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Abstract more the algorithm depends on the actual rewards obtained,

with the current value function playing a lessened role. The

Temporal difference (TD) algorithms are used in extreme cases afp(k = oo) andTp(A = 1) become the

reinforcement learning to compute estimates of the Monte Carlo algorithm, which updates each prediction to be

value of a given policy in an unknown Markov de- the average of the discounted returns in the trajectories.

cision process (policy evaluation). We give rigor- A well-known issue is whether it is better to use large

ous upper bounds on the error of the closely re- or small values of the parametgrsand A\. Watkins [5] in-

latedphased TD algorithms (which differ from the formally discusses the trade-off that this decision givss r

standard updates in their treatment of the learning to: larger values for thep parameters suffer larger variance

rate) as a function of the amount of experience. in the updates (since more stochastic reward terms appear),

These upper bounds prove exponentially fast con- but also enjoy lower bias (since the error in the currentevalu

vergence, with both the rate of convergence and function predictions have less influence). This argumeat ha

the asymptote strongly dependent on the length of largely remained an intuition. However, some conclusions

the backup# or the parametekx. Our bounds give arising from this intuition — for instance, that intermeeia

formal verification to the well-known intuition that values ofk and A often yield the best performance in the

TD methods are subject to a bias-variance trade- short term — have been borne out experimentally [4, 2].

off, and they lead to schedules férand X that In this paper, we provide rigorous upper bounds on the

are predicted to be better than any fixed values for error in the value functions gfhased TD algorithms as a

these parameters. We give preliminary experimen- function of the number of trajectories used. In other words,

tal confirmation of our theory for a version of the we give bounds on thiearning curves of phasedp methods

random walk problem. that hold for any MDP. The phasea algorithms capture the

spirit of the standardp methods, but treat the learning rate

. in a way that permits a simplified analysis. Our upper bounds
1 Introduction decay exponentially fast, and are obtained by first deriving
In the policy evaluation problem, we must predict the ex- @ one-step recurrence relati_ng th_e errors before and after a
pected discounted return (arlue) for a fixed policyr, given phasedrp update, and then iterating this recurrence for the
only the ability to generate experience in an unknown Markov desired number of steps. Of particular interest is the form
decision process (MDP)/. A well-studied parameterized of our bounds, since it fqrmallzes the trade-off d|scu§sed
family of temporal difference (or Tp) [3] algorithms have abov_e —the bounds consist of te_rms that are monotomcally
been developed for this problem. These algorithms make 9rowing with« and (corresponding to the increased vari-
use of repeated trajectories undefrom the state(s) of in-  @nce), and terms that are monotonically shrinking witnd
terest, and perform iterative updates to the value function A (corresponding to the decreased influence of the current er-
The parameters of the algorithms control how far they look "O")- _ _ -
ahead in the trajectories. Tha(k) algorithm uses the first Overall, our bounds provide the following contributions
k rewards, and the (current) value prediction at thet and predictions:
1)st state reached, in making its update. The more com-
monly usedrn(A) family of algorithms use exponentially
weighted sums ofp(k) updates (with decay parametgr.
The smaller the value fok or A, the less the algorithmde- o A proof of exponentially fast rates of convergence for
pends on the actual rewards received in the trajectory, and any fixedk or X;
the more it depends on the current predictions for the value
function. Conversely, the larger the value foror X, the e A rigorous upper bound that predicts that larger val-

o A formal theoretical explanation of the bias-variance
trade-off in phased multi-sterp updates;
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ues ofk and A lead to fasteronvergence, but tohigher A € [0, 1], theTp()) update can now be easily expressed as

asymptotic errror; an infinite linear combination of thep (k) updates:
e Formal explanation of the superiority of intermediate N - ho1 -
values oft and) (U-shaped curves) for any fixed num- (A, 7 V() = Z(l — ATk, 7 V().
ber of iterations; =l
Given a sequence , m, 73, . . ., We can simply apply either

e Derivation of a decreasinghedule of k and A that our type of TD update sequentially. In either case, as either
bound predicts should beat any fixed value of these pa- pecomes large ok approaches 1, the updates approach a
rameters. Monte Carlo method, in which we use each trajectqrgn-

tirely, and ignore our current estimat& (-). As k becomes

small or A approaches 0, we rely heavily on the estimate

V7 (), and effectively use only a few steps of eagh The

common intuition is that early in the sequence of updates,

the estimaté’”(-) is poor, and we are better off choosihg
large orA near 1. However, since the trajectorieglio obey

the statistics ofr, the value function estimates will eventu-

Furthermore, we provide some preliminary experimentat con
firmation of our theory for the random walk problem. We
note that some of the findings above were conjectured by
Singh and Dayan [2] through analysis of specific MDPs.

2 Technical Preliminaries

Let M = (P, R) be an MDP, consisting of theansition allyimprove, at which point we may be better off “bootstrap-
distributions P(-|s, a) over next states for any state-action ping” by choosing smalk or M.
pair (s, a), and thereward distributions R(-|s) over scalar In order to provide a rigorous analysis of this intuition,
rewards at each state For any policyr (a mapping from we will study what we calphased TD updates. These al-
states to actions) i/, and any start state,, atrajectory gorithms are intended to capture the qualitative propedie
generated byr starting froms, is a random variable that the standardp methods, while simplifying the complexities
is an infinite sequence of states and rewards: of the moving average introduced by the learning ratén
each phase, we are giventrajectories undefr from every
7= (S0,70) = (51,71) = (82,72) = -+, states, wheren is a parameter of the analysis. Thus, phase

t consists of a set(t) = {r7(t))},,:, wheres ranges over
all states; ranges froml to n, andr/(¢) is an independent
random trajectory generated kystarting from state. In
phase, phasedrp averages alk of the trajectories irf(¢)
that start from state to obtain its update of the value func-
tion estimate fos. In other words, the phasew (k) updates

Here each random rewardis distributed according t&(-|s;),
and each statg ; is distributed according t& (-|s;, 7(s;)).

For simplicity we will assume that the support8f-|s;) is
[—1,+1]. However, all of our results easily generalize to the
case of bounded variance. We definethie function of r,

V™ (s), to be the expected discounted return of trajectories

! become
generated by starting froms: "
V™(s) = Er[ro +vm1 —|—~yzr2—|—...] Via(s) < (1/n);(r0+'yr1—|—u~
where0 < v < 1 is a fixeddiscount factor. One of the +yE T+ 7’“17[7(5};))
central problems in reinforcement learning is that of eatim ' '
ing the value function of a fixeat on the basis of sample  where the-; are the rewards along trajector§(t), ands; is
trajectories under. thekth state reached along that trajectory. The phassd)
We now define the standarah (k) (also known ag:-step updates become
backup) and D () algorithms for updating an estimate of n /oo
the valu_e function. _G|vgn atrajectOfygenerated_byr from Viii(s) « (1/n) Z Z(l — M)At (rd e 4 -
s, and given an estimaté™ (-) for the value functiort ™ (-), io1 \k—1

for any natural numbet we define 1 ~e
o+, (Sk)))

ok, V() = (1= a)V7(s) Note that the phaserb updates are subject to the same bias-
+a (ro +yr+ -+ 7’“‘1@_1 + 7kV”(sk)) . variance intuition as the standard updates. Indeed, we view
phasedrp updates with a constant value ofas roughly
TheTn(k) update based onis simply analogous to standarch updates with a constant learning
R R rate« [1], with largern corresponding to smaller. To see
V™(s) « 1Dk, 7, VT(")). this, note that we may “unroll” the standara (%) estimate
aftert iterations as
Itis implicit that the update is always applied to the estena .
at the initial state of the trajectomy, and we regard the dis- Vi(s) = (1=a)' Vi (s) + (1 —a)' " ta(po + po)

071'
count factor and th€earning rate o as being fixed. For any +(1— ) 2alpr +p1) + -+ alpe_1 + pe_1).
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Here we usg; = (v} +~ri + -+ "7l _ ) andy;
~R V7 (st.). Thus, for anyfixed o, because of the exponential
damping, our estimate at any given moment is directly de-
pendent on a number of recent trajectories that is effdgtive

“variance” term in our overall bound above. The remainder
ofthe phasedp(k) update is simply” (1/n) S5, V™, (sh).
But since|V;™ (sh) — V7™ (si)| < A,_; by definition, the
contribution to the error is at most®*A,_,, which is the

constant. We note that since it is common in practice to use a“bias” term of the bound. We note that a similar argument

decreasing (and not constant) learning rate, we are anglyzi
here an algorithm that in at least one way is believed to be
inferior to those used experimentally.

leads to bounds in expectation rather than the PAC-stylad®u
given here. |
Let us take a brief moment to analyze the qualitative be-

In the ensuing sections, we provide a rigorous upper boundiavior of Equation (1) as a function éf For large values of

on the error in the value function estimates of phased

k, the quantityy* becomes negligible, and the bound is ap-

updates as a function of the number of phases. This uppemroximately — 5 og n, giving almost al
pd function of th ber of ph This upp tely(1/(1 — v))/31log(k/3)/ Imost all

bound clearly captures the bias-variance intuitions esqee

the weight to the error incurred by variance in the firse-

above. We note that while the experimental and theoretical wards, and negligible weight to the error in our current ealu

relationship between standard and phasedipdates needs
to be explored, the phasad algorithms are well-defined,
simple and easily implemented in their own right, and to the
extent that one believes the standard updates tafeior

function. At the other extreme, wheén= 1 our reward vari-

ance contributes error only’3 log(1/d)/n, but the error in

our current value function has weight Thus, the first term
increases witlt, while the second term decreases withn

to the phased updates, our upper bounds are relevant to tha manner that formalizes the intuitive trade-off that oreefa

former.

3 Bounding the Error of Phased TD Updates

Theorem 1 (Phased TD(k) Error Recurrence) Let S(t) be
the set of trajectories generated by 7 in phase t (n trajecto-
ries from each state), let ‘A/t” (+) be the value function estimate
of phased TD (k) after phase t, and let

A= max{|Vi7(s) = VT (s)]).

Then for any 1 > § > 0, with probability at least 1 — 4,

[3log(k/d
ngL /)_i_,_ykAt_l.

Here the error A;_1 after phase t — 1 is fixed, and the prob-
ability is taken over only the trajectories in S(t).

1— k
A< —1
-~

1)

Proof:(Sketch) We begin by writing
V7(s) E[ro +yr1 4+ 7" " st + 45V (s8]
E[ro] + 7E[r1] 4+ -+ + 7" E[ry ]
+Y"E[V7 (sx)].

Here the expectations are over a random trajectory umnder
thusE[r¢] (¢ < k — 1) denotes the expected value of ittle
reward received, whil&[V ™ (s, )] is the expected value of
the true value function at thith state reached. The phased
Tp(k) update sums the termg(1/n) > ., r}, whose ex-
pectations are exactly th¢ E[r,] appearing above. By a
standard large deviation analysis (omitted), the proligbil
that any of these terms deviate by more than

e =+/3log(k/d)/n

from their expected values is at mastlf no such deviation
occurs, the total contribution to the error in the value tiorc
estimate is bounded ly1 —~+*)/(1—7))e, giving rise to the
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when choosing between longer or shorter backups.
Equation (1) describes the effect of a single phase of
TD(k) backups, but we can iterate this recurrence over many
phases to derive an upper bound on the full learning curve
for any value ofk. Assuming that the recurrence holds for
t consecutive steps,and assuming\, = 1 without loss of
generality, solution of the recurrence (details omitted)ds

v
T V/3log(k/d)/n + 4~

This bound makes a number of predictions about the effects
of different values fok. First of all, ast approaches infinity,
the bound oM\, approaches the value

(1/(1 = 7))/ 3log(k/d)/n,

which increases witlk. Thus, the bound predicts thate
asymptotic error of phased TD(k) updates is larger for larger
k 2. On the other hand, theite of convergence to this
asymptote isy*t, which is always exponentially fast, but
faster for larger k. Thus, in choosing a fixed value @f
we must choose between having either rapid convergence to
a worse asymptote, or slower convergence to a better asymp-
tote. This prediction is illustrated graphically in Figur@),
where with all of the parameters besidesnd: fixed (namely,
~, §, andn), we have plotted the bound of Equation (2) as a
function oft for several different choices &f

Note that while the plots of Figure 1(a) were obtained
by choosingfixed values fork and iterating the recurrence
of Equation (1), at each phasave can instead use Equa-
tion (1) to choose the value éfthat maximizes the predicted

1
Ay <

(2)

' Formally, we can apply Theorem 1 by choosing &' /(tN),
whereNV is the number of states in the MDP. Then with probability
atleastl — ¢’, the bound of Equation (1) will hold at every state for
¢ consecutive steps.

?We note that this statement is valid for the case of constant
which is analogous to a constant learning rate, as alreagysied.
Decreasing learning rates can of course achieve zero astimpt
error.
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Figure 1: (a) Upper bounds on the learning curvesof
phasedrp(k) for several values ok, as a function of the
number of phases(parameters. = 3000,y = 0.9, = 0.1).
Note that larger values df lead to more rapid convergence,
but to higher asymptotic errors. Both the theory and the
curves suggest a (decreasing) scheduld: fantuitively ob-
tained by always “jumping” to the learning curve that enjoys

decrease in errak; — A;4;. In other words, the recurrence
immediately yields achedule for k, along with an upper
bound on the learning curve for this schedule that outper-
forms the upper bound on the learning curve for any fixed
value ofk. The learning curve for the schedule is also shown
in Figure 1(a), and Figure 1(b) plots the schedule itself.

Another interesting set of plots is obtained by fixing the
number of phases and computing for each the error af-
tert phases usingp (k) updates that is predicted by Equa-
tion (2). Such plots are given in Figure 1(c), and they clearl
predict a unique minimum — that is, an optimal valuekof
for each fixedt (this can also be verified analytically from
equation 2). For moderate valuesiofvalues ofk that are
too small suffer from their overemphasis on a still-inaeter
value function approximation, while values bthat are too
large suffer from their refusal to bootstrap. Of coursé,ias
creases, the optimal value bfdecreases, since small values
of k£ have time to reach their superior asymptotes.

We now go on to provide a similar analysis for the(A)
family of updates, beginning with the analogue to Theorem 1.

Theorem 2 (Phased TD(A) Error Recurrence) Let S(t) be
the set of trajectories generated by T in phase t (n trajecto-
ries from each state), let Vf (+) be the value function estimate
of phased TD(X) after phase t, and let

Ay = max{|V{7(s) = V7 (s)[}.

Then for any 1 > > 0, with probability at least 1 — 9,

A < min { L= (0 [3log(k/3) | (x\)F }
(=N
mAt_l. (3)

Here the error A;_1 after phase t — 1 is fixed, and the prob-
ability is taken over only the trajectories in S(t).

We omit the proof of this theorem, but it roughly fol-
lows that of Theorem 1. That proof exploited the fact that in
TD(k) updates, we only need to apply large deviation bounds
to the rewards of a finite numbet)(of averaged trajectory

the greatest one-step decrease from the current error. Thisteps. InTp(}), all of the rewards contribute to the update.

schedule can be efficiently computed from the analytical up-

However, we can always choose to bound the deviations of

per bounds, and leads to the best (lowest) of the learningthe firstk steps, for any value of, and assume maximum

curves plotted, which is significantly better than for angdix

k. (b) The schedule fok derived from the theory as a func-
tion of the number of phases (c) For several values of
the number of phases the upper bound or\; for phased
TD(k) as a function ok. These curves show the predicted
trade-off, with a unique optimal value féridentified until¢

is sufficiently large to permit 1-step backups to converge to
their optimal asymptotes.
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variance for the remainder (whose weight diminishes rapidl
as we increasé). This logic is the source of theing {-}
term of the bound. One can view Equation (3) asuaia-
tional upper bound, in the sense that it provides a family of
upper bounds, one for eaéh and then minimizes over the
variational parametek.

The reader can verify that the terms appearing in Equa-
tion (3) exhibit a trade-off as a function of analogous to
that exhibited by Equation (1) as a functionof In the in-
terest of brevity, we move directly to then(\) analogue
of Equation (2). It will be notationally convenient to define



ky = argmin, {F(A\)}, whereF' () is the function appear-
ing inside theming {-} in Equation (3). (Here we regard all
parameters other thanas fixed.) It can be shown that for
Ag = 1, repeated iteration of Equation (3) yields thphase
inequality

Ac<a imB (4)
a
t >~ Gx 1— b)\ A
where
W = LN [Blog(ka/d) ()™
AT 1—~A n 1—~A
and
b (1-A)y
A — .
1—~A
()
[ Schedulec\
° ° " ’NumberofPhases = "
(b)

o 0‘\ 0‘2 0‘3 0‘4 D}‘.\E 0‘5 0‘7 D‘B D‘B 1

Figure 2: (a) Upper bounds on the learning curvesof
phasedrp(A) for several values of, as a function of the
number of phases(parameters. = 3000,y = 0.9,6 = 0.1).
The predictions are analogous to thosetfo(k) in Figure 1,

verifying that the asymptote, /(1 — ) increases with\

is more difficult due to the presence bf, which involves

a minimization operation. However, the learning curve plot
of Figure 2(a) clearly show the predicted phenomena — in-
creasing) yields faster convergence to a worse asymptote.
As we did for therp (k) case, we use our recurrence to de-
rive a schedule foR; Figure 2(a) also shows the predicted
improvement in the learning curve by using such a sched-
ule. Finally, Figure 2(b) again shows the non-monotonie pre
dicted error as a function df for a fixed number of phases.

4 Some Experimental Confirmation

(@)
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Figure 3: (a) Empirical learning curves; for Tp(k) for
several values of on the random walk problem (parameters
n = 40 andy = 0.98). Eaeh plot is averaged over 5000
runs of Tp(k). Also shown is the learning curve (averaged
over 5000 runs) for the empirical schedule computed from
theTn(k) learning curves, which is better than any of these
curves. (b) The empirical schedule.

and we have again plotted the predicted best learning curve

obtained via a decreasing schedule\ofb) For several val-
ues of the number of phasésthe upper bound on; for
TD(A) as a function ofA.

While Equation (4) may be more difficult to parse than
its TD(k) counterpart, the basic predictions and intuitions
remain intact. As approaches infinity, the bound ok
asymptotes at, /(1 — b,), and the rate of approach to this
asymptote is simply,’, which is again exponentially fast.
Analysis of the derivative of, with respect tox confirms
that for ally < 1, b, is a decreasing function of — that
is, the larger the\, the faster the convergence. Analytically
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In order to test the various predictions made by our the-
ory, we have performed a number of experiments using phased
TD(k) on a version of the so-calledndom walk problem [4].

In this problem, we have a Markov process with 5 states ar-
ranged in a ring. At each step, there is probability 0.05 that
we remain in our current state, and probability 0.95 that we
advance one state clockwise around the ring. (Note thag sinc
we are only concerned with the evaluation of a fixed pol-
icy, we have simply defined a Markov process rather than a
Markov decision process.) Two adjacent states on the ring
have rewardt-1 and —1 respectively, while the remaining
states have reward 0. The standard random walk problem



has a chain of states, with an absorbing state at each end,;
here we chose a ring structure simply to avoid asymmetries
in the states induced by the absorbing states.

To test the theory, we ran a series of simulations comput-
ing theTp (k) estimate of the value function in this Markov
process. For several different valuesiofve computed the
error A; in the value function estimate as a function of the
number of phases (A; is easily computed, since we can
compute the true value function for this simple problem.)
The resulting plot in Figure 3(a) is the experimental ana-
logue of the theoretical predictions in Figure 1(a). We see
that these predictions are qualitatively confirmed — lavger
leads to faster convergence to an inferior asymptote.

Given these empirical learning curves, we can then com-
pute the “empirical schedule” that they suggest. Namely, to
determine experimentally a schedule fothat should out-
perform (at least) the values éfwe tested in Figure 3(a),
we used the empirical learning curves to determine, for any
given value ofA, which of the empirical curves enjoyed the
greatest one-step decrease in error when its current ea®r w
(approximately)A. This is simply the empirical counter-
part of the schedule computation suggested by the theory de-
scribed above, and the resulting experimental learningecur
for this schedule is also shown in Figure 3(a), and the sched-
ule itself in Figure 3(b). We see that there are significant
improvements in the learning curve from using the schedule,
and that the form of the schedule is qualitatively similar to
the theoretical schedule of Figure 1(b).

5 Conclusion

We have given the first provable upper bounds on the error of
TD methods for policy evaluation. These upper bounds have
exponential rates of convergence, and clearly articulate t
bias-variance trade-off that such methods obey.
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