we use�

a

: f0; 1g

n

!

f�1;+1g to represent theparity function defined as follows:

�

a

(x) = (�1)

a�x

wherea � x represents the dot product of then-bit Boolean
vectorsa andx. We define theclass of parity functions on n
bits PAR

n

= ff j f = �

a

or f = ��

a

; a 2 f0; 1g

n

g and
theclass of parity functionsPAR = [

1

n=0

PAR

n

.
The two models of learnability we will focus on are both

variants of Valiant’s Probably Approximately Correct (PAC)
model [Val84]. The first question we consider is the PAC
uniform random classification-noise learnability ofPARwith
respect to the uniform distribution. In this model, the learn-
ing algorithmA is given access to a noisy example oracle
EX

�

(f; U

n

). Here� is the noise rate of the oracle (assumed
known, although knowing a lower bound suffices for all of
our results),f is a fixed unknown parity function inPAR

n

for some value ofn, andU
n

represents the uniform distri-
bution overf0; 1gn. On each draw from the oracle, a vector
x 2 f0; 1g

n is drawn uniformly at random. The oracle then
randomly chooses between returning the noiseless example
hx; f(x)i, with probability1 � �, and returning the noisy
examplehx;�f(x)i, with probability�. A is also given pa-
rameters�; Æ > 0. The goal of the learner is to produce a
functionh : f0; 1g

n

! f�1;+1g such that, with probabil-
ity at least1 � Æ, Pr

x�U

n

[f(x) 6= h(x)℄ � �. Such anh
is called an�-approximator to f with respect to the uniform
distribution.

The second question considered is the Statistical Query
learnability ofPAR. A uniform-distributionStatistical Query
(SQ) oracle— denotedSQ(g; �)—is an oracle for an un-
known target functionf : f0; 1g

n

! f0; 1g. Given a func-
tion g : f0; 1g

n+1

! f�1;+1g and atolerance � � 0,
SQ(g; �) returns a value~� such thatjE

x�U

n

[g(x; f(x))℄ �

~�j � � , whereE
x�U

n

[�℄ represents expected value with re-
spect to the uniform distribution overf0; 1gn. A Boolean
function classC is uniform-distribution learnable in the Sta-
tistical Query model (SQ-learnable) if there is an algorithm
A that, given any� > 0 and access to an SQ oracle forC
for any functionf 2 C, produces a functionh : f0; 1g

n

!

f0; 1g such thatPr
x�U

n

[f(x) 6= h(x)℄ � �. In this paper
we consider only the original additive error version of sta-
tistical queries and not the relative error model, which is in
some sense polynomially equivalent [AD98].

These definitions can be generalized to arbitrary proba-
bility distributions rather thanU

n

in an obvious way. How-
ever, in this paper, our focus is on the uniform distribution.
In the sequel, probabilities and expectations that do not spec-
ify a distribution are over the uniform distributiononf0; 1gn

for a value ofn that will be obvious from context.
We will also make use of an algorithm that uses queries

to a membership oracle in order to weakly learn certain func-
tion classes with respect to the uniform distribution. Amem-
bership oracle for f : f0; 1g

n

! f�1;+1g (MEM (f))
is an oracle that given anyn-bit vectorx returns the value
f(x). A functionh : f0; 1g

n

! f�1;+1g is aweak approx-
imation with respect to the uniform distribution to a function
f : f0; 1g

n

! f�1;+1g if Pr
x�U

n

[f(x) = h(x)℄ �

1

2

+ �,
where� is inverse polynomial in parameters appropriate for
the learning problem considered (the specific parameters will
not be important for our purposes). A uniform-distribution
learning algorithm for a classA that produces weak approxi-
mators as hypotheses—rather than�-approximators as in the
models above—is said toweakly learn A. Learning algo-
rithms that produce�-approximators are sometimes referred
to asstrong.

Some of our results will use Fourier analysis. Given a
Boolean functionf : f0; 1g

n

! f�1;+1g and ann-bit
vectora, we define theFourier coefficient with index a (^f (a))
to beE

x

[f(x) � �

a

(x)℄. Parseval’s identity for the Fourier
transform isE

x

[f

2

(x)℄ =

P

a

^

f

2

(a). For f 2 f�1;+1g,
this gives that

P

a

^

f

2

(a) = 1.
Notice that if a Fourier coefficient^f(a) is reasonably

large (bounded away from0 by an inverse polynomial), then
the corresponding parity function�

a

is a weak approximator
to the functionf . To see this, note that

^

f (a) = E

x

[f(x)�

a

(x)℄

= Pr

x

[f(x) = �

a

(x)℄�Pr

x

[f(x) 6= �

a

(x)℄

= 2Pr

x

[f(x) = �

a

(x)℄� 1:

Therefore, ifj ^f (a)j �
, then either the parity function�
a

or
its negation is a((1�
)=2)-approximator tof with respect
to the uniform distribution. We say in this case that the parity
�

a

(or its negation) is
-correlated with f .

3 AN INITIAL SEPARATION OF PAC AND

SQ-BASED ALGORITHMS

We begin this section by defining our notion of an SQ-based
algorithm and discussing some of the implications of this
definition. We then apply results from Blumet al. [BFJ+94]
and a very simple sample complexity argument to show a
lower bound on the run time of any SQ-based algorithm for
PAR. Next, time bounds on the recent Blumet al. [BKW00]
family of algorithms for learning parity are compared with
the lower bound in the context of learning parity functions
on the firstO(logn) bits of n-bit input vectors. This com-
parison gives a separation between SQ-based algorithms and
PAC algorithms resistant to inverse-polynomial classification

9

noise. We then improve on this separation in various ways in
subsequent sections.

3.1 SQ-BASED ALGORITHMS

We begin by formalizing the notion of an SQ-based algo-
rithm that will be used in the lower bound proofs. The defi-
nition in some ways makes overly simple assumptions about
the difficulty of simulating statistical queries, as discussed
further below. However, these simplistic assumptions can be
made without loss of generality for lower bound purposes
and will streamline our later analysis.

Definition 1 An algorithmA is SQ-basedif it is a PAC (ex-
ample oracle) simulation of an SQ algorithmS. Specifically,
A is derived from S by replacing the ith query (g

i

; �

i

) to the
SQ oracle with the explicit computation of the sample mean
of g

i

over m
i

(noiseless) examples obtained from the exam-
ple oracle. Given a confidence Æ, the m

i

’s must be chosen
such that with probability at least 1 � Æ all of the simulated
statistical queries succeed at producing values within �

i

of
the true expected values. The algorithm A therefore suc-
ceeds with probability at least 1� Æ.

One simplifying assumption made in this definition is
that the example oracle is noiseless, while the later PAC al-
gorithms will be required to deal with noisy examples. Also
notice that the definition does not require the SQ-based algo-
rithm to compute an appropriate value ofm

i

(which would
be necessary in a typical “real” simulation), but only to use
an appropriate number of examples in its calculations.

Another point worth noting is that this definition does
not exclude the possibility of simulating a number of queries
(g

i

; �

i

) as a batch rather than sequentially. That is, while
the definition does require that all of the statistical queries
be simulated, it does not specify the order in which they are
simulated, and does not even preclude the computations for
different query simulations being interleaved. The definition
does, however, imply that each query should be simulated
by computing the sum ofg

i

overm
i

examples (this is the
intention of the term “explicit computation” in the defini-
tion). That is, we do not allow any clever use of compu-
tations related tog

j

to be used in the computation of the
sample mean ofg

i

, i 6= j. This is because our goal is
to capture the essence of a generic simulation of statistical
queries, and any cleverness introduced would presumably be
problem-specific rather than generic.

Finally, notice that this definitiondoes allow for the reuse
of examples between simulations of queriesi andj, i 6= j.
So the sample complexity of an SQ-based algorithm may be
much less than

P

i

m

i

. However, a key to our lower bound
arguments is to note that the time complexity of an SQ-based
algorithm is (at least) the sum of the times required to sim-
ulate all of the queries made by the algorithm, and therefore
is at least

P

i

m

i

.

3.2 A SIMPLE LOWER BOUND

We now consider SQ-based learning algorithms forPAR.
Our analysis makes heavy use of Fourier-based ideas from
Blum et al. [BFJ+94], who showed that any class containing
super-polynomially many distinct parity functions cannotbe

learned with a polynomial number of statistical queries hav-
ing polynomial error tolerance. We will be interested in both
the number of queries made and in the time required to sim-
ulate these queries with a (noiseless) PAC example oracle.

3.2.1 SQ Learning of PAR

First, consider the SQ learnability with respect to the uniform
distribution of the classPAR of parity functions. Letf :

f0; 1g

n

! f�1;+1g be such a parity function–call it�
b

,
whereb is then bit vector indicating which of then input
bits are relevant to�

b

–and letf 0(x) = (1 � f(x))=2 be
the f0; 1g-valued version off . A corollary of analysis in
Blum et al. [BFJ+94] then gives that for any functiong :

f0; 1g

n+1

! f�1;+1g,
E

z�U

n

[g(z; f

0

(z))℄

= ĝ(0

n+1

) +

X

a2f0;1g

n

ĝ(a1)E

z�U

n

[f(z)�

a

(z)℄

wherea1 represents the concatenation of then-bit vectora
and the bit1. Furthermore, it follows by the orthogonal-
ity of the Fourier basis functions�

a

that the expectation
E

z�U

n

[f(z)�

a

(z)℄ = E

z�U

n

[�

b

(z)�

a

(z)℄ is 0 unlessa =

b, in which case it is1. So we haveE
z�U

n

[g(z; f

0

(z))℄ =

ĝ(0

n+1

)+ĝ(b1):This means that if an SQ learning algorithm
makes a query(g; �) and� � jĝ(b1)j then the SQ oracle can
return ĝ(0

n+1

). But by standard Fourier analysis (seee.g.
[BFJ+94]), for any fixed functiong as above there are at
most��2 distinct Fourier coefficients of magnitude at least
� . Thus, a response of̂g(0

n+1

) by the SQ oracle to a query
(g; �) made by the SQ learner allows the learner to eliminate
(“cover”) at most��2 parity functions from further consider-
ation (those corresponding toa’s such thatjĝ(a)j � �). This
leaves at least2n � �

�2 parity functions, any one of which
might be the target function.

Therefore, if our goal is to find the actual target function
and all of our statistical queries use the same tolerance� ,
in the worst case at least2n=�2 queries are required. This
also implies that if we were to set the tolerance� to 2

�n=2,
then conceivably we could learn the target parity function
in a single statistical query. So sample complexity alone is
not enough for our SQ-based lower bound argument; we also
need to consider the number of examples required to simu-
late a query.

3.2.2 SQ-Based Learning of PAR

We can obtain a lower bound on the run time of any SQ-
based algorithm forPAR by combining the above analy-
sis with consideration of the number of examples needed to
simulate a statistical query. Clearly, to simulate a statistical
query(g

i

; �

i

) requiresm
i

=
(1=�

i

) examples; fewer than
this means that even the discretization error of the sample
mean is larger than�

i

. Thus, even in the case of a single sta-
tistical query being used with tolerance2�n=2, an SQ-based
algorithm will require time at least
(2n=2). We therefore
have

Theorem 2 Let n represent the number of input bits of a
function in PAR. Every SQ-based algorithm requires time

(2

n=2

) to PAC learn the class PAR with respect to the
uniform distribution.

We will improve on this bound in section 4.

10

3.3 NOISE-TOLERANT PAC ALGORITHMS FOR
PAR

Blum, Kalai, and Wasserman [BKW00], as part of their re-
sults, prove the following:

Theorem 3 (BKW) Let n represent the number of input bits
of a function in PAR. For any integers a and b such that
ab = n, the class PAR can be learned with respect to
the uniform distribution under uniform random classification
noise of rate � in time polynomial in (1�2�)

�(2

a

) and 2

b as
well as the normal PAC parameters.

While Blum et al. used this theorem to analyze the case
in which a is logarithmic inn, note that choosinga to be
a constant gives us an algorithm with running time polyno-
mial in the inverse noise rate andO(2

n=a

) in terms ofn. In
particular, choosinga > 2 gives us an algorithm that has
better asymptotic performance inn than the best possible
SQ-based algorithm forPAR with respect to uniform. Fur-
thermore, the algorithm’s run time does not depend on the
PAC parameter�, as it produces a single parity function as
its hypothesis, which is either a0-approximator to the target
f or is not at all correlated withf with respect to the uni-
form distribution. And the algorithm can be shown to have
run time logarithmic in terms of1=Æ, as is typical of PAC
algorithms.

Given this understanding of the Blumet al. results, we
are ready for a formal comparison of this PAC algorithm with
the SQ-based algorithm above.

3.4 COMPARING THE PAC AND SQ-BASED
ALGORITHMS

Comparing the bounds in Theorems 3 and 2, it is clear that
the carefully crafted PAC algorithm of Blumet al. with a

constant runs in polynomial time in all parameters on the
class of parity functions over the firstO(logn) input bits,
and that this algorithm is generally faster than any SQ-based
algorithm. However, the PAC algorithm bound includes the
noise rate while our SQ analysis did not, so the PAC algo-
rithm is not necessarily more efficient regardless of the noise
rate. But note that if the noise term1=(1 � 2�) is polyno-
mially bounded inn, say isO(n

k

) for some constantk, then
there is a constant
 such that the PAC algorithm on parity
over the first
 � k bits will be asymptotically more efficient
than any SQ-based algorithm. This polynomial restriction on
the noise term is relatively benign, particularly considering
thatn is exponentially larger than the size of the functions
being learned. In any case, we have

Theorem 4 For any noise rate � < 1=2 such that 1=(1�2�)
is bounded by a fixed polynomial inn, and for any confidence
Æ > 0 such that 1=Æ is bounded by a fixed exponential in n,
there exists a class C of functions and a constant k such that:

1. C can be PAC learned with respect to the uniform dis-
tribution with classification noise rate � in time o(nk)
for some constant k; and

2. Every SQ-based algorithm for (noiseless) C with respect
to the uniform distribution runs in time
(n

k

).

We now turn to some improvements on this result. First,
we show a stronger lower bound on the running time of SQ-
based algorithms forPAR of
(2n). We then show that
a different algorithm forPAR that has running time dom-
inated by2n=2. In conjunction with the improved lower
bound, this algorithm is also asymptotically faster than any
SQ-based algorithm for parity with respect to the uniform
distribution. We also note that this algorithm is robust against
noise other than uniform random classification noise, and so
appears to generalize somewhat the results obtained thus far.

4 A BETTER LOWER BOUND ON

SQ-BASED ALGORITHMS

Our earlier analysis of the number of examples needed to
simulate a statistical query was extremely simple, but coarse.
Here we give a much more involved analysis which shows,
perhaps somewhat surprisingly, that time fully
(2

n

) is needed
by any SQ-based algorithm to learnPAR. Our approach is
to consider many cases of statistical queries and to show that
in every case the number of parity functions “covered” by
query i is O(m

i

), wherem
i

represents the number of ex-
amples needed to simulatei. Since by our earlier discussion
essentially all2n parity functions must be covered by the al-
gorithm, the overall result follows.

We will need several technical lemmas about the bino-
mial distribution, which are stated and proved in the Ap-
pendix. Given these lemmas, we will now prove a general
lower bound on the sample complexity—and therefore time
complexity—needed to approximate certain random variables.

Lemma 5 Let X be a random variable in f0; 1g such that
Pr[X = 1℄ = p, that is, a Bernoulli random variable with
fixed mean p. Denote the mean value of a sample of X (of

size m to be determined) by ~

X . Assume that either or both
of the following conditions hold: 1) 1=3 < p < 2=3; 2) It is
known that m and p are such that mp(1� p) > 1. Then for
any 0 < Æ < 0:05 and any 0 < � < 1=8, a sample of size

m � p(1� p)=(2�

2

) is necessary to achieve Pr[j ~X � pj �

�℄ � 1� Æ.

Proof: Let q = 1 � p. Note that ifmpq � 1 and
1=3 < p < 2=3 thenm � 9=2. For such smallm, ~

X can
take on only a small number of values, and the bound on�

implies that at most one of these values can be within� of
fixed p. A simple case analysis form = 2; 3; 4 applying
Lemma 11 shows that the probability of occurrence for the
pertinent values of~X is much less than0:95, and the case
m = 1 is immediate. Therefore, a samplem � 5 is required,
and it must also be thatmpq > 1. That is, in order for the
Lemma to hold for condition 1), it must be that condition
2) holds as well. Thus we will assume below thatmpq >

1. Furthermore, note that this condition implies thatm �

5 since the maximum value ofpq is 1=4, so we will also
assumem � 5.

Next, note that if the sample is of sizem thenm ~

X , the
sum of the random variables in the sample, has the bino-
mial distributionB(m; p) with meanmp. By Lemma 9, for
p < 1, the maximum value of this distribution occurs at
the first integer greater thanp(m + 1) � 1, and this max-
imum value was shown in Lemma 13 to be no more than

11

0:41=

p

mpq � 1 for mpq > 1. Now the probability that
m

~

X is within
p

mpq � 1 of the true mean is just the inte-
gral of the distributionB(m; p) from mp �

p

mpq � 1 to
mp +

p

mpq � 1. Using the maximum onB(m; p) given
above, this probability is bounded above by0:82. Therefore,
we have that the probability thatjm ~

X �mpj >

p

mpq � 1

is at least0:18. In other words,

Pr

�

j

~

X � pj >

p

mpq � 1

m

�

> 0:05:

So in order to achievePr[j ~X�pj � �℄ with sufficiently high
probability, we need to choosem such that

p

mpq � 1=m �

�. Solving this inequality, we see that it holds if either

m �

pq �

p

p

2

q

2

� 4�

2

2�

2

or

m �

pq +

p

p

2

q

2

� 4�

2

2�

2

:

Note that real-valued solutions exist only if� � pq=2, and
that given this conditionm � (pq �

p

p

2

q

2

� 4�

2

)=(2�

2

)

impliesm � 1=�.
Now if m � 1=�, since ~

X is an integer divided bym,
there are at most two values of~X that differ fromp by no
more than�. But since we know thatmpq > 1, Lemma 13
gives that the maximum probability of any one value of the
binomial distribution—and thus the maximum probability of
any one value of~X occurring—is at most0:46. Thus the
maximum probability on two values of~X is at most0:92,
and a value ofm less than(pq �

p

p

2

q

2

� 4�

2

)=(2�

2

) can-
not satisfy the lemma’s requirements onPr[j ~X � pj℄ with
sufficiently high probability. Therefore,

m �

pq +

p

p

2

q

2

� 4�

2

2�

2

:

With these lemmas in hand, we are ready to prove the
main theorem of this section.

Theorem 6 Every SQ-based algorithm requires time
(2

n

)

to PAC learn the class PAR of parity functions with respect
to the uniform distribution.

Proof: We begin by considering the SQ algorithmS
that will be used to learnPAR, formalizing some of the ear-
lier discussion. The algorithm must produce a good approx-
imator to the (noiseless) target—call it�

b

—which is one of
the2

n parity functions, with probability at least1 � Æ. By
standard Fourier analysis based on Parseval’s identity, ifh is
such thatPr[h = �

b

℄ � 7=8 thenh cannot have a similar
level of correlation with any other parity function. So choos-
ing � < 1=8 for our PAC algorithm requires that the learning
algorithm produce a hypothesis that is well correlated witha
single parity function.

Now as indicated above, each SQ queryg of tolerance
� will either get a response that differs by at least� from
ĝ(0

n+1

) or one that does not. We will call the former re-
sponseinformative and the latteruninformative. Also recall

that each uninformative querySQ(g; �) eliminates at most
�

�2 parity functions from further consideration as possible
targets.

Based on (3.2.1) and the subsequent analysis of statisti-
cal queries onPAR, we know that in the worst case a sta-
tistical query differs by more than�

i

from ĝ

i

(0

n+1

) only if
jĝ

i

(b1)j > � , where�
b

is the target parity. Thus we de-
fine the(worst-case) coverage C

i

of a query SQ(g

i

; �

i

) to
beC

i

= fa j jĝ(b1)j > �

i

g. Any SQ algorithm for the parity
problem must in the worst case make queries that collectively
cover all but one of the set of2n parity functions in order
to with probability1 successfully find a good approximator
for � < 1=8. That is, in the worst casej [

i

C

i

j =
(2

n

).
Also note that in the worst case only the last of the covering
queries—and possibly not even that one—will be informa-
tive.

We will also assume without loss of generality that the
algorithm chooses�

i

for each query such that

�

i

= min

�

jĝ

i

(a1)j j a 2 C

i

� [

i�1

j=1

C

j

	

:

That is, each�
i

is chosen to optimally cover its portion of the
function space. This change makes no difference in the total
coverage after each query, and it will be seen below that it
can only improve the run-time performance of the SQ-based
algorithm.

Our goal now is to show that the time required by any
SQ-based algorithm to simulate the queries made by any
SQ algorithm for parity is
(2n). The analysis is similar
in spirit to that of amortized cost: we show that each query
SQ(g

i

; �

i

) simulated by the SQ-based algorithm must “pay”
an amount of running time proportionate to the coverage
jC

i

j.
We consider two different cases based on the nature of

the queries made by the SQ algorithm. Let

p = E

x

�

g(x; f(x)) + 1

2

�

;

wheref is thef0; 1g version of the target�
b

, so thatp is
the mean of af0; 1g-random variable. Then if the queryg
and targetf are such that1=3 < p < 2=3, by Lemma 5 we
need an estimate of the mean value ofp over a sample of size

(1=�

2

) in order to have high confidence that our estimate is
within �=2 of the true mean (note that estimatingp to within
�=2 is equivalent to estimatingE

x

[g(x; f(x))℄ to within �).
In other words, for queries satisfying the condition onp, our
SQ-based algorithm must pay a time cost of
(1=�

2

) in or-
der to coverO(1=�

2

) parity functions.
On the other hand, assume without loss of generality that

the SQ algorithm makes a querySQ(g; �) such thatp < 1=3

(thep > 2=3 case is symmetric). By (3.2.1) this implies that
either the magnitude of̂g(0

n+1

) or of ĝ(b1), or both, is larger
than a constant. This in turn implies by Parseval’s identity
that there can be fewer additional “heavy” coefficients ing.
In other words, even though we may be able to simulate the
querySQ(g; �) with a sample smaller than�2, we will also
be covering fewer coefficients than we could ifĝ(0

n+1

) and
ĝ(b1) were both small.

We formalize this intuition by again considering several
cases. First, again given that the target parity is�

b

, note that

p =

ĝ(0

n+1

) + ĝ(b1) + 1

2

:

12

We may assume thatjĝ(b1)j � � . This is certainly true if the
query is uninformative, and it is true in the worst case for an
informative query by our assumption about� earlier. This
then gives that̂g(0

n+1

) � 2p�1+ � . TakingC to represent
the coverage ofSQ(g; �), Parseval’s identity gives that

jCj �

1� ĝ

2

(0

n+1

)

�

2

:

Now becausep < 1=3, � would need to be at least1=3 in
order for2p � 1 + � � 0 to hold. But in this case only
at most9 coefficients can be covered, obviously with at least
constant run-time cost. So we consider the case2p�1+� <

0. This implies that̂g2(0
n+1

) � (2p�1+�)

2, and after some
algebra and simplification gives

jCj �

4pq

�

2

+

2

�

:

To convert this to a bound in terms ofm, we consider
two cases for the value ofmpq. First, consider the case in
whichm is chosen such thatmpq < 1, and assume for sake
of contradiction that alsom < 1=(2�). Such a smallm im-
plies again that at most one~X will be within � of the true
meanp. Furthermore, sincemp < 3=2, it is easy to see from
Lemma 9 that the summ ~

X attains its maximum probability
at either0 or 1. Consider first the case wherem andp are
such that the maximum is at1. The probability of drawing
m consecutive0’s from a Bernoulli distribution with mean
p is (1 � p)

m

�

10

11

e

�mp (this form of the bound comes
from [CBDF+99]). Sincem � 3=(2p), this means that the
probability of seeing all0’s is over0:2. Thus the probabil-
ity that m ~

X = 1 is less than0:8, so a largerm would be
required in order for the sample mean to be within� of the
true mean with more than constant probability. If insteadm

andp are such that the maximum of the binomial is at0, it
must be thatmp < 1. We consider a Bernoulli random vari-
able with meanp + � . If m examples are chosen from this
random variable then with probability at least10

11

e

�m(p+�)

all m examples are0’s. This quantity is again over0:2 if
m < 1=(2�). Thus we would need many more examples
than1=(2�) in order to have better than constant confidence
that our sample came from a distribution with meanp rather
than one with meanp+ � .

We conclude from this that ifp < 1=3 andmpq < 1 then
it must be thatm > 1=(2�) in order for the PAC algorithm’s
sampling to succeed with sufficiently high probability. Thus
we get that in this case,

jCj �

4pq

�

2

+

2

�

�

4

m�

2

+ 4m � 20m:

Therefore, once again the coverage is proportional to the
sample size used.

Finally, if mpq > 1 then we can apply Lemma 5 with
� = �=2. This gives thatm � 2pq=�

2, and combining this
with mpq > 1 implies thatm

p

2 > 2=� . Further applying
Lemma 5 gives

jCj �

4pq

�

2

+

2

�

� (2 +

p

2)m:

So in all cases run time is proportional to the coverage
jCj, and the total coveragej [

i

C

i

j has already been shown
to be
(2n) in the worst case.

Invocation: S WP(n;MEM (f); �; Æ)

Input: Number n of inputs to functionf : f0; 1g

n

!

f�1;+1g; membership oracleMEM (f); 0 < � � 1; Æ > 0

Output: SetS of n-bit vectors such that, with probability at
least1�Æ, everya such thatj ^f(a)j � � is inS, and for every
a 2 S, j ^f(a)j � �=

p

2.

1. return WP-aux(1; 0; n;MEM (f); �; Æ) [

WP-aux(1; 1; n;MEM (f); �; Æ)

Invocation: S WP-aux(k; b; n;MEM (f); �; Æ)

Input: Integerk 2 [1; n℄; k-bit vectorb; numbern of inputs
to functionf : f0; 1g

n

! f�1;+1g; membership oracle
MEM (f); 0 < � � 1; Æ > 0

Output: SetS of n-bit vectors such that, with probability at
least1 � Æ, for everya such that the firstk bits of a match
input vectorb andj ^f (a)j � �, a is inS, and for everya 2 S,
j

^

f(a)j � �=

p

2.

1. s 0; m 32�

�4

ln(4n=Æ�

2

)

2. for m timesdo
3. Drawx 2 f0; 1g

n�k

; y; z 2 f0; 1g

k uniformly at
random.

4. s s + f(yx)f(zx)�

b

(y � z)

5. enddo
6. �

0

 s=m

7. if �0 < 3�

2

=4 then
8. return ;
9. else if k = n then

10. return fbg
11. else
12. return WP-aux(k + 1; b0; n;MEM (f); �; Æ) [

WP-aux(k + 1; b1; n;MEM (f); �; Æ)

13. endif

Figure 1: TheWP weak-parity algorithm.

5 A MORE ROBUST NOISE-TOLERANT

PAC ALGORITHM FOR PAR

In this section we present another noise-tolerant PAC algo-
rithm for learning the classPAR of parity functions with
respect to the uniform distribution. While the algorithm’s
running time isO(2

n=2

) in terms ofn, by the lower bound
on SQ-based algorithms of the previous section and an anal-
ysis similar to that of Theorem 4, the algorithm can be shown
to be asymptotically faster than any SQ-based algorithm for
this problem. Furthermore, the algorithm can be shown to be
tolerant of a wide range of noise, not just uniform random
classification noise.

Our algorithm is based on one by Goldreich and Levin
[GL89] that uses membership queries. We first review the
Goldreich-Levin algorithm and then show how to remove the
need for membership queries when large samples are avail-
able.

13

5.1 GOLDREICH-LEVIN WEAK PARITY
ALGORITHM

A version of the Goldreich-Levin algorithm [GL89] is pre-
sented in Figure 1. The algorithm is given a membership ora-
cleMEM (f) for a target functionf : f0; 1g

n

! f�1;+1g

along with a threshold� and a confidenceÆ. Conceptually,
the algorithm begins by testing to see the extent to which the
first bit is or is notrelevant tof . A bit is particularly relevant
if it is frequently the case that two input vectors that differ
only in this bit produce different values off . The function
call

WP-aux(1; 0; n;MEM (f); �; Æ)

will, with high probability, return the empty set if the first
bit is particularly relevant. To see this, notice that if thefirst
bit is very relevant, then with high probability over uniform
choice of(n� 1)-bit x and1-bit y andz,

f(yx)f(zx)�

0

(y � z) = f(yx)f(zx)

will be very small. This is because with probability1
2

y = z

and with probability1
2

y 6= z, and wheny 6= z the high rele-
vance of the first bit implies that frequentlyf(yx) 6= f(zx).
Thus approximately half the time we expect that the prod-
uct is1 and half�1, giving an expected value near0. As the
loop inWP-aux is estimating this expected value, we expect
that the condition at line 7 will typically be satisfied.

On the other hand, consider the function

WP-aux(1; 1; n;MEM (f); �; Æ):

Now the loop inWP-aux is estimating the expected value of

f(yx)f(zx)�

1

(y � z):

Since�
1

(y � z) is 1 wheny = z and�1 otherwise, we now
expect a value for�0 very near1. Thus, in the situation where
the first bit is highly relevant, we expect that every Fourier
indexa in the setS returned byWP will begin with a1. To
determine exactly what these coefficients are, theWP-aux

function calls itself recursively, this time fixing the firsttwo
bits of the subset of coefficients considered to either10 or
11.

Thus we can intuitively view theWP algorithm as fol-
lows. It first tests to see the extent to which “flipping” the
first input bit changes the value of the function. If the bit is
either highly relevant or highly irrelevant then half of theco-
efficients can be eliminated from further consideration. Sim-
ilar tests are then performed recursively on any coefficients
that remain as candidates, with each recursive call leadingto
one more bit being fixed in a candidate parity indexa. After
n levels of recursion alln bits are fixed in all of the surviv-
ing candidate indices; these indices are then the output of the
algorithm. With probabilityat least1�Æ, this list contains in-
dices of all of the parity functions that are�-correlated withf
and no parity function that is not at least(�=

p

2)-correlated,
and runs in timeO(n�

�6

log(n=Æ�)) [Jac97].
Furthermore, a��2 factor comes from the fact that in

general the algorithm must maintain up to this many can-
didate sets of coefficients at each level of the recursion. In
the case of learning parity, it can be shown that with high
probability only one candidate set will survive at each level.
Therefore, when learningPAR, the running time becomes
O(n�

�4

log(n=Æ�)).

It is well known that this algorithm can be used to weakly
learn certain function classes with respect to the uniform dis-
tributionusing parity functions as hypotheses [KM93, Jac97].
However, we note here that it can also be used to (strongly)
learnPAR with respect to the uniform distribution in the
presence of random classification noise. Letf

� represent the
randomized Boolean function produced by applying classifi-
cation noise of rate� to the target parity functionf . That is,
assume that on each call toMEM (f

�

) the oracle returns the
value ofMEM (f) with noise of rate� applied, and noise is
applied independently at each call toMEM (f

�

). LetE
�

[�℄

represent expectation with respect to noise of rate� applied
to f . Then it is straightforward to see that

E

�

[E

x�U

n

[f

�

(x)�

b

(x)℄℄ = (1� 2�)

^

f (b):

Furthermore, the only use theWP algorithm makes of
MEM (f) is to compute�0 in WP-aux, which is an esti-
mate ofE

x�U

n�k

;y�U

k

;z�U

k

[f(yx)f(zx)�

b

(y � z)℄. Re-
placingf by f

� in this expression, we get an expectation
that also depends on the randomness off

� . However, since
classification noise is applied independently tof

�

(yx) and
f

�

(zx)—even if y = z, as long as the valuesf�(yx) and
f

�

(zx) are returned from separate calls toMEM (f

�

)—
it follows that E

�;x;y;z

[f

�

(yx)f

�

(zx)�

b

(y � z)℄ = (1 �

2�)

2

E

x;y;z

[f(yx)f(zx)�

b

(y � z)℄, where the first expecta-
tion is over the randomness off� as well as the inputs. Fi-
nally, none of the analysis [Jac97] used to prove properties
about the output of theWP algorithm precludes the targetf
from being randomized; independence of samples and the
range of values produced byf are the key properties used in
the proof, and these are the same forf

� as they are for the
deterministicf .

In short, runningWP with � = 1 � 2� and membership
oracleMEM (f

�

) representing a targetf = �

b

will, with
high probability, result in an output list that containsb. Fur-
thermore, since by Parseval’s identity and the above analysis
E

�

[E

x�U

n

[f

�

(x)�

a

(x)℄℄ = 0 for all a 2 f0; 1gn such that
a 6= b, with high probability only indexb will appear in the
output list.

Of course, a noisy membership oracle as above can be
used to simulate a noiseless oracle by simple resampling, so
the observation that theWP algorithm can be used to learn
PAR in the presence of noise is not in itself particularly
interesting. However, we next show that we can simulate
the WP algorithm with one that does not use membership
queries, giving us a uniform-distribution noise-tolerantPAC
algorithm forPAR that will be shown to be relatively effi-
cient compared with SQ-based algorithms.

5.2 REMOVING THE MEMBERSHIP ORACLE

As discussed above, Goldreich-Levin uses the membership
oracleMEM (f) to perform the sampling needed to esti-
mate the expected valueE

x;y;z

[f(yx)f(zx)�

b

(y � z)℄. At
the first level of the recursion,jxj = n � 1, we (conceptu-
ally) “flip” the first bit (technically,y andz will often have
the same value, but it is the times when they differ that infor-
mation about a deterministic function is actually obtained).
Notice that we would not need the membership oracle if we
had—or could simulate—a sort of example oracle that could
produce pairs of examples(hyx; f(yx)i; hzx; f(zx)i) drawn

14

according to the uniform distribution overx, y, andz. We
will denote byD

1

the induced distribution over pairs of ex-
amples.

Lemma 8 in the Appendix proves that if2k=2+1 k-bit
vectors are drawn uniformly at random, then with probabil-
ity at least1=2 one vector will occur twice in the sample.
Therefore, if we draw a sampleS of examples off of size
2

(n+1)=2 then with probability at least1=2 a pair of exam-
ples will be drawn having the same finaln� 1 bits. And for
any such pair, it is just as likely that the first bits of the two
functions will differ as it is that they will be the same. Thus,
with probability at least1=2 we can simulate one draw from
D

1

by creating a list of all pairs of examples inS that share
the same values on the finaln � 1 attributes and choosing
one of these pairs uniformly at random.

Slightly more precisely, we will draw2(n+1)=2 examples
and record in a list eachn � 1 bit pattern that appears at the
end of more than one example; each such pattern appears
once in the list. We then choose one such pattern uniformly
at random from the list. Finally, from among the examples
ending with the chosen pattern, we select two examples uni-
formly at random without replacement.

Note that the probability of selecting any particularn�1

bit pattern from the list is the same as selecting any other pat-
tern. Therefore, we are selecting this pattern—corresponding
to the choice ofx in the expectation above—uniformly at
random. Note also that our method of choosing the two ex-
amples ending with this pattern guarantee that the first bitsof
these examples—corresponding toy andz above—are inde-
pendently and uniformly distributed. Therefore, with prob-
ability at least1=2, this procedure simulatesD

1

. Further-
more, if a particular setS fails to have an appropriate pair
of examples, we can easily detect this condition and simply
draw another set of examples. With probability at least1�Æ,
we will obtain an appropriate set withinlog(1=Æ) draws.

Now letD
2

represent the the probability distribution on
pairs of examples corresponding to choosing an(n � 2)-bit
x uniformly at random, choosing 2-bity andz uniformly at
random, and producing the pair(hyx; f(yx)i; hzx; f(zx)i).
The procedure above can be readily modified to simulate a
draw fromD

2

using draws of only2n=2 uniform examples.
Similar statements can be made for the other distributions to
be simulated.

In short, we have shown how to simulate draws from any
of the probability distributions induced by the weak parity
procedure, at a cost of roughly2n=2 draws from the uniform
distribution. Also note that the argument above has nothing
to do with the labels of the examples, and so holds for ran-
domizedf� as well as for deterministicf . Thus we have the
following theorem.

Theorem 7 For any noise rate � < 1=2 and confidence Æ >
0, the class PAR of parity functions can be learned in the
uniform random classification-noise model with respect to

the uniform distribution in time O(2

n=2

n�

�4

log

2

(n=Æ�)),
where � = 1� 2�.

5.3 IMPROVED NOISE TOLERANCE

Consider the following noise model: given a target parity
functionf = �

a

, the noise process is allowed to generate a

deterministic noisy functionf� (� here denotes only that the
function is a noisy version off and not a uniform noise rate)
subject only to the constraints thatE

x

[f

�

(x)�

a

(x)℄ � � for
some given threshold�, and for allb 6= a,E

x

[f

�

(x)�

b

(x)℄ <

�=

p

2. That is,f� must be at least�-correlated withf and
noticeably less correlated with every other parity function.
It should be clear that the algorithm of this section, given�,
can strongly learnPARwith respect to uniform in this fairly
general noise setting in timeO(2

n=2

n�

�6

log

2

(n=Æ�)). The
Blum et al. algorithm, on the other hand, seems to be more
dependent on the uniform random classification noise model.
However, a version of their algorithm is distribution indepen-
dent, which raises the interesting question of whether or not
the modifiedWP algorithm above can also be made distribu-
tion independent.

ACKNOWLEDGMENTS

This work was initially inspired by work of Dan Ventura on
the quantum learnability of the parity class. The author also
thanks Tino Tamon for helpful discussions and an anony-
mous referee for pointing out the how the Blum, Kalai, and
Wasserman algorithms could be applied to the problem con-
sidered in this paper.

References

[AD98] Javed A. Aslam and Scott E. Decatur. Speci-
fication and simulation of statistical query al-
gorithms for efficiency and noise tolerance.
Journal of Computer and System Sciences,
56(2):191–208, April 1998.

[BFJ+94] Avrim Blum, Merrick Furst, Jeffrey Jackson,
Michael Kearns, Yishay Mansour, and Steven
Rudich. Weakly learning DNF and character-
izing statistical query learning using Fourier
analysis. InProceedings of the 26th Annual
ACM Symposium on Theory of Computing,
pages 253–262, 1994.

[BKW00] Avrim Blum, Adam Kalai, and Hal Wasser-
man. Noise-tolerant learning, the parity prob-
lem, and the Statistical Query model. InPro-
ceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, 2000. To
appear.

[Bol85] Béla Bollobás. Random Graphs. Academic
Press, 1985.

[CBDF+99] N. Cesa-Bianchi, E. Dichterman, P. Fischer,
E. Shamier, and H.U. Simon. Sample-efficient
strategies for learning in the presence of noise.
Journal of the ACM, 46(5):684–719, 1999.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-
core predicate for all one-way functions. In
Proceedings of the Twenty First Annual ACM
Symposium on Theory of Computing, pages
25–32, 1989.

[Jac97] Jeffrey Jackson. An efficient membership-
query algorithm for learning DNF with respect
to the uniform distribution.Journal of Com-
puter and System Sciences, 55(3):414–440, 12
1997. Earlier version appeared inProceedings

15

of the 35th Ann. Symp. on Foundations of Com-
puter Science, pages 42–53, 1994.

[Kea93] Michael J. Kearns. Efficient noise-tolerant
learning from statistical queries. InProceed-
ings of the Twenty-Fifth Annual ACM Sympo-
sium on Theory of Computing, pages 392–401,
1993.

[KM93] Eyal Kushilevitz and Yishay Mansour. Learn-
ing decision trees using the Fourier spectrum.
SIAM Journal on Computing, 22(6):1331–
1348, December 1993. Earlier version ap-
peared inProceedings of the Twenty Third An-
nual ACM Symposium on Theory of Comput-
ing, pages 455–464, 1991.

[Val84] L. G. Valiant. A theory of the learnable.Com-
munications of the ACM, 27(11):1134–1142,
November 1984.

APPENDIX

This is a lemma that is needed to prove Theorem 7.

Lemma 8 If 2

k=2+1

k-bit vectors are drawn uniformly at
random, then with probability at least 1 � 1=e one vector
will occur twice in the sample.

Proof: The proof is similar to that of the birthday para-
dox. First, note that the probability that two randomly drawn
k-bit vectors do not match is1 � 1=2

k. The probability
that a third vector does not match either of the first two is
1 � 2=2

k, and thus the probability that none of the vectors
match is(1�1=2

k

)(1�2=2

k

). In general, if2k=2+1 vectors
are drawn, then the probability that none match is

2

k=2+1

Y

i=1

1�

i

2

k

�

2�2

k=2

Y

i=2

k=2

1�

i

2

k

�

�

1�

2

k=2

2

k

�

2

k=2

�

1

e

:

Thus the probability of a match is at least1� 1=e.
The following technical lemmas about the binomial dis-

tributionare used in Section 4. The first lemma is well known
(for a proof, see,e.g., [Bol85]).

Lemma 9 LetB(k;m; p) �

�

m

k

�

p

k

(1�p)

m�k represent the
binomial distribution. For m and p < 1 fixed, the maximum
value of the binomial distribution occurs at the first integer
k = k

m

greater than p(m + 1)� 1.

Lemma 10 For m > 0 and p < 1 fixed, the maximum
value of the integer k

m

at which the maximum of the bino-
mial distribution occurs is such that (k

m

=m)(1� k

m

=m) �

p(1� p)� 1=m.

Proof: By Lemma 9, thek
m

that maximizesB(k;m; p)

satisfiesp(m+1)�1 < k

m

� p(m+1). Some algebra and
simplification then gives the result.

Lemma 11 For any integer m > 1, integer 0 < k < m, and
real 0 � p � 1,

B(k;m; p) � B(k;m; k=m):

Proof: We want to know the value ofp that maximizes
B for fixedk andm satisfying the constraints above. We can
find the maximizing value ofp by examining values ofp that
make the derivativedB=dp zero. It is easily shown that the
derivative is zero only atp = k=m, p = 0, andp = 1 and
thatp = k=m is the only local maximum.

Lemma 12 For any integer m � 5, integer 0 < k < m, and
real 1=3 � p � 2=3,

B(k;m; p) �

0:45

p

mp(1 � p)� 1

:

Proof: We will maximizeB(k;m; p) over bothk and
p, then develop a bound on this maximized quantity.

We already showed in Lemma 11 that maximizing the
binomial distribution overp givesp = k=m. Using a fairly
tight version of the Stirling bound

m

m

e

�m

p

2�me

1=(12m+1)

� m! � m

m

e

�m

p

2�me

1=12m

we get that for any0 < k < m andm � 1,
�

m

k

�

�

e

1=12m

p

2�m(1 � k=m)(k=m)(1� k=m)

m�k

(k=m)

k

and

B(k;m; k=m) �

0:45

p

m(k=m)(1 � k=m)

:

Thus we have that

B(k;m; p) � B(k

m

;m; p)

� B(k

m

;m; k

m

=m)

�

0:45

p

m(k

m

=m)(1� k

m

=m)

�

0:45

p

mp(1 � p)� 1

where we applied Lemma 10 in the final step. Finally, note
that

p

mp(1� p) � 1 is well-defined for allm andp as con-
strained by the statement of the lemma.

Similarly, we can show

Lemma 13 For any integer m and any real 0 � p � 1,
mp(1 � p) > 1 implies that B(k;m; p) � 0:46. Further-
more, in terms of p,

B(k;m; p) �

0:406

p

mp(1 � p)� 1

:

Proof: Note that ifmp(1 � p) > 1 thenm � 1=p

and the valuek = k

m

at which the binomialB(k;m; p) is
maximized must be at least 1. Similarly, sincem � 1=(1 �

p), k
m

� m � 1. It is easy to see that, as a function of
k

m

,
p

m(k

m

=m)(1� k

m

=m) is minimized at its extremes,
which we have just shown to be at worstk

m

= 1 andk
m

=

m�1. Noting thatm > 1=(p(1�p)) > 4 and plugging into
the analysis above gives thatB(k;m; p) � 0:46. The bound
in terms ofp is obtained by simply plugging the better bound
onm into the analysis of the previous lemma.

