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Abstract

This paper deals with two problems: 1) what

makes languages to be learnable in the limit by

natural strategies of varying hardness; 2) what

makes classes of languages to be the hardest

ones to learn. To quantify hardness of learning,

we use intrinsic complexity based on reduc-

tions between learning problems. Two types

of reductions are considered: weak reductions

mapping texts (representations of languages)

to texts, and strong reductions mapping lan-

guages to languages. For both types of reduc-

tions, characterizations of complete (hardest)

classes in terms of their algorithmic and topo-

logical potentials have been obtained. To char-

acterize the strong complete degree, we discov-

ered a new and natural complete class capable

of \coding" any learning problem using density

of the set of rational numbers. We have also

discovered and characterized rich hierarchies of

degrees of complexity based on \core" natural

learning problems. The classes in these hier-

archies contain \multidimensional" languages,

where the information learned from one di-

mension aids to learn other dimensions. In

one formalization of this idea, the grammars

learned from the dimensions 1; 2; : : : ; k specify

the \subspace" for the dimension k + 1, while

the learning strategy for every dimension is

prede�ned. In our other formalization, a \pat-

tern" learned from the dimension k speci�es

the learning strategy for the dimension k + 1.

A number of open problems is discussed.

1 Introduction

There are two major objectives our paper attempts to

achieve:

a) to discover what makes languages to be learnable

in the limit by natural strategies of varying hardness;

b) to discover what makes classes of languages to be

the hardest ones to learn.

The theory of learning languages in the limit, which

has been quite advanced over the last three decades,

suggests several ways to quantify hardness (complexity)

of learning. The most popular among them are:

a) counting the number of mind changes [BF72,

CS83, LZ93] the learner makes before arriving to the

�nal hypothesis;

b) measuring the amount of (so-called long-term)

memory the learner uses [Kin94, KS95];

c) reductions between di�erent learning problems

(classes of languages) and respective degrees of so-called

intrinsic complexity [FKS95, JS96, JS97].

There have been several other notions of complexity

of learning considered in the literature (for example see

[Gol67, DS86, Wie86]).

The �rst two approaches above reveal quite inter-

esting complexity hierarchies among learnable classes

of languages ([CS83, LZ93, KS95]). However, a large

number of interesting and very di�erent natural classes

of learnable classes falls into the category that requires

more than uniformly bounded �nite number of mind

changes, as well as maximum (linear) amount of long-

term memory. As it is demonstrated in our paper, in-

trinsic complexity of language learning, based on the

idea of reductions, is perfectly suitable for quantify-

ing hardness of many such natural classes of languages.

It can be also successfully utilized to characterize the

whole degrees of learnability based on these natural

classes.

There are two di�erent approaches to formalizing

the concept of intrinsic complexity based on reductions

between classes of languages [JS96]. In general terms,

a major part of any reduction of one learning problem

to another one is a mapping (an operator) that maps

a language of the �rst learning problem to a language

of the second one. A language is usually presented to

a learner in form of a text, an in�nite sequence of all

elements of the language (possibly, with repetitions).

Any non-empty language can be represented by many

di�erent texts. If a reduction may translate di�erent

texts of the same language to texts of di�erent lan-

guages, we call such a reduction weak. If a reduction
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is required to translate all texts of the input language

to texts of the same language, we call such a reduction

strong. Roughly, a weak reduction translates texts to

texts, while a strong reduction translates languages to

languages. The paper [JS96] reveals signi�cant di�er-

ences between degrees of intrinsic complexity based on

weak and, respectively, strong reductions.

For both types of reductions, we have obtained char-

acterizations of complete degrees in terms of their al-

gorithmic and topological potentials. For the case of

strong reductions, we discovered a new natural com-

plete class capable of \coding " (in the limit) any learn-

ing problem using density of the set of rational numbers.

For weak reducibility, we were able to use the fact that

the complete degree contains the class FINITE of all

�nite sets. The characterization for the weak complete

degree is very di�erent from any other characterization

obtained in the paper - it is based on a requirement of

density in terms of Baire topology. Note that a charac-

terization of the complete degree of intrinsic complexity

for function learning formulated in similar terms was

obtained in [KPSW99]. The main di�erence between

our characterization of weak complete degrees and the

characterization for function learning in [KPSW99] is

the requirement of standardizability (see De�nition 5)

for the hardest classes of languages. This notion, intro-

duced quite long time ago in [Kin75, Fre91, JS94], for

di�erent purposes, turned out to be surprisingly useful

for the characterization of all degrees in our paper.

For both types of reductions, we have also discovered

and characterized rich structures of classes of languages,

each of which requires its own speci�c type of learning

strategy. Languages in these classes can be represented

in \multidimensional" form, where the information ob-

tained from learning one \dimension" aids in learning

other \dimensions". We suggest and discuss several pos-

sibilities to formalize such \aid" and the ways it can be

used. In the given paper, we concentrate on two follow-

ing formalizations:

a) the grammars learned from the \dimensions"

L

1

; L

2

; : : : ; L

k

specify the \subspace" containing the

\sublanguage" L

k+1

;

b) the grammar learned from the \dimension" L

k

codes a \pattern" that speci�es a learning strategy for

the class of languages containing L

k+1

.

For the �rst formalization, we have obtained the

complete picture of degrees of complexity for the classes

of \multidimensional" languages based on combinations

of probably the most important known natural classes

of learn-

able languages: INIT;COINIT; SINGLE;COSINGLE

(see De�nition 6). Classes that can be de�ned under

the second formalization turn out to be very complex.

Yet we have shown that all of them are incomplete. The

general problem whether such classes form a complexity

hierarchy remains open.

In short, our major accomplishments are:

1) discovery of the fact that any language learning

problem can be coded using sets fx j 0 � x � rg of

rational numbers;

2) characterizations of hardest learning problems in

terms of their topological and algorithmic potentials;

3) discovery of a complex hierarchy of degrees of

\multidimensional" languages; being interesting in its

own right, this hierarchy can be used as a scale for

quantifying hardness of learning complex concepts (for

instance, it has been applied to quantify hardness of

learning complex geometrical concepts in [JK99]).

Missing proofs, and some of the generalizations can

be found in [JKW99].

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from

[Rog67]. The symbol N denotes the set of natural num-

bers, f0; 1; 2; 3; : : :g. Symbols ;, �, �, �, and � denote

empty set, subset, proper subset, superset, and proper

superset, respectively. D

0

; D

1

; : : : ; denotes a canonical

recursive indexing of all the �nite sets [Rog67, Page 70].

We assume that if D

i

� D

j

then i � j (the canonical

indexing de�ned in [Rog67] satis�es this property). Car-

dinality of a set S is denoted by card(S). The maximum

and minimumof a set are denoted by max(�);min(�), re-

spectively, where max(;) = 0 and min(;) =1. L

1

�L

2

denotes the symmetric di�erence of L

1

and L

2

, that is

L

1

�L

2

= (L

1

� L

2

) [ (L

2

�L

1

). For a natural number

a, we say that L

1

=

a

L

2

, i� card(L

1

�L

2

) � a. We say

that L

1

=

�

L

2

, i� card(L

1

�L

2

) < 1. Thus, we take

n < � < 1, for all n 2 N . If L

1

=

a

L

2

, then we say

that L

1

is an a-variant of L

2

.

We let h�; �i stand for an arbitrary, computable, bi-

jective mapping from N � N onto N [Rog67]. We as-

sume without loss of generality that h�; �i is monotoni-

cally increasing in both of its arguments. We de�ne the

corresponding projection functions: �

1

(hx; yi) = x and

�

2

(hx; yi) = y. h�; �i can be extended to n-tuples in a

natural way (including n = 1, where hxi may be taken

to be x). Projection functions �

1

; : : : ; �

n

corresponding

to n-tuples can be de�ned similarly (where the tuple

size would be clear from context). Due to the above

isomorphism between N

k

and N , we often identify the

tuple (x

1

; � � � ; x

n

) with hx

1

; � � � ; x

n

i.

By ' we denote a �xed acceptable programming sys-

tem for the partial computable functions mapping N to

N [Rog67, MY78]. By '

i

we denote the partial com-

putable function computed by the programwith number

i in the '-system. SymbolR denotes the set of all recur-

sive functions, that is total computable functions. By

� we denote an arbitrary �xed Blum complexity mea-

sure [Blu67, HU79] for the '-system. By W

i

we denote

domain('

i

). W

i

is, then, the r.e. set/language (� N )

accepted (or equivalently, generated) by the '-program

i. We also say that i is a grammar for W

i

. Symbol E

will denote the set of all r.e. languages. Symbol L, with
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or without decorations, ranges over E . By L, we denote

the complement of L, that is N �L. Symbol L, with or

without decorations, ranges over subsets of E . By W

i;s

we denote the set fx < s j �

i

(x) < sg.

A class L � E is said to be recursively enumerable

(r.e.) [Rog67], i� L = ; or there exists a recursive func-

tion f such that L = fW

f(i)

j i 2 Ng. In this latter

case we say that W

f(0)

;W

f(1)

; : : : is a recursive enumer-

ation of L. L is said to be 1{1 enumerable i� (i) L

is �nite or (ii) there exists a recursive function f such

that L = fW

f(i)

j i 2 Ng and W

f(i)

6= W

f(j)

, if i 6= j.

In this latter case we say that W

f(0)

;W

f(1)

; : : : is a 1{1

recursive enumeration of L.

A partial function F from N to N is said to

be partial limit recursive, i� there exists a recursive

function f from N � N to N such that for all x,

F (x) = lim

y!1

f(x; y). Here if F (x) is not de�ned

then lim

y!1

f(x; y), must also be unde�ned. A partial

limit recursive function F is called (total) limit recursive

function, if F is total. # denotes de�ned or converges.

" denotes unde�ned or diverges.

We now present concepts from language learning

theory. The next de�nition introduces the concept of

a sequence of data.

De�nition 1 (a) A sequence � is a mapping from an

initial segment of N into (N [ f#g). The empty se-

quence is denoted by �.

(b) The content of a sequence �, denoted content(�),

is the set of natural numbers in the range of �.

(c) The length of �, denoted by j�j, is the number

of elements in �. So, j�j = 0.

(d) For n � j�j, the initial sequence of � of length n

is denoted by �[n]. So, �[0] is �.

Intuitively, #'s represent pauses in the presentation

of data. We let �, � , and 
, with or without decorations,

range over �nite sequences. SEQ denotes the set of all

�nite sequences.

De�nition 2 [Gol67] (a) A text T for a language L is

a mapping from N into (N [ f#g) such that L is the

set of natural numbers in the range of T .

(b) The content of a text T , denoted by content(T ),

is the set of natural numbers in the range of T ; that is,

the language which T is a text for.

(c) T [n] denotes the �nite initial sequence of T with

length n.

We let T , with or without decorations, range over texts.

We let T range over sets of texts.

A class T of texts is said to be r.e. i� there exists a

recursive function f , and a sequence T

0

; T

1

; : : : of texts

such that T = fT

i

j i 2 Ng, and, for all i; x, T

i

(x) =

f(i; x).

De�nition 3 A language learning machine [Gol67] is

an algorithmic device which computes a mapping from

SEQ into N .

We letM, with or without decorations, range over learn-

ing machines. M(T [n]) is interpreted as the grammar

(index for an accepting program) conjectured by the

learning machine M on the initial sequence T [n]. We

say that M converges on T to i, (written M(T )# = i)

i� (

1

8

n)[M(T [n]) = i].

There are several criteria for a learning machine to

be successful on a language. Below we de�ne identi�ca-

tion in the limit introduced by Gold [Gol67].

De�nition 4 [Gol67, CS83] Suppose a 2 N [ f�g.

(a) M TxtEx

a

-identi�es a text T just in case (9i j

W

i

=

a

content(T )) (

1

8

n)[M(T [n]) = i].

(b) M TxtEx

a

-identi�es an r.e. language L

(written: L 2 TxtEx

a

(M)) just in case M TxtEx

a

-

identi�es each text for L.

(c) M TxtEx

a

-identi�es a class L of r.e. languages

(written: L � TxtEx

a

(M)) just in case M TxtEx

a

-

identi�es each language from L.

(d) TxtEx

a

= fL � E j (9M)[L � TxtEx

a

(M)]g.

For a = 0, we often write TxtEx instead ofTxtEx

0

.

Other criteria of success are �nite identi�ca-

tion [Gol67], behaviorally correct identi�cation [Fel72,

OW82, CL82], and vacillatory identi�cation [OW82,

Cas88]. In the present paper, we only discuss results

about TxtEx

a

-identi�cation.

The following de�nition is a generalization of the

de�nition of limiting standardizability considered in

[Kin75, Fre91, JS94].

De�nition 5 Let a 2 N [ f�g. A class L of recur-

sively enumerable sets is called a-limiting standardiz-

able i� there exists a partial limiting recursive function

F such that

(a) For all i such that W

i

=

a

L for some L 2 L, F (i)

is de�ned.

(b) For all L;L

0

2 L, for all i; j such that W

i

=

a

L

and W

j

=

a

L

0

,

F (i) = F (j), L = L

0

:

[Kin75, Fre91, JS94] L is called limiting standardizable

i� L is 0-limiting standardizable.

Thus, informally, a class L of r.e. languages is lim-

iting standardizable if all the in�nitely many grammers

i 2 N of each language L 2 L can be mapped (\stan-

dardized") in the limit to some unique grammar (nat-

ural number). Notice that it is not required that this

\standard grammar" must be a grammar of L again.

However, standard grammars for di�erent languages

from L have to be pairwise di�erent.

The following basic classes of languages will be used

frequently in the following.

De�nition 6 SINGLE = fL j (9i)[L = fig]g.

COSINGLE = fL j (9i)[L = N � fig]g.
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INIT = fL j (9i)[L = fx j x � ig]g.

COINIT = fL j (9i)[L = fx j x � ig]g.

FINITE = fL j L is a �nite subset of Ng.

3 Weak and Strong Reductions

We �rst present some technical machinery.

We write � � � if � is an initial segment of � , and

� � � if � is a proper initial segment of � . Likewise, we

write � � T if � is an initial �nite sequence of text T .

Let �nite sequences �

0

; �

1

; �

2

; : : : be given such that

�

0

� �

1

� �

2

� � � � and lim

i!1

j�

i

j = 1. Then there

is a unique text T such that for all n 2 N , �

n

= T [j�

n

j].

This text is denoted by

S

n

�

n

. Let T denote the set of

all texts, that is, the set of all in�nite sequences over

N [ f#g.

We de�ne an enumeration operator (or just opera-

tor), �, to be an algorithmic mapping from SEQ into

SEQ such that for all �; � 2 SEQ, if � � � , then

�(�) � �(� ). We further assume that for all texts

T , lim

n!1

j�(T [n])j = 1. By extension, we think of

� as also de�ning a mapping from T into T such that

�(T ) =

S

n

�(T [n]).

A �nal notation about the operator �. If for a lan-

guage L, there exists an L

0

such that for each text T

for L, �(T ) is a text for L

0

, then we write �(L) = L

0

,

else we say that �(L) is unde�ned. The reader should

note the overloading of this notation because the type

of the argument to � could be a sequence, a text, or a

language; it will be clear from the context which usage

is intended.

We let �(T ) = f�(T ) j T 2 T g, and �(L) =

f�(L) j L 2 Lg.

We also need the notion of an in�nite sequence of

grammars. We let �, with or without decorations,

range over in�nite sequences of grammars. From the

discussion in the previous section it is clear that in�-

nite sequences of grammars are essentially in�nite se-

quences over N . Hence, we adopt the machinery de-

�ned for sequences and texts over to �nite sequences

of grammars and in�nite sequences of grammars. So,

if � = i

0

; i

1

; i

2

; i

3

; : : :, then �[3] denotes the sequence

i

0

; i

1

; i

2

, and �(3) is i

3

. Furthermore, we say that � con-

verges to i if there exists an n such that, for all n

0

� n,

i

n

0

= i.

Let I be any criterion for language identi�cation

from texts, for example I = TxtEx

a

. We say that an

in�nite sequence � of grammars is I-admissible for text

T just in case � witnesses I-identi�cation of text T . So,

if � = i

0

; i

1

; i

2

; : : : is a TxtEx

a

-admissible sequence

for T , then � converges to some i such that W

i

=

a

content(T ); that is, the limit i of the sequence � is a

grammar for an a-variant of the language content(T ).

We now formally introduce our reductions. Al-

though in this paper we will only be concerned with

TxtEx

a

-identi�cation, we present the general case of

the de�nition.

De�nition 7 [JS96] Let L

1

� E and L

2

� E be given.

Let identi�cation criteria I

1

and I

2

be given. Let

T

1

= fT j T is a text for L 2 L

1

g. Let T

2

= fT j

T is a text for L 2 L

2

g. We say that L

1

�

I

1

;I

2

weak

L

2

just

in case there exist operators � and 	 such that for all

T 2 T

1

and for all in�nite sequences � of grammars the

following hold:

(a) �(T ) 2 T

2

and

(b) if � is an I

2

-admissible sequence for �(T ), then

	(�) is an I

1

-admissible sequence for T .

We say that L

1

�

I

weak

L

2

i� L

1

�

I;I

weak

L

2

. We say

that L

1

�

I

weak

L

2

i� L

1

�

I

weak

L

2

and L

2

�

I

weak

L

1

.

Intuitively, L

1

�

I

weak

L

2

just in case there exists an op-

erator � that transforms texts for languages in L

1

into

texts for languages in L

2

and there exists another op-

erator 	 that behaves as follows: if � transforms text

T (for a language in L

1

) to text T

0

(for a language in

L

2

), then 	 transforms I-admissible sequences for T

0

into I-admissible sequences for T .

For many commonly studied criteria of inference,

such as I = TxtEx

a

, if L

1

�

I

weak

L

2

then, intuitively,

the problem of identifying L

2

in the sense of I is at

least as hard as the problem of identifying L

1

in the

sense of I, since the solvability of the former prob-

lem implies the solvability of the latter one. That is,

given any machine M

2

which I-identi�es L

2

, it is easy

to construct a machine M

1

which I-identi�es L

1

. To

see this for I = TxtEx

a

, suppose � and 	 witness

L

1

�

I

weak

L

2

. M

1

(T ), for a text T is de�ned as fol-

lows. Let p

n

= M

2

(�(T )[n]), and � = p

0

; p

1

; : : :. Let

�

0

= 	(�) = p

0

0

; p

0

1

; : : :. Then let M

1

(T ) = lim

n!1

p

0

n

.

Consequently, L

2

may be considered as a \hardest"

problem for I-identi�cation if for all classes L

1

2 I,

L

1

�

I

weak

L

2

holds. If L

2

itself belongs to I, then L

2

is said to be complete. We now formally de�ne these

notions of hardness and completeness for the above re-

duction.

De�nition 8 [JS96] Let I be an identi�cation criterion.

Let L � E be given.

(a) If for all L

0

2 I, L

0

�

I

weak

L, then L is �

I

weak

-

hard .

(b) If L is �

I

weak

-hard and L 2 I, then L is �

I

weak

-

complete.

It should be noted that if L

1

�

I

weak

L

2

by operators

� and 	, then there is no requirement that � maps

all texts for each language in L

1

into texts for a unique

language in L

2

. If we further place such a constraint on

�, we get the following stronger notion.

De�nition 9 [JS96] Let L

1

� E and L

2

� E be

given. We say that L

1

�

I

1

;I

2

strong

L

2

just in case there

exist operators �;	 witnessing that L

1

�

I

1

;I

2

weak

L

2

, and

for all L

1

2 L

1

, there exists an L

2

2 L

2

, such that

(8 texts T for L

1

)[�(T ) is a text for L

2

].
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We say that L

1

�

I

strong

L

2

i� L

1

�

I;I

strong

L

2

. We say

that L

1

�

I

strong

L

2

i� L

1

�

I

strong

L

2

and L

2

�

I

strong

L

1

.

We can similarly de�ne �

I

strong

-hardness and �

I

strong

-

completeness.

It is easy to see that �

TxtEx

a

weak

and �

TxtEx

a

strong

are re-


exive and transitive, and that L �

TxtEx

a

strong

L

0

implies

L �

TxtEx

a

weak

L

0

.

Proposition 1 (based on [JS97]) Suppose L �

I

strong

L

0

, via � and 	. Then, for all L;L

0

2 L, L � L

0

)

�(L) � �(L

0

).

We will be using Proposition 1 implicitly when we are

dealing with strong reductions. Since, for L �

I

strong

L

0

via � and 	, for all L 2 L, �(L) is de�ned (= some

L

0

2 L

0

), when considering strong reductions, we often

consider � as mapping sets to sets instead of mapping

sequences to sequences. This is clearly without loss of

generality, as one can easily convert such � to � as in

De�nition 9 of strong-reduction.

4 A Natural Strongly Complete Class

and a Characterization of Strongly

Complete Classes

In this section we exhibit a natural class which is

�

TxtEx

a

strong

-complete for all a 2 N (see Theorem 2).

Corollary 1 to Theorem 2 then shows an even simpler

class, RINIT

0;1

de�ned below, as �

TxtEx

strong

-complete. We

also characterize the �

TxtEx

a

strong

-complete degree, for all

a 2 N , in Theorem 3.

Let rat denote the set of all non-negative rational

numbers. For s; r 2 rat, let rat

s;r

= fx 2 rat j s �

x � rg. For allowing us to consider r.e. sets of ratio-

nal numbers, let coderat(�) denote an e�ective bijective

mapping from rat to N .

De�nition 10 Suppose r 2 rat

0;1

.

Let X

r

= fcoderat(x) j x 2 rat and 0 � x � rg.

Let X

cyl

r

= fcoderat(2w + x) j x 2 rat, w 2 N and

0 � x � rg.

De�nition 11 Suppose s; r 2 rat

0;1

and s < r.

Let RINIT

s;r

= fX

w

j w 2 rat

s;r

g.

Let RINIT

cyl

s;r

= fX

cyl

w

j w 2 rat

s;r

g.

Our main goal in this section is to show that the class

RINIT

0;1

is complete. Informally, we have to demon-

strate that every language learning problem can be ef-

fectively coded as a sequence of increasing rationals that

stabilizes to one rational in the interval [0; 1]. More

speci�cally, we code by rationals the sequence of hy-

potheses outputted by a (modi�ed) learning device be-

ing fed an arbitrary text of a learnable language. First,

we prove a simple technical Proposition 2 that gives

us opportunity to algorithmically generate sequences of

rationals that tend to get closer to each other still keep-

ing previously chosen distances between them; these

sequences are necessary for coding. Using Theorem 1

gives us opportunity to use learning machines M that

have special properties: their outputs do not depend

on arrangement and order of language elements in the

input. Using such a machine Proposition 5 allows us

to construct a \learning device" H that stabilizes its

conjectures on certain \full locking sequences" for the

underlying languages. Using the functions provided by

Proposition 2, one can map sequences of conjectures

produced by H on inputs stabilizing to \full locking

sequences" to sequences of rationals stabilizing to a ra-

tional representing a language in RINIT

0;1

.

In some cases below, in the pairing function we will

be using �nite sets as arguments (for example hS; li).

This is for ease of notation: hS; li should be understood

as hx; li, where x is a canonical code [Rog67] for the

�nite set S (i.e. D

x

= S).

Proposition 2 There exist recursive functions F and

� from rat

0;1

to rat

0;1

such that, for all rationals, x; y,

where 0 � x < y � 1,

F (x) + �(x) < F (y):

Moreover, F (1) + �(1) � 1.

Proof. Let q

0

; q

1

; : : :, be some 1{1 recursive enumera-

tion of all the rational numbers between 0 and 1 (both

inclusive), such that q

0

= 0 and q

1

= 1.

We de�ne, inductively on i, F (q

i

) and �(q

i

).

Let F (0) = 1=8 and �(0) = 1=8. Let F (1) = 7=8,

�(1) = 1=8.

Induction Hypothesis: Suppose we have de�ned

F (q

i

) and �(q

i

), for i � k. Then for all j; j

0

� k,

[q

j

< q

j

0

) F (q

j

) + �(q

j

) < F (q

j

0

)]. Note that the

induction hypothesis is clearly true for k = 1.

Now suppose that F (q

i

) and �(i) have been de�ned

for i � k.

We now de�ne F (q

k+1

) and �(q

k+1

) as follows.

Let p

1

= max(fq

i

j i � k ^ q

i

< q

k+1

g). Let

p

2

= min(fq

i

j i � k ^ q

i

> q

k+1

g).

By induction hypothesis, F (p

1

) + �(p

1

) < F (p

2

).

Let F (q

k+1

) = F (p

1

) + �(p

1

) + [F (p

2

) � (F (p

1

) +

�(p

1

))]=3, and �(q

k+1

) = [F (p

2

)� (F (p

1

) + �(p

1

))]=3.

It is easy to verify that the induction hypothesis is

satis�ed. The proposition follows.

Fix F , � as in the above proposition.

For S 2 FINITE, let code(S) =

P

x2S

2

�x�1

. Note

that 0 � code(S) < 1.

Note that, if min(S � S

0

) < min(S

0

� S), then

code(S) > code(S

0

) (here min(;) =1).

For S 2 FINITE and l 2 N , let G(hS; li) =

F (code(S)) + �(code(S)) �

�(code(S))

l+2

.
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Proposition 3 G is a recursive mapping from N to

rat

0;1

. Moreover, if min(S � S

0

) < min(S

0

� S) or

S = S

0

and l > l

0

, then G(hS; li) > G(hS

0

; l

0

i).

Proof. Follows from de�nition of G.

De�nition 12 [Ful90, BB75] A machine M is said to

be rearrangement independent i� for all �; � 2 SEQ, if

content(�) = content(� ), and j�j = j� j, then M(�) =

M(� ).

A machine M is said to be order independent i� for

all texts T and T

0

, if content(T ) = content(T

0

), then

either both M(T ) and M(T

0

) are unde�ned, or both

are de�ned and M(T ) =M(T

0

).

Note that rearrangement independent machines base

their output only on the content and length of the input.

Thus for l � card(S), we de�ne �

S;l

as the lexicograph-

ically least � of length l such that content(�) = S.

Theorem 1 (based on [Ful90]) Suppose a 2 N [ f�g

and L 2 TxtEx

a

. Then there exists a rearrangement

independent and order independent machine M such

that L � TxtEx

a

(M).

De�nition 13 [Ful90, BB75] � 2 SEQ is said to be

a stabilizing sequence for M on L, i� content(�) � L,

and for all � such that � � � and content(� ) � L,

M(�) =M(� ).

� 2 SEQ is said to be a TxtEx

a

-locking sequence

for M on L, i� � is a stabilizing sequence for M on L,

and W

M(�)

=

a

L.

Lemma 1 (based on [BB75, JORS99]) Suppose a 2

N [ f�g. If M TxtEx

a

-identi�es L, then there exists

a stabilizing sequence for M on L, and every stabilizing

sequence for M on L is a TxtEx

a

-locking sequence for

M on L.

De�nition 14 Suppose M is a rearrangement inde-

pendent and order independent learning machine. Let

S 2 FINITE and l 2 N .

(a) hS; li is said to be a full-stabilizing-sequence for M

on L i�:

(i) l > max(S),

(ii) (8x < l)[x 2 L, x 2 S],

(iii) �

S;2l

is a stabilizing sequence for M on L.

(b) Suppose a 2 N [ f�g. hS; li is said to be a TxtEx

a

-

full-locking-sequence for M on L, i� hS; li is a full-

stabilizing-sequence for M on L, and W

M(�

S;2l

)

=

a

L.

Intuitively, hS; li is a full-stabilizing-sequence

(TxtEx

a

-full-locking-sequence) forM on L, if �

S;2l

is a

stabilizing sequence (TxtEx

a

-locking sequence) for M

on L, and �

S;2l

contains exactly the elements in L which

are less than l.

Proposition 4 Suppose a 2 N [ f�g and M is a re-

arrangement independent and order independent ma-

chine, which TxtEx

a

-identi�es L. Then there exists

a full-stabilizing-sequence for M on L. Moreover, every

full-stabilizing-sequence for M on L is a TxtEx

a

-full-

locking-sequence for M on L.

Proof. Suppose M TxtEx

a

-identi�es L. Suppose �

is a stabilizing-sequence for M on L. Let l = 1 +

max(fj�jg [ content(�)), and S = fx j x < l ^ x 2 Lg.

It follows that �

S;2l

is also a stabilizing-sequence for M

on L. Thus, hS; li is a full-stabilizing-sequence for M

on L. The second part of the proposition follows from

Lemma 1.

De�nition 15 We say that hS; li is the least full-

stabilizing-sequence for M on L, i� hS; li is a full-

stabilizing-sequence for M on L which minimizes l.

Proposition 5 Suppose M is a rearrangement inde-

pendent and order independent machine. Then, there

exists a recursive function H mapping SEQ to N , such

that

(i) For all � 2 SEQ, if H(�) = hS; li, then

max(S) < l.

(ii) For all � � � , G(H(� )) � G(H(�)).

(iii) For all texts T , H(T ) = lim

n!1

H(T [n]) con-

verges to the least full-stabilizing-sequence for M on

content(T ), if any.

Proof. De�ne H(�) as follows:

For l � 1 + max(content(�) [ fj�jg), let S

�

l

=

content(�) \ fx j x < lg.

Let H(�) = hS

�

l

; li, for the least l � 1 +

max(content(�) [ fj�jg), such that

(8� j �

S

�

l

;2l

� � ^ content(� ) � content(�) ^ j� j � j�j)

[M(�

S

�

l

;2l

) =M(� )]

Note that there exists an l as above, since l = 1 +

max(content(�) [ fj�jg), satis�es the requirements.

Using Proposition 3, we claim that H satis�es the

properties above. (i) is trivially true. Clearly, H(T )

converges to the least full-stabilizing-sequence forM on

content(T ), if any. Thus, (iii) is satis�ed. Now we con-

sider the monotonicity requirement (ii). Suppose � � � .

Suppose H(�) = hS

�

l

; li and H(� ) = hS

�

l

0

; l

0

i.

(1) Clearly, S

�

w

� S

�

w

, for all w.

(2) If l

0

< l, then S

�

l

0

must be a proper superset of

S

�

l

0

(otherwise hS

�

l

0

; l

0

i would have been a candidate for

consideration as full-stabilizing-sequence even for input

�). Thus, G(hS

�

l

0

; l

0

i) > G(hS

�

l

; li), by Proposition 3.

(3) If l

0

� l, then S

�

l

0

� S

�

l

. Thus, G(hS

�

l

0

; l

0

i) �

G(hS

�

l

; li), by Proposition 3.
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Theorem 2 For any a 2 N , RINIT

cyl

0;1

is �

TxtEx

a

strong

-

complete.

Proof. Clearly RINIT

cyl

0;1

2 TxtEx � TxtEx

a

.

Suppose L 2 TxtEx

a

. Let M be a rearrangement

independent and order independent machine which

TxtEx

a

-identi�es L.

Let H be as in Proposition 5.

Let � be de�ned as follows.

Let �(�) = X

cyl

G(H(�))

. Note that for L 2

TxtEx

a

(M), �(L) = X

cyl

G(hS;li)

, where hS; li, is the least

full-stabilizing-sequence forM on L (by Proposition 5).

	 is de�ned as follows. Suppose a sequence � of

grammars converges to a grammar p. (If there is no such

p, then it does not matter what 	 outputs on sequence

�). Suppose x 2 rat

0;1

is the maximumrational number

(if any) such that coderat(2w + x) 2 W

p

, for at least

2a+1 di�erent w 2 N . (If there is no such x, then it does

not matter what 	 outputs on sequence �). Suppose

S 2 FINITE; l 2 N (if any) are such that x = G(hS; li).

(If there are no such S, l, then it does not matter what

	 outputs on sequence �). Then, 	(�) converges to

M(�

S;2l

). It is easy to verify that � and 	 witness that

TxtEx

a

(M) �

TxtEx

a

strong

RINIT

cyl

0;1

.

This completes the proof of Theorem 2.

Corollary 1 RINIT

0;1

is �

TxtEx

strong

-complete.

Why RINIT

0;1

is complete and, say, INIT is not?

From the �rst glance, strategies learning both classes

seem to be identical: being fed the input text, pick the

largest number in it to represent the language to be

learned. However, there is a subtle di�erence. Num-

bers in any language in INIT can be listed in the as-

cending order, while for the rationals in languages from

RINIT

0;1

it is not possible. Learning, say, the language

f0; 1; 2; 3; 4; 5;6g, being fed the number 3, we need at

most three \mind changes" to arrive at the correct hy-

pothesis. On the other hand, learning the language

X

2=3

, we always choose the largest number in the input

as our conjecture, however, 1=2 being such a number in

the initial fragment of the input does not impact in any

way the number of mind changes that will yet occur be-

fore we arrive at the �nal conjecture 2=3 { it depends en-

tirely on the input. This lack of any conceivable bound

on the number of remaining mind changes di�erentiates

RINIT

0;1

from all other, non-complete, classes observed

in our paper.

Theorem 3 For any a 2 N and any L 2 TxtEx

a

, L

is �

TxtEx

a

strong

-complete i� there exists a recursive function

H from rat

0;1

to N such that:

(a) fW

H(r)

j r 2 rat

0;1

g � L.

(b) If 0 � r < r

0

� 1, then W

H(r)

�

W

H(r

0

)

.

(c) fW

H(r)

j r 2 rat

0;1

g is a-limiting stan-

dardizable.

Proof. For the whole proof, for q 2 rat

0;1

, let T

q

de-

note a text, obtained e�ectively from q, for X

cyl

q

.

Necessity. Us-

ing Theorem 2, suppose RINIT

cyl

0;1

�

TxtEx

a

strong

L via �,

	.

De�ne H and E as follows.

W

H(q)

= content(�(T

q

)), for q 2 rat

0;1

.

E de�ned below will witness the a-limiting standard-

izability of fW

H(r)

j r 2 rat

0;1

g. E(p) is de�ned as

follows. Suppose �

p

= p; p; p; : : :. Suppose 	(�

p

) con-

verges to w. Then E(p) = maximum rational number

r 2 rat

0;1

(if any) such that, for at least 2a+1 di�erent

natural numbers m, coderat(2m + r) 2W

w

.

It is easy to verify that H satis�es parts (a) and (b)

of the theorem and E witnesses the a-limiting standard-

izability as required in part (c).

Su�ciency. Suppose that H is as given in the the-

orem, and E witnesses the a-limiting standardizability

as given in condition (c) of the theorem.

Then, de�ne � and 	 witnessing RINIT

cyl

0;1

�

TxtEx

a

strong

L as follows:

�(L) =

S

fW

H(q)

j coderat(q) 2 L ^ q 2 rat

0;1

g.

Let p

q

denote a grammar (obtained e�ectively from

q), for content(�(T

q

)).

De�ne 	 as follows. Suppose a sequence � of gram-

mars converges to a grammar i. Then, 	(�) converges

to a grammar for X

cyl

q

, such that E(i) = E(p

q

) (if there

is any such q 2 rat

0;1

).

It is easy to verify that � and 	 witness that

RINIT

cyl

0;1

�

TxtEx

a

strong

L.

Hence L is �

TxtEx

a

strong

-complete by Theorem 2.

5 Strong Degrees and Their

Characterizations

In this section we establish and characterize a rich struc-

ture of degrees of strong reducibility (or, simply, strong

degrees), where every degree represents some natural

type of learning strategies and re
ects topological and

algorithmic structures of the languages within it.

Our characterizations of degrees are of two types.

Characterizations of the �rst type, see Theorem 4, spec-

ify language classes in and below a given degree. Every

such characterization speci�es a class of natural strate-

gies learning all languages in the given degree and fail-

ing to learn (at least some) languages in the degrees

above or incomparable with the given degree. In cer-

tain sense, such a characterization establishes the scope

of learnability de�ned by the degree.

Characterizations of the second type, see Theorem 5,

specify algorithmic and set-theoretical restrictions on all
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classes of languages in a given degree and in all degrees

above imposed by learnability of hardest classes in the

given degree.

Every class L of languages observed in this paper

naturally speci�es all classes in the strong degree of this

class (that is, all classes that are strongly reducible to

the given class, and to which the given class is strongly

reducible). We will denote the strong degree of a class

L of languages using the same name as for the class L

itself (for example, INIT will stand both for the class

L = INIT de�ned above, as well as for the whole degree

of all classes of languages which are �

TxtEx

strong

to INIT).

Which connotation is being used will be always clear

from the context.

The structure of degrees developed in this section

can be represented in the form of a complex directed

graph. The lowest, or, rather, starting points of our hi-

erarchies, are the degrees SINGLE;COSINGLE; INIT

and COINIT, that contain well-known classes of lan-

guages learnable by some \simplest" strategies. All

of these degrees are proven in [JS96] to be pair-

wise di�erent. A natural class of languages to con-

sider is also FINITE. However, this class was

shown in [JS96] to be in the same strong degree

as INIT . The paper [JS96] contains a number

of other natural classes of languages, all of which

belong to the degrees SINGLE;COSINGLE; INIT

or COINIT. This enables us to concentrate on

classes SINGLE;COSINGLE; INIT, and COINIT as

the \backbone" of our hierarchy.

Due to space constraints, in this paper, we only con-

centrate on INIT;COINIT. Similar characterizations

and hierarchy results involving SINGLE;COSINGLE,

in addition to INIT;COINIT have also been obtained.

The reader is referred to [JKW99] for details. Notation

and de�nitions below provide us with terminology and

apparatus for these characterizations.

De�nition 16 F , a partial recursive mapping from

FINITE � N to N , is called an up-mapping i� for all

�nite sets S; S

0

, for all j; j

0

2 N :

If S � S

0

and j � j

0

, then

F (S; j)# ) [F (S

0

; j

0

)# � F (S; j)].

For an up-mapping F and L � N , we abuse notation

slightly and let F (L) denote lim

S!L;j!1

F (S; j) (where

by S ! L we mean: take any sequence of �nite sets

S

1

; S

2

; : : :, such that S

i

� S

i+1

and

S

S

i

= L, and then

take the limit over these S

i

's).

Note that F (L) may be unde�ned in two ways:

(1) F (S; j) may take arbitrary large values for S �

L, and j 2 N , or

(2) F (S; j) may be unde�ned for all S � L, j 2 N .

De�nition 17 F , a partial recursive mapping from

FINITE � N to N , is called a down-mapping i� for all

�nite sets S; S

0

and j; j

0

2 N ,

If S � S

0

and j � j

0

, then

F (S; j)# ) [F (S

0

; j

0

)# � F (S; j)].

For a down-mapping F and L � N , we abuse notation

slightly and let F (L) = lim

S!L;j!1

F (S; j).

The following results characterize strong degrees be-

low and above INIT.

Theorem 4 L �

TxtEx

strong

INIT i� there exist F , a partial

recursive up-mapping, and G, a partial limit recursive

mapping from N to N , such that for all L 2 L,

(a) F (L)# <1.

(b) G(F (L)) converges to a grammar for L.

Theorem 5 INIT �

TxtEx

strong

L i� there exists a recursive

function H such that

(a) fW

H(i)

j i 2 Ng � L,

(b) W

H(i)

�W

H(i+1)

, and

(c) fW

H(i)

j i 2 Ng is limiting standardizable.

One can prove similar characterizations as in the

above two theorems for COINIT, by replacing INIT by

COINIT and in Theorem 4 replacing \up-mapping" by

\down-mapping", and in Theorem 5 replacing condition

(b) by \W

H(i)

� W

H(i+1)

"; see [JKW99] for details.

The above characterizations describe essential struc-

tural and algorithmic properties of the languages in the

appropriate degrees.

Every class we have observed represents certain

strategies of learning in the limit. Now let us imagine a

\multidimensional" language where every \dimension"

is being learned using its speci�c type of learning strat-

egy, that is SINGLE;COSINGLE; INIT, or COINIT

like. If this idea can be naturally formalized, the fol-

lowing questions can be asked immediately:

1. Are degrees de�ned by classes of \multidimen-

sional" languages stronger than the degrees of simple

\one-dimensional" classes?

2. Is it possible to characterize these degrees in terms

similar to the ones we have used for \one-dimensional"

degrees?

We consider the following way to form \multi-

dimensional" languages. Therefore, let BASIC =

fINIT;COINITg. Our approach is based on the fol-

lowing idea: the learner knows in advance to which

of the classes from BASIC every \dimension" L

k

of

an \n-dimensional" language L belongs; however, to

learn the \dimension" L

k+1

, one must �rst learn the

codes i

1

; : : : ; i

k

of the grammars for the languages

L

1

; : : : ; L

k

; then L

k+1

is the (k+1)-\projection" fx

k+1

j

hi

1

; : : : ; i

k

; x

k+1

; x

k+2

; : : : ; x

n

i 2 Lg.

For example, suppose it is known that the lan-

guages L

k

(of the k-th \dimension") are from the class

COINIT. Then, for any L

k

, the number i such that

L

k

= fj j j � ig can be viewed as a legitimate de-

scription of this language. Then this i = i

k

, together

with i

1

; i

2

; : : : ; i

k�1

found on the previous phases of the
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learning process and together with some �xed in ad-

vance \pattern" (say, INIT) (specifying an appropriate

learning strategy) can be used to learn the \dimension"

L

k+1

.

\Patterns" specifying classes of languages in di�er-

ent \dimensions" can be of any nature, as long as they

provide su�cient information making the class learn-

able. In our �rst formalization of this idea below, we

limit \patterns" to come from BASIC .

Before we give the general de�nition for the classes

that formalizes the above idea, we demonstrate how

to de�ne some classes of \two-dimensional" languages

based on the classes from BASIC . We hope that these

de�nitions and the following discussion will make the

general de�nition and related results more transparent.

De�nition 18 (COINIT ; INIT) = fL j there exist

i; j 2 N such that L = fha; bi j a > i, or [a = i and

b � j]gg.

(INIT ;COINIT) = fL j there exist i; j 2 N such

that L = fha; bi j a < i, or [a = i and b � j]gg.

(INIT ; INIT) = fL j there exist i; j 2 N such that

L = fha; bi j a < i, or [a = i and b � j]gg.

(COINIT ;COINIT) = fL j there exist i; j 2 N such

that L = fha; bi j a > i, or [a = i and b � j]gg.

To justify our de�nition, we brie
y discuss the \nat-

ural" strategies that learn the classes de�ned above.

Consider a language L 2 (COINIT ; INIT) (see �g-

ure 1, where i; j denote the parameters/descriptors of

the language L). To learn a language in this class, one

�rst uses a COINIT-like strategy, and once the �rst \de-

scriptor" i of the language has been learned, \changes

its mind" to a INIT-like strategy to learn the second

\descriptor" j. More speci�cally, imagine the area rep-

resenting a language in (COINIT ; INIT): it consists of

the in�nite rectangle containing all points ha; bi with

a > i for some i (apparently, the rectangle is open up-

word and to the right) and a string of points hi; bi; b � j

just left of the rectangle. The learner �rst tries to de-

termine the left border i of the rectangle. If some hr; bi

shows up in the input, r+ 1 can be discarded as a can-

didate for such i; accordingly, r + 1 cannot represent

the \column" containing the second \dimension" of the

language, and, consequently, all pairs hr + 1; bi; b 2 N

belong to L, which makes this part of the language eas-

ily learnable by COINIT-type strategy (only the �rst

\dimension" matters). Once i has been identi�ed (in

the limit), the learner, using the \column" hi; �i, may

start to learn the parameter j. Here, if some pair hi; si

showed up in the input, s�1 can be discarded as a can-

didate for the parameter j. All discarded pairs ha; bi can

be viewed as the \terminating" part of the language in

question, while hi; ji can be viewed as its \propagating"

part (\propagating" means \the part of the language

representing its description, subject to possible change

in the limit").

Y

X

.......
j

i

Figure 1: L

COINIT ;INIT

i;j

Similar considerations

can be applied to (INIT;COINIT), (INIT; INIT), and

(COINIT;COINIT).

In some sense, any language L in the above classes

consists of two parts:

1. Terminating part T (L) consisting of the dis-

carded \conjectures".

2. Propagating part P (L) consisting of those pairs

in L that represent the current hypothesis-\descriptor"

of L.

Now we are ready to give the general de�nition of

\multidimensional" classes formalizing the above ap-

proach.

For any tuples X and Y , let X � Y stand for the

concatenation of X and Y (that is, X � Y is the tuple,

where the �rst tuple is appended by the components of

the second tuple).

De�nition 19 Suppose k � 1. Let Q 2 BASIC

k

. Let

I 2 N

k

. Then inductively on k, we de�ne the languages

L

Q

I

and T (L

Q

I

) and P (L

Q

I

) as follows.

If k = 1, then

(a) if Q = (INIT) and I = (i), then

T (L

Q

I

) = fhxi j x < ig, P (L

Q

I

) = fhiig, and L

Q

I

=

T (L

Q

I

)

S

P (L

Q

I

).

(b) if Q = (COINIT) and I = (i), then
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T (L

Q

I

) = fhxi j x > ig, P (L

Q

I

) = fhiig, and L

Q

I

=

T (L

Q

i

)

S

P (L

Q

i

).

Now suppose we have already de�ned L

Q

I

for k � n.

We then de�ne L

Q

I

for k = n + 1 as follows. Suppose

Q = (q

1

; : : : ; q

n+1

) and I = (i

1

; : : : ; i

n+1

). Let Q

1

=

(q

1

) and Q

2

= (q

2

; : : : ; q

n+1

). Let I

1

= (i

1

) and I

2

=

(i

2

; : : : ; i

n+1

). Then,

T (L

Q

I

) = fX �Y j X 2 T (L

Q

1

I

1

), or [X 2 P (L

Q

1

I

1

) and

Y 2 T (L

Q

2

I

2

)]g,

P (L

Q

I

) = fX � Y j X 2 P (L

Q

1

I

1

) and Y 2 P (L

Q

2

I

2

)g,

and

L

Q

I

= T (L

Q

I

)

S

P (L

Q

I

).

For ease of notation we often write L

Q

(i

1

;i

2

;:::;i

k

)

as

L

Q

i

1

;i

2

;:::;i

k

.

De�nition 20 Let Q 2 BASIC

k

. Then the class L

Q

is

de�ned as

L

Q

= fL

Q

I

j I 2 N

k

g.

For technical convenience, for Q = (), I = (), we

also de�ne T (L

Q

I

) = ;, P (L

I

Q

) = fhig, and L

Q

I

=

T (L

Q

I

)

S

P (L

Q

I

), and L

Q

= fL

Q

I

g.

Note that we have used a slightly di�erent nota-

tion for de�ning the classes L

Q

(for example instead

of (INIT ; INIT), we now use L

(INIT;INIT)

). This is for

clarity of notation.

One can easily see that the de�nitions of the \pair"-

type classes comply with the general de�nition. The

immediate question is which of the Q 2 BASIC

�

repre-

sent di�erent strong degrees.

We say that a sequence Q = (q

1

; q

2

; : : : ; q

k

) is

a subsequence of Q

0

= (q

0

1

; q

0

2

; : : : ; q

0

l

), i� there exist

i

1

; i

2

; : : : ; i

k

such that 1 � i

1

< i

2

< : : : < i

k

� l,

and for 1 � j � k, q

j

= q

0

i

j

.

Theorem 6 (Q-hierarchy Theorem) Suppose Q 2

BASIC

k

and Q

0

2 BASIC

l

. Then, L

Q

�

TxtEx

strong

L

Q

0

i� Q is a subsequence of Q

0

.

Theorem 6 immediately shows that none of L

Q

is

�

TxtEx

strong

-complete.

Characterizations for the degrees above and below

arbitrary classes L

Q

similar to the ones in Theorems 4

and 5 have been obtained in [JKW99].

The above Q-hierarchy can be applied to quan-

tify intrinsic complexity of learning other classes from

texts. Consider, for example, open semi-hulls repre-

senting the space consisting of all points (x; y) with

integer components x; y in the �rst quadrant of the

plane bounded by the y-axis and the \broken" line pass-

ing through some points (0; 0); (a

1

; c

1

); :::; (a

n

; c

n

) with

a

i

< a

i+1

(the line is straight between any of the points

(a

i

; c

i

); (a

i+1

; c

i+1

)); further, assume that the slope of

the broken line is monotonically non-decreasing (where,

for technical convenience, we assume that the �rst slope

is 0: that is c

1

= 0). Any such open semi-hull can

be easily learned in the limit by the following strategy:

given growing �nite sets of points in the open semi-

hull, learn the �rst \break" point (a

1

; c

1

), then the �rst

slope (c

2

� c

1

)=(a

2

�a

1

), then the second \break" point

(a

2

; c

2

), then the second slope (c

3

�c

2

)=(a

3

�a

2

), etc. Is

this learning strategy optimal? A more general question

is: how to measure complexity of learning open semi-

hulls? Note that natural complexity measures such as

the number of mind changes or memory size would not

work, since none of them can be bounded while learn-

ing open semi-hulls. One can rather try to determine

how many \mind changes" are required in much more

general sense: how many times ought a strategy change

from INIT-like learning to, say, COINIT-like learning

and back? This is where our hierarchy can be applied.

For example, suppose all open semi-hulls with two \an-

gles" are in the class (INIT;COINIT; INIT;COINIT).

Then there exists a learning strategy that \changes its

mind" from INIT-like strategy to COINIT , then back

to INIT, and then one more time to COINIT (as a mat-

ter of fact, such a strategy for learning the above open

semi-hulls exists, and it is somewhat \better" than the

natural strategy described above). On the other hand,

one can show that no (COINIT; INIT;COINIT; INIT)-

type strategy (that is, the one that starts like COINIT,

\changes its mind" to INIT, then back to COINIT , and

then again to INIT) can learn open semi-hulls with two

\angles". Upper and lower bound of similar kind are

obtained for open semi-hulls and other geometrical con-

cepts in [JK99].

In our de�nition of the classes L

Q

we assumed that

the \patterns" for di�erent \dimensions" of a \multidi-

mensional" language come from the set BASIC . This

gave us opportunity to formalize classes (and degrees)

requiring rather complex yet \natural" learning strate-

gies. Now we are going to make another step and de-

�ne classes of \multidimensional" languages, where such

\patterns" come from the whole set of vectors Q. More-

over, the grammar for every \dimension" L

k

determines

which \pattern" Q must be used to learn L

k+1

.

Note that there exists a recursive bijective mapping,

code

k

(obtainable e�ectively in k) from the set of all

possible Q (with components from BASIC) onto N

k

.

Suppose Q 2 BASIC

k

. Let L

Q

i

denote the language

L

Q

i

1

;i

2

;���;i

k

, where i = hi

1

; � � � ; i

k

i.

Let code be a mapping from

S

1

k=1

BASIC

k

to N .

Let Q

i

denote the Q with code i.

De�nition 21 Suppose S

i

= fig.

Q

0

= fS

i

j i 2 Ng.

Let L

Q

m

i

0

;i

1

;���;i

m

= S

i

0

� L

Q

i

0

i

1

� � � �L

Q

i

m�1

i

m

.

Q

m

= fL

Q

m

i

0

;i

1

;���;i

m

j i

0

; i

1

; � � � ; i

m

2 Ng.
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We can thus consider i

0

; i

1

; � � � ; i

m

as a parameter of the

languages in Q

m

.

For example, any language L 2 Q

1

consists of all

pairs hi; xi such that all components x form a language

in L

Q

i

.

Obviously, every class L

Q

is strongly reducible to

Q

1

. On the other hand, it easily follows from the hi-

erarchy established in Theorem 6 that the degree Q

1

is

above any L

Q

. It can be shown that Q

2

6�

TxtEx

strong

Q

1

.

Moreover, it can be shown that all the Q

m

as well

as Q

�

=

S

1

m=1

Q

m

are not �

TxtEx

a

strong

-complete, for

a 2 N [ f�g.

1

Some open problems are listed in the

Conclusions.

6 Weak Degrees and Their

Characterizations

First note

that for weak-reductions, INIT;FINITE;COSINGLE

are �

TxtEx

weak

-complete [JS96]. For all a 2 N [ f�g, we

will give a characterization of �

TxtEx

a

weak

-complete classes

below. A characterization of degrees involving COINIT

and SINGLE, as well as a hierarchy based on the classes

L

Q

, where Q 2 fSINGLE;COINITg

�

, has also been ob-

tained. The reader is referred to [JKW99] for details.

De�nition 22 A non-empty class L of languages is

called quasi-dense i�

(a) L is 1{1 recursively enumerable.

(b) For any L 2 L and any �nite S � L, there exists

an L

0

2 L, such that S � L

0

, but L 6= L

0

.

Note: (b) can be equivalently replaced by

(b') For any �nite set S, either there exists no lan-

guage in L extending S, or there exist in�nitely many

languages in L extending S.

Theorem 7 For any a 2 N [ f�g and any L 2

TxtEx

a

, L is �

TxtEx

a

weak

-complete i� there exists a quasi-

dense subclass of L which is a-limiting standardizable.

7 Conclusions

The formalisms and results obtained in the paper are of

two types:

a) Formalisms, hierarchies, and characterizations for

classes of \multidimensional" languages, where informa-

tion learned from one \dimension" aids to learn another

one. The characterizations de�ne set-theoretical and al-

gorithmic properties of such classes. The obtained hi-

erarchies, as has been demonstrated in [JK99] in more

detail, can be used as scales for quantifying complexity

of learning other classes of languages.

1

For the de�nition of Q

�

we assume that there is some

uniform way in which one can determine the size of the tu-

ples, for example by coding any tuple x in N

k

, as hk; xi.

b) The characterizations of complete degrees. These

characterizations specify algorithmic and topological

properties of classes in the complete degrees. A new

natural powerful class of languages complete for strong

reductions has been discovered.

The results for \multidimensional" languages re-

veal a new variety of learning strategies, which, to

learn a \dimension", use previously learned informa-

tion to �nd the right \subspace", or a previously

learned \pattern" specifying a learning \substrategy"

for the next \dimension". As far as the former ap-

proach is concerned, the picture of hierarchies based

on \core" classes SINGLE;COSINGLE; INIT;COINIT

(SINGLE;COINIT for weak reductions) has been com-

pleted. The latter approach is implemented in the form

of classes Q

m

and Q

�

, see De�nition 21. There is a

number of interesting open problems related to these

classes, as well as to the formalism as a whole:

a) Do the classes Q

m

for m > 1 form an in�nite

hierarchy?

b) Is it possible to de�ne a \natural" class of lan-

guages based on combinations of classes from BASIC

above the class Q

�

?

c) Is it possible to (naturally) de�ne a type of lan-

guage classes with a di�erent way of using or learning

\patterns"?

The degrees of \core" classes forming BASIC are

known to contain many of important \practical" learn-

ing problems. For example, COINIT contains the class

of pattern languages [JS96]. However, there certainly

exist \natural" classes of in�nite/�nite languages that

are probably incomparable, at least in terms of strong

reductions, with some/all classes in BASIC . One can

add these classes to BASIC and apply the formalisms

developed in the paper. Exploration of, say, Q-classes

based on such extensions of BASIC can give a deeper

understanding of the nature of learning strategies and

learning from texts as a whole.
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