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Abstract

Haussler, Kearns, Seung and Tishby introduced
the notion of a shell decomposition of the union
bound as a means of understanding certain em-
pirical phenomena in learning curves such as
phase transitions. Here we use a variant of
their ideas to derive an upper bound on the
generalization error of a hypothesis computable
from its training error and the histogram of
training errors for the hypotheses in the class.
In most cases this new bound is significantly
tighter than traditional bounds computed from
the training error and the cardinality or VC
dimension of the class. Our results can also
be viewed as providing PAC theoretical foun-
dations for a model selection algorithm pro-
posed by Scheffer and Joachims.
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to 0 rather than simply less thdn's because none of the
hypotheses which produced an empirical error g2
could have atrue error close enougli that there exists

a significant probability of producing empirical error.
The bound presented here validates this intuition. We
show that you can ignore hypotheses with training error
nearl /2 in calculating an “effective size” of the class for
hypotheses with training error nearThis new effective
class size allows us to calculate a tighter bound on the
difference between training error and true error for hy-
potheses with training error neér The new bound is
proved using a distribution-dependent application of the
union bound similar in spirit to the shell decomposition
introduced by Haussler, Kearns, Seung and Tishby [1].

We actually give two upper bounds on generaliza-
tion error — an uncomputable bound and a computable
bound. The uncomputable bound is a function of the un-
known distribution of true error rates of the hypotheses
in the class. The computable bound is, essentially, the

uncomputable bound with the unknown distribution of
true errors replaced by the known histogram of training
For an arbitrary finite hypothesis class we consider the errors. Our main contribution is that this replacement is
hypothesis of minimal training error. We give a new sound, i.e., the computable version remains, with high
upper bound on the generalization error of this hypoth- confidence, an upper bound on generalization error.
esis computa_ble from the training error of the hypothe- When considering asymptotic properties of learning
ﬁ?p?)?ﬁe?;}srzﬁt&%iﬁgsf th_?_;{g'zgvg Egg;sd OifSthepi(?Qf; theo_ry b_ounds itis i_mport_ant to take limitsin v_vhich the
much tighter than more :craditional upper bounds com- cardinality (or VC dimension) of the hypothesis class is
puted from the training error and cardinality or VC di- allowed to grow Wlth_the_s_|ze of the sample. In practice
mension of the class more data typlcally justifies a I_arger hypothe5|s class.
As a simple exarﬁple suppose that we observe that For example, the size of a decision tree is generally pro-
all but one empirical erroir in a hypothesis space,i3 portional the amount of training data available. Here
we analyze the asymptotic properties of our bounds by

and one empirical error & Furthermore, suppose that considering an infinite sequence of hypothesis classes
the sample size is large enough (relative to the size of the 0 | Hon

hypothesis class) that with high confidence we have that, #m, 0ne for each sample size, such 'Fhatl_T ap-

for all hypotheses in the class, the true (generalization) Proaches a limit larger than zero. This kind of asymp-

error of a hypothesis is withi/5 of its training error. totic analy5|s provides a clear account _of the improve-
This implies, that with high confidence, hypotheses with Ment achieved by bounds that are functions of error rate

training error neait /2 have true error if3/10,7/10]. distributions rather than simply the size (or VC dimen-

Intuitively, we would expect that the true error of the hy- Sion) of the class.
pothesis with minimum empirical error to be very near We give a lower bound on generalization error show-

1 Introduction
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ing that the uncomputable upper bound is asymptoti- tion they conceptually define a weighting over the possi-
cally as tight as possible — any upper bound on gener- ble executions of the algorithm. Although the data dis-
alization error given as a function of the unknown distri- tribution is unknown, they give a way of computing a
bution of true error rates must asymptotically be greater lower bound on the weight of the particular execution of
than or equal to our uncomputable upper bound. Our the algorithm generated by the sample at hand. In this
lower bound on generalization error also shows that therepaper we consider distribution dependent union bounds
is essentially no loss in working with an upper bound defined independently of any particular learning algo-
computed from the true error distribution rather than ex- rithm.

pectations computed from this distribution as used by

Scheffer and Joachims [4]. 2 Mathematical Preliminaries

Asymptotically, the computable bound is simply the
uncomputable bound with the unknown distribution of

true errors replaced with observed histogram of train- ability at leastl — 6 over the choice of the sampewe

ing errors. Unfortunately, we can show that in limits have thatb[, 6] holds. In practices is the training sam-

Where_ In lntLML converges to a value greater than zero, ple of a learning algorithm. Note that VS ®[z, S, 4§
the histogram of training errors need not converge to yoes not imply¥? S Yz ®[z, S, &]. If X is a finite
the distribution of true errors — the histogram of train- get and for allz € X we have the assertions >

ing errors is a “smeared out” version of the distribution ( s ¢ @[S, z, 6] then by a standard application of the
of true errors. This smearing loosens the bound even hion bouﬁd ’we have the assertigh > 0 VS Vr €

in the large-sample asymptotic limit. We give a pre- -y g[g 1. We will call this the quantification rule.
cise asymptotic characterization of this smearing effect IX]

for the case where distinct hypotheses have independen f¥ > 0v'S @[S,d] andvd > 0 ¥°S W[S, 4] then

training errors. In spite of the divergence between the 2Y & standard application of the union bound we have

5 s s : :
uncomputable and computable bounds, the computable?® > 0 V°S @[S, 5] A W[S, 5]. We will call this the
conjunction rule.

bound is still significantly tighter than classical bounds ; .
not involving error distributions. The KL-dlverg?nce ofp fromoq, denotdd(¢||p), is
g _ 1=9y wi 0y — 7y —

The computable bound can be used for model selec- qln(p)"'i(l g) In( 1—13) with 0 ln(p)_ = OandgIn(f) =
tion. In the case of model selection we can assume an in-°°- Letp be the fraction of heads in a sequerntef m
finite sequence of finite model classés, K1, ... where tossesAof a biased coin where t_he probab|l_|ty o_f heads is
each?{; is a finite class withn |7,| growing linearly 7 Forp > p we have the following inequality given by
in j. To perform model selection we find the hypothe- Chernoffin 1952 [3].
sis of minimal training error in each class and use the 1: Pris> < —mD(llp) 1
computable bound to bound its generalization error. We Vaelp s Pripza) < ¢ )
can then select, among these, the model with the small-This bound can be rewritten as follows.
est upper bound on generalization error. Scheffer and
Joachims propose (without formal justification) replac- V6 >0V¥S D(max(p,p)|lp) < 2)
ing the distribution of true errors with the histogram of
training errors. Under this replacement, the model se- 1q derive (2) from (1) note thaer (D (max(p, p)||p) >
lection algorithm based on our computable upper bound 1,1, )
is asymptotically identical to the algorithm proposed by ~m ) equalsPr(p > ¢) whereq > p and D(q|p) =
Scheffer and Joachims. In(y) By (1) we then have that this probability is no

m

The shell decomposition is a distribution-dependent larger thane="P(4llr) = §. It is just as easy to derive
use of the union bound. Distribution-dependent uses of (1) from (2) so the two statements are equivalent. By
the union bound have been previously exploited in so- duality, i.e., by considering the problem defined by re-
called self-bounding algorithms. Freund [5] defines, for placingp by 1 — p, we get the following.

a given learning algorithmand data distribution, a set In
S of hypotheses such that with high probability over the § s n
sampl)g?the algorithm will alwaysgretﬂrn a hyp}(l)thesis in ¥ > 0¥ D(min(p,p)llp) < m
that set. Althouglt is defined in terms of the unknown

data distribution, Freund gives a way of computing a set

For an arbitrary measure on an arbitrary sample space
we use the notatior’ S ®[S, J] to mean that with prob-

—_

n(3)

)

=

3)

Conjoining (2) and (3) yields the following corollary of

S’ from the given algorithm and the sample such that, *™”" In(2)
with high confidence$’ containsS and hence the “ef- ¥ > 0VeS D(pllp) < o (4)
fective size” of the hypothesis class is bounded.8y. m

Langford and Blum [7] give a more practical version Using the inequalityD(q||p) > 2(¢ — p)? one can show
of this algorithm. Given an algorithm and data distribu- that (4) implies the following better known form of the
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Chernoff bound.

In(§)

2m

V> 0Y'S |p—pl< (5)
Using the inequalityD(q||p) > ﬁ%ﬁ, which holds for

¢ < p, we can show that (3) implies the followirg.
Qﬁln(%) 2111(%)

m

V&> 0Y°S p<p+ (6)
Note that for small values gfformula (6) gives a tighter
upper bound o than does (5). The upper bound pn
implicit in (4) is somewhat tighter than the minimum of
the bounds given by (5) and (6).

[E=1 £] Now we definel{(£) to be the set oh €
# such that[[e(h)]] £ We defines(£) to be

In(max(1, [#(£)|)). We now have the following lemma.

Lemma3.1 V6 > 0V'S YheH

< sUTemT]) + In(3*)

m

D(e(h)]le(h))

Proof: Quantifyingovep € {X, ..., 2}andh €
H(p) in (4) givesVs > 0, VS, Vp € {1, ...
Vh € H(p),

m
y m I

D(e(h)lje(n)) < PP+ IR

We now consider a formal setting for hypothesislearn-gt thjs implies the lemma. O

ing. We assume a finite s@t of hypotheses and a space

Lemma 3.1 imposes a constraint, and hence a bound,

X of instances. We assume that each hypothesis repre-one(h). More specifically, we have the following where

sents a function fron’ to {0, 1} where we writeh(z)
for the value of the function represented by hypothasis
when applied to instance. We also assume a distribu-
tion D on pairs(z, y) with z € X andy € {0, 1}. For
any hypothesig we define the error rate @f, denoted
e(h), to beP<l,’ y>ND(h(x) # y). For a given sample

S of m pairs drawn fromD we writeé (k) to denote the
fraction of the pairgz, y) in S such thath(z) # .
Quantifying overh € H in (4) yields the following sec-
ond corollary of (1).

< In |H| + ln(%)

V'S YheH D(E(R)||e(h)) (7)

By consider bounds o®(¢||p) we can derive the fol-
lowing more well known corollary of (7).

m

In |H|+ ln(%)

2m

VS YheH |e(h)—é(h)| <
These two formulas both limit the distance betwegh)
ande(h). Inthis paper we will work with (7) rather than
(8) because it yields an (uncomputable) upper bound
on generalization error that is optimal up to asymptotic
equality.

(8)

3 The Upper Bound

Our goal now is to improve on (7). Our first step is to
divide the hypotheses i# into m disjoint sets based
on their true error rates. More specifically, fpr €

[0,1] define[[p]] to be 2XLImrl - Note that[[p]]
is of the form% where eitherp = 0 andk = 1 or
p > 0andp € (2L £] In either case we have

el € {&, ..., m%i» and if [[p]] = £ thenp €

LA derivation of this formula can be found in [8] or [9]. To
see the need for the last term consider the case where.

lub {z : ®[x]} denotes the least upper bound (the
maximum) of the sef« : ®[z]}.
2m
)

o(h) < 10 {g: Dien)llg) < LIV HRED) )

This is our uncomputable bound. It is uncomputable be-
cause then numberss(L), ..., s(2) are unknown. Ig-
noring this problem, however, we can see that this bound
is typically significantly tighter than (7). More specifi-
cally, we can rewrite (7) as follows.
In In(2
c(h) < 1ub {g: Dle(n)lg) < “PIHE) ) (1)

Sinces(£) < In|#|, and sinceZ™ is small for large
m, we have that (9) is never significantly looser than
(10). Now consider a hypothesissuch that the bound
one(h) given by (7), or equivalently, (10), is signifi-
cantly less than 1/2. Assuming is large, the bound
given by (9) must also be significantly less than 1/2. But
for ¢ significantly less than 1/2 we will typically have
that s([[¢]]) is significantly smaller thahn [#|. For
example, suppos# is the set of all decision trees of
sizem/10. For largem, a random decision tree of this
size will have error rate near 1/2. The set of decision
trees with error rate significantly smaller than 1/2 will
be an exponentially small faction of the set of all pos-
sible trees. So fog small compared to 1/2 we get that
s([[q]1) is significantly smaller thatn |77|. This will
make the bound given by (9) significantly tighter than
the bound given by (10).

We now show that the distribution of true errors can
be replaced, essentially, by the histogram of training er-

rors. We first introduce the following definitions.
H(%é) {he?-t: é(h)—% }

In(2ep2)

2m — 1

1
m

<
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The definition ofs (£, §) is motivated by the follow-
ing lemma.

m

m

Lemma 3.2 V6§ > 0, V°S, Vg € {L, ..., 2},

s(q) < s(q, 29)

Before proving lemma 3.2 we note that by conjoin-
ing (9) and lemma 3.2 we get the following. This is our
main result.

Theorem 3.3 Vd > 0, V°S, Vh € H,

5([ T4l 5)+1n(47’")}

e(h) < Lub {q . DEMlg) <

As for lemma 3.1, the bound implicit in theorem 3.3
is typically significantly tighter than the bound in (7) or
its equivalent form (10). The argument for the improved
tightness of theorem 3.3 over (10) is similar to the ar-
gument for (9). More specifically, consider a hypothesis
h for which the bound in (10) is significantly less than
1/2. Sinces([[¢]], ) < In|#], the set of values of
satisfying the condition in theorem 3.3 must all be sig-
nificantly less than 1/2. But for large: we have that

In(16m2/3)
2m—1
1/2 then all hypotheses i# ([[¢]],J) have empirical
error rates significantly less than 1/2. But for most hy-

is small. So ifq is significantly less than

(2m—1)@(m)—e(n)? o 8M !

P (&) ( 57) Z 3
Hhe%(%)z () — e(h)] < ;ﬁmi}‘ > Lk
Hhe%(%)z ey = =1 < — + ;ﬁmi}‘ > (o)

H | —, 2ms

(5 2)
Lemma 3.2 now follows by quantification over €
1 m O

E’...’m.

pat s

4 Asymptotic Analysis and Phase
Transitions

The bounds given in (9) and theorem 3.3 exhibit phase
transitions. More specifically, the bounding expression
can be discontinuous iflandm, e.g., arbitrarily small
changes ir¥ can cause large changes in the bound. To
see how this happens consider the following constraint
on the quantity;.

2m
5

s([Ta11) + In(

m

)

D(e(n)llq) < (11)

pothesis classes, e.g., decision trees, the set of hypothel € bound given by (9) is the least upper bound of the

ses with empirical error rates far from 1/2 should be an
exponentially small fraction of the class. Hence we get
thats([[¢]], d) is significantly less thatn |#| and the-
orem 3.3 is tighter than (10).

The remainder of this section is a proof of lemma 3.2.
Our departure point for the proof is the following lemma
from [6].

Lemma 3.4 (McAllester 99) For any measure on any
hypothesis class we have the following where Ej, f(h)
denotes the expectation of f(h) under the given measure
on h.

4m

J

Intuitively, this lemma states that with high confi-
dence over the choice of the sample most hypothese
have empirical error near their true error. This will al-
low us to prove tha$([[¢]], ¢) boundss([[¢]]). More
specifically, by considering the uniform distribution on

7{(%), lemma 3.4 implies the following.

2

V6 > 0V°S Epem-DER) =) <

e(zm—1><é<h>—e<h>>2)

8m
J

Chan (&) (

LMo —e(m)?

IA

o

values ofy satisfying (11). Assume that is sufficiently

large that we can think oi’rﬂ—n@ﬁ as a continuous func-
tion of ¢ which we will write ass(¢). We can then

rewrite (11) as follows wherg is a quantity not depend-
ing ong ands(q) does not depend ah

D(e(h)llq) < s(q) +A

Forq > é(h) we thatD(é(h)||¢) is a monotonically in-
creasing function of;. It is reasonable to assume that
for ¢ < 1/2 we also have that(¢) is a monotonically
increasing function ofy. But even under these con-
ditions it is possible that the feasible valuesgofi.e.,
those satisfying (12), can be divided into separated re-
gions. Furthermore, increasirigcan cause a new fea-
sible region to come into existence. When this happens
gthe bound, which is the least upper bound of the feasible
values, can increase discontinuously. At a more intu-
itive level, consider a large number of high error con-
cepts and smaller number of lower error concepts. At a
certain confidence level the high error concepts can be
ruled out. But as the confidence requirement becomes
more stringent suddenly (and discontinuously) the high
error concepts must be considered. A similar disconti-
nuity can occur in sample size. Phase transitionsin shell
decomposition bounds are discussed in more detail by
Haussler et al. [1].

(12)
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Phase transition complicate asymptotic analysis. But
asymptotic analysis illuminates the nature of phase tran-
sitions. As mentioned in the introduction, in the asymp-
totic analysis of learning theorem bounds it is important
that one not hold fixed as the sample size increases.

If we hold # fixed thenlim,, .. I = 0. But this
is not what one expects for large samples in practice.

Similarly, defineF' (¢, ¢) and B(é, ¢) as follows.

Fle, ¢ {e€[0,1]: Diellg) < s(q) + ¢}

B(é, €) lub F(é, €)

We first show that the continuity @#(¢é) at the point
¢ implies the continuity ofB(é, ) at the point(é, 0).
We note that there exists a continuous functfga, «)

As the sample size increases one typically uses largerwith f(¢, 0) = ¢ and such that for any sufficiently

hypothesis classes. Intuitively, we expect that even for

very largem we have thai% is far from zero.

For the asymptotic analysis of the bound in (9) we
assume an infinite sequence of hypothesis cla&ses
H-,Hs .. .and an infinite sequence of data distributions
D1, Ds, Ds, .. .. Lets,, (£) bes(£) defined relative to
‘Hn, andD,,. In the asymptotic analysis we assume that
the sequence of functioﬁ@%@wﬁ, viewed as functions
of ¢ € [0, 1], converge uniformly to a continuous func-
tion 5(¢). This means that for any> 0 there exists &
such that for alin > k& we have the following.

Sm —
vge o1 2D gy < e
m
Given the function ’”(gpm and their limit function

5(p), we define the following functions of an empirical
error ratee.

Bn(é) =

Tub {q . D(elg) < STl +1n(27m)}

B(é) = 1lub{q: D(éllg) < s(q)}

The functionB,, (¢) corresponds directly to the upper
bound in (9). The functiorB(¢é) is intended to be the
large m asymptotic limit of B,,(¢). However, phase
transitions complicate asymptotic analysis. The bound
B(é) need not be a continuous functionéofA value of

¢ where the bound(¢) is discontinuous corresponds to

a phase transition in the bound. At a phase transition the
sequenceB,, (¢) need not converge. Away from phase

transitions, however, we have the following theorem.

Theorem 4.1 If the bound B(é) is continuous at the
point ¢ (so we are not at a phase transition), and the

sm ([[411)

functions =m=-212, viewed as functions of ¢ € [0,1],
converge uniformly to a continuous function 5(q), then
we have the following.

lim By (¢) = B(é)

m—r00
Proof: Define the seF,, (¢) as follows.

< sm([[al1) + In(3)

m

Fn(é)

|

{q: D(éllq)

This gives the following.
B (€) = 1ub Fi,(é)

near O we have the following.
D(f(e, e)llg) = D(ellg) — €

We then get the following equation.

B(é, €) = B(f(=, €))
Since f is continuous, and3(é) is continuous at the
pointé, we get thatB(é, ¢) is continuous at the point
(€, 0).

We now prove the lemma. The functions of the form

sm([TalD+In 2 converge uniformly to the functiof(q).

This imnfolies that for any > 0 there exists & such that
for all m > k we have the following.

F(é, —e) C F(é) C Fé €)
But this in turn implies the following.

B(é, —¢) < Bn(€) < B(é, € (13)
The lemma now follows from the continuity of the func-
tion B(é, ¢) atthe pointé, 0). O

Theorem 4.1 can be interpreted as saying that for
large sample sizes, and for valueséobther than the
special phase transition values, the bound has a well de-
fined value independent of the confidence parameter
and determined only by a smooth functig). A sim-
ilar statement can be made for the bound in theorem 3.3
— for large m, and at points other than phase transi-
tions, the bound is independent ®find is determined
by a smooth limit curve.

For the asymptotic analysis of theorem 3.3 we as-
sume an infinite sequenggé, , H-, Hs, . . . of hypothesis
classes and an infinite sequertte S,, Ss, ... of sam-
ples such that samplg,, has sizem. Let%m(%, J)
ands,, (£, 6) beH(L£, §) ands(£, &) respectively
defined relative to hypothesis claks, and sample,,, .

Let Uy, (£) be the set of hypotheses 1, having an
empirical error of exactly% in the samplesS,,. Let
un (£) be In(max(1, |Uy(L)]). In the analysis of
theorem 3.3 we allow that the functioﬂg‘(gw are
only locally uniformly convergent to a continuous func-
tion u(q), i.e., for anyq € [0,1] and anye > 0 there
exists an integet and real numbey > 0 satisfying the
following.

VYm >k, Vpe€(qg—r, ¢+~ —u(p)| < e

Locally uniform convergence plays arole in the analysis
in section 6.
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Theorem 4.2 Ifthe functions M%@Mll converge locally
uniformly to a continuous function u(q) then, for any

fixed value of é, the functions M also converge
locally uniformlyto u(q). If the convergence of ==~ L. ”qﬂ)
is uniform, then so is the convergence of JLmij_l_

Proof: Consider an arbitrary valug € [0, 1] and
e > 0. We will construct the desirel and~. More
specifically, seleck sufficiently large and sufficiently
small that we have the following properties.

Ym >k, ¥p € (¢—27, ¢+27) @—ﬂ(m <§
_ €
Vp e (a2, ¢+29) |ulp) —u(g)] < 5
1 1n(166k2)
r Vo <7

Ink ¢

k 3

Consider ann > kandp € (¢ —~, ¢+ 7). It now
suffices to show the following.

§m(”p-|-|, 6) —u(p)‘ S €

m

IN

Becausel,,,([[p]]) is a subset ofi,,([[p]], J) we
have the following.

sm([[P11, 9) o wn([[P]D > a(p) — &

m - m 3

We can also upper bou ? ([L’;ﬂ’ %) as follows.

[Hm([TP11,0)]

IN IN
M 11
T F
ET” TN
P

~—

IN
[
B
<l
e
+
wlon

IN

[
2
£l
S
F
wlf

Z-pl<y
< mem@e+F)
s([Te10, 0) _ 2¢ Ilnm
< ="
p- < alp)+ 3
< ulp) te

A similar argument showsthaﬁﬁfﬂ{%mjl converges
uniformly toa(¢) then so doeg=[ldll) o

Given quantitie§ﬂj—%l—<sl that converge uniformly

to u(q) the remainder of the analysis is identical to that
for the asymptotic analysis of (9). We define the follow-
ing upper bounds.

m([Tal1, &) +1In (45~
1ub {q:D(éllq) ! - ( ’ )}

lub {q: D(é||q) < a(q)}

Again we say that is at a phase transition if the func-
tion B(¢) is discontinuous at the value We then get
the following whose proof is identical to that of theo-
rem4.1.

&
3

=
i

[weS
Py
>
=
Il

Theorem 4.3 If the bound B(é) is continuous at the
point ¢ (vo we are not at a phase transition), and the
functions * um (gl ”‘m )
have thefollowmg

converge uniformly to u(q), then we

lim B, (¢) = B(é)

S Asymptotic Optimality of (9)

Formula (9) can be viewed as providing an upper bound
one(k) as a function ok (h) and the functiors. In this
section we show that for any entropy curvend valuet
there exists a hypothesis class and data distribution such
that the upper bound in (9) is realized up to asymptotic
equality. Up to asymptotic equality, (9) is the tightest
p055|ble bound computable froih) and them num-
berss(L), ..., s(2).

The classical VC dimensions bounds are nearly op-
timal over bounds computable frofih*) and the class
H. Them numberss(L), ..., s(22) depend on botf
and the data distribution. Hence the boundin (9) uses in-
formation about the distribution and hence can be tighter
than classical VC bounds. A similar statement applies
to the bound in theorem (3.3) computed from the em-
pirically observable numberg L), ..., s(2). In this
case, the bound uses more information from the sample
than justé(h). The optimality theorem given here also
differs from the traditional lower bound results for VC
dimensionin that here the lower bounds match the upper
bounds up to asymptotic equality.

The departure point for our optimality analysis is the
following lemma from [2].

Lemma 5.1 (Cover and Thomas) Ifp is the fraction of
heads out of m tosses of a coin where the true probabil-
ity of heads is p then for ¢ > p we have the following.

1
Pr(p> >
A Uy

e~mD(dllp)
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This lower bound onPr(p > ¢) is very close to
Chernoff’'s 1952 upper bound (1). The tightness of (9)
is a direct reflection of the tightness (1). To exploit

Lemma 5.1 we need to construct hypothesis classes and
data distributions where distinct hypotheses have inde-

pendent training errors. More specifically, we say that a

set of hypothese§hy, ..., h,} hasindependent train-
ing errors if the random variablegh,), ..., é(h,) are
independent.

By an argument similar to the derivation of (3) from
(1) we can prove the following from Lemma 5.1.
ln(%) —In(m+1)

Pr (D(min(ﬁ,p)llp) > ) >4 (14)

m

Lemma 5.2 Let X be any finite set, S a random vari-
able, and O[S, x, 6] a formula such that for every x € X
and § > 0 we have Pr(O[S, z,8]) > (5 and Pr(Vz €

)
X O[S, x, d]) = [l.ex Pr( [S, d]). We then
have¥6 > 0Y°S Jr € X O[S, «, 1X|)]
Proof:
1 In(i
Pr(O[S, z, (5|1))]) > |%5|()1)
Pr(—-0[S, z, = D < 1=
m(d)
< e~ TXI
In(% —1In(i
Pr(vr € X-0[5, «, B]) < e =4

Now definek* (£ ) to be the hypothesis of minimal
training error in the set(%). Letglb {z : ®[z]}
denote the greatest lower bound (the minimum) of the
set{z : ®[z]}. We now have the following lemma.

Lemma 5.3 If the hypotheses in the class H ( [Tq
independent then Y6 > 0, ¥°S, Vq € {%, e
D(min(é, ¢ — )lla)

é(h*(¢)) < glb {é :
<

—

1) are

2

}

Proof: To prove lemma 5.3 lef be a fixed rational
number of the fornf;. Assuming independent hypothe-
ses we can applying Lemma 5.2 to (14) to get> 0,
V0S, 3h e H(L),
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s(g)=In(m+1)=In(In(Z))

m

s(g) —In(m + 1)

m

~ In(in(3))

D(min(e(h), e(h))lle(h)) 2

Letw be the hypothesis i# (¢) satisfying this formula.
We now have (h*(g)) < é(w) andg — L < e(w) < q.
These two conditions implyd > 0,V S,

D(min(é(h*(q)), g = 7)lla)

s(g)—In(m+1)—

m

In(ln 1)

2

This implies the following.
D(min(é, ¢ — -)lla)

|

Lemma 5.3 now follows by quantification overc

é(h” < glb { é:
(Wa) < g { s(g)—In(m+1)—In(In(}))

m

<

my ot

]
For¢ € [0, 1] we have that lemma 3.1 implies the
following.

We now have upper and lower bounds on the quan-
tity é(h*([[¢]])) which agree up to asymptotic equality
—in a largem limit Where% converges (point-
wise) to a continuous functios(q) we have that the
upper and lower bound of{~*([[¢]])) both converge
(pointwise) to the following.

e(h*(g)) = glb {é: D(¢é|lq) < 5(q)}

This asymptotic value of(2*(¢)) is a continuous func-
tion of ¢. Sincey is held fixed in calculating the bounds
oné([[¢]]), phase transitions are not an issue and uni-

form convergence of the functior’?eﬁ{;@mjl is not re-
quired. Note that for large: and independent hypothe-
ses we get that(h™(q)) is determined as a function of

the true error rate and =

The following lemma states that any limit function
s(p) is consistent with the possibility that hypotheses
are independent. This, together with lemma 5.3 implies
that no uniform bound oa(%) as a function o€(h) and
[H(L)], ..., [H(2)] can be asymptotically tighter than
(9).

D (&llffall - %)

é(h™(1T411)) > glb {é: (Tl )+ ( 22
PRI D)

m

Theorem 5.4 Let s(p) be any continuous function of

€ [0, 1]. There exists an infinite sequence of hypoth-
esis spaces H1, Ho, Hs, ..., and sequence of data dis-
tributions D1, D+, Ds, .. .such that each class H,, has
independent hypotheses for data distribution D,, and

such that * (”pﬂ) converges (pointwise) to 5(p).

Proof: First we show that if#,, ()| = em%(w)
then thefunctionéJJ—U—u converge (pointwise) ta(p).
Assume|H, (L) = . In this case we have the
following.

sm([[211)
m

= 3([[p11)

Sinces(p) is continuous, for any fixed value pfwe get

thatﬂw converges tG(p).
Recall thatD,,, is a probability distribution on pairs
(z, y) withy € {0,1} andz € X,,, for some setX,,
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We takel,,, to be a disjointunion of set&m(ﬁ) where

|7{m(%)| is selected as above. Lét, . . ., fy be the el-
ements oft{,,, with N = |#,,]|. Let X,,, be the set of all
N-bit bit strings and defing; (=) to be the value ofth
bit of the bit vectorz. Now define the distributio®,,,
on pairs(z, y) by selectingy to be 1 with probability
1/2 and then selecting each bitoindependently where
theith bit is selected to disagree wittwith probability
£ wherek is such thatf; € #,,(£). O

6 Relating s and s

In this section we show that in large limits of the type

Note thats(p) > s(p). This gives an asymptotic ver-
sion of lemma 3.2. But sinc®(p||¢) can be locally
approximated as(p — ¢)? (up to its second order Taylor
expansion), ifs(p) is increasing at the point then we
also get thag(p) is strictly larger thars(p).

Proof Outline: To prove statement 6.1 we first de-
fine %, (p, ¢) forp,q € {X, ..., 2} to be the set
of all h € H,,(¢) such thaté,,,(h) = p. Intuitively,
Hm(p, ¢) is the set of concepts with true error rate
nearq that have empirical error rate Ignoring fac-
tors that are only polynomial im2, the probability of
a hypothesis with true error ratehaving empirical er-

ror ratep can be written as (approximately)™? ®lla)

discussed in section 4 the histogram of empirical errors So the expected size ¢,,(p, ¢) can be written as
need not converge to the histogram of true errors. So |#,,(q)|e~™P®ll9), or alternatively, (approximately) as

even in the largen asymptotic limit, the bound given
by theorem 3.3 is significantly weaker than the bound
given by (9).

To show that([[¢]], J) can be asymptotically dif-
ferent froms([[¢]]) we consider the case of indepen-
dent hypotheses. More specifically, given a continu-
ous functions(p) we construct an infinite sequence of
hypothesis spacel, H., Hs, ... and an infinite se-
guence of data distributions,, D,, Ds, ... using the
construction in the proof of theorem 5.4. We note that
if 5(p) is differentiable with bounded derivative then the

functionsﬂ{—nmjl converge uniformly ta(p).

For a given infinite sequence data distributions we
generate an infinite sample sequelgess, Ss, .. ., by
selectings,, to consists ofm pairs(z, y) drawn IID
from distributionD,,,. For a given sample sequence and
h € H,, we defineé,, (k) ands,, (£, &) in a manner
similar toé(h) ands(£, §) but for sampleS,,. The
main result of this section is the following.

Statement 6.1 If each 1, has independent hypotheses
sm([[P1D)

under data distribution D,,, and the functions poe
converge uniformly to a continuous function 5(p), then
forany § > 0 and p € [0,1], we have the following
with probability 1 over the generation of the sample se-
quence.

sm([P11,6)

m

lim =
m—00

sup s(q) — D(pllq)
q€[0,1]

We call this a statement rather than a theorem be-
cause the proof has not been worked out to a high level

of rigor. Nonetheless, we believe the proof sketch given
below can be expanded to a fully rigorous argument.
Before giving the proof sketch we note that the lim-
iting value ofﬂf—%l—él is independent of. This is
consistent with theorem 4.2. Defirgp) as follows.

5(p) = s s(¢) — D(pllq)

em3(@) p—mD(plle) gr ¢m(5(@)-D(@ll9)) . More formally,
we have the following for any fixed value pfandg.

e In(max(1, B ([ (211, T41DD)

m

= max(0, 5(¢) — D(pllg))

We now show that the expectation can be eliminated
from the above limit. First, consider distinct values of
p and ¢ such thats(¢) — D(p|l¢) > 0. Sincep and
q are distinct, the probability that a fixed hypothesis in
Hn([[q]]) isinHn([[p]], [T¢]]) declines exponen-
tially in m. Sinces(q) — D(pl|l¢) > 0 the expected size
of H,([TP]1, [[¢]]) grows exponentially im:. Since
the hypotheses are independent, the distribution of pos-
sible values of ., ([[p]], [[¢]])| becomes essentially
a Poisson mass distribution with an expected number of
arrivals growing exponentially im:. The probability
that |#,.([[r]], [[¢]])| deviates from its expectation
by as much as a factor of 2 declines exponentially:in
We say that a sample sequence is safe &ftérfor all
m > k we have that?,..([[p]], [[¢]])] is within a
factor of 2 of its expectation. Since the probability of
being unsafe atn declines exponentially im, for any
d there exists & such that with probability at lea$t- ¢
the sample sequence is safe afterSo for anyé > 0
we have that with probability at least- J the sequence
is safe after somé. But since this holds for af > 0,
with probability 1 such & must exist.

o max(L P (211, TT41DD)

m

= 5(¢) — D(plla)
We now defines,, ([[p]], [[¢]]) as follows.

sm([[P11, [Tq]1) = In(max(1, [Hn([[p]], [Te1DI))
It is also possible to show fgr = ¢ we have that with

probability 1 we have tha ’”(”pll’ [lell) approaches
s(p) and that for distincy andg with 5(¢) — D(p||¢) <

m— 00

m— 00
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0 we have thatt=([[dll. [TelD) approaches 0. Putting

these together yieIdsThat with probability 1 we have the
following.

sm([[p]1, [lal])

m

lim
m— 00

= max(0, 3(q) — D(pllq)) (15)

Definel,,, (£) andu,, (£) as in section 4. We now
have the following equality.

Um(p) = qu{#, c %}%m(pa q)

We will now show that with probability 1 we have that
“’”T(m approaches(p). First, consider @ € [0, 1] such
thats(p) > 0. Let Sinces(q) — D(q||p) is a continuous
function, and[0, 1] is a compact setup o 175(9) —
D(p||q) must be realized at some valge € [0, 1]. Let
q* be such that(¢*) — D(pl||¢*) equalss(p). We have

thatu,, ([[p]1) > sm([[p]], [T¢"]]). This, together
with (15), implies the following.

i)

- 25(p)

m— 00

We will now say that the sample sequence is safe: at
and £ if |#,,([[p]], [[£]])| does not exceed twice
the expectation oft,,,([[p|], [[¢*]])|- Assuming uni-

form convergence o ’”(Lgpm, the probability of not
being safe atn and% declines exponentially im at a

7 Future Work

A practical difficulty with the bound implicit in theo-
rem 3.3 is that it is usually impossible to enumerate the
elements of an exponentially large hypothesis class and
hence impractical to compute the histogram of training
errors for the hypotheses in the class. In practice the
values ofs(£) might be estimated using some form of
Monte-Carlo Markov chain sampling over the hypothe-
ses. For certain hypothesis spaces it might also be possi-
ble to directly calculate the empirical error distribution
without evaluating every hypothesis.

Here we have emphasized asymptotic properties of
our bound but we have not addressed rates of conver-
gence. For finite sample sizes the rate at which the bound
converges to its asymptotic behavior can be important.
Before mentioning some ways that the convergence rate
might be improved, however, we note that near phase
transitions standard notions of convergence rate are in-
appropriate. Near a phase transition the bound is “un-
stable” — replacing’ by §/2 can alter the bound sig-
nificantly. In fact, near a phase transition it is likely
that e(~*) is significantly different for different sam-
ples even though(%*) is highly predictable. Intuitively,
we would like a notion of convergence rate that mea-
sures the size of the “region of instability” around a
phase transition. As the sample size increases the phrase
transition becomes sharper and the region of instability
smaller. It would be nice to have a formal definition for

rate at least as fast as the rate of decline of the probabil-the region of instability and the rate at which the size

ity of not being safe ain and[[¢*]]. By the union
bound this implies that for a givem the probability
that there exists an unsaf-né also declines exponen-
tially. We say that the sequence is safe afténf it

is safe for allm and % with m > N. The probabil-
ity of not being being safe afteN also declines ex-
ponentially with N. By an argument similar to that
given above, this implies that with probability 1 over
the choice of the sequence there existé auch that the
sequence is safe aftéf. But if we are safe atn then

U ([[pI)] < 2mE[Hm(p, [[¢"]])]. This implies
the following.
lim sup 7“7”(5])”) < s(p)

Putting the two bounds together we get the following.

i)

m

=5(p)

m— 00

The above argument establishes (to some level of

rigor) pointwise convergence éffﬂn%m—l to s(p). Itis

of this region goes to zero, i.e., the rate at which phase
transitions in the bound become sharp.

The rate of convergence of our bound might be im-
proved in various ways:

¢ Removing the discretization of true errors.
¢ Using one-sided bounds.

¢ Using nonuniform union bounds over discrete val-
ues of the form& .

¢ Tightening the Chernoff bound using direct calcu-
lation of Binomial coefficients.

¢ Improving Lemma 3.4.
The above ideas may allow one to remove lallm)
terms from the statement of the bound.
8 Conclusion

Traditional PAC bounds are stated in terms of the train-
ing error and class size or VC dimension. The com-
putable bound given here is typically much tighter be-

also possible to establish a convergence rate that is acause it exploits the additional information in the his-

continuous function op. This implies that the conver-

gence of@ can be made locally uniform. Theo-
rem 4.2 then implies the desired resultd

togram of training errors. The uncomputable bound uses
the additional (unavailable) information in the distribu-
tion of true errors. Any distribution of true errors can
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be realized in a case with independent hypotheses. We
have shown that in such cases this uncomputable bound
is asymptotically equal to actual generalization error.
Hence this is the tightest possible bound, up to asymp-
totic equality, over all bounds expressed as functions of
é(h*) and the distribution of true errors. We have also
shown that the use of the histogram of empirical errors
results in a bound that, while still tighter than traditibna
bounds, is looser than the uncomputable bound even in
the large sample asymptotic limit.
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