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Abstract

We explore the notion of ¢ sufficient linear s-
tatistics for a class of real valued functions. We
show that for function classes with a polyno-
mial rate of the Parametric Pollard dimension
one can find a set of linear empirical function-
als of polynomial size in the dimension that are
sufficient for £ approximation of any function
in the class. We also present a probabilistic
scheme for producing those functionals.

1 Introduction

A fundamental problem in statistical estimation theory
is the availability of a set of empirical functions that
capture the information on the parameters of the un-
derlying distribution. For parametric distributions such
functions were called “sufficient statistics” and the ques-
tion of their possible existence was fully answered by
the celebrated theorem of Koopman [9], Pitman [13],
and Darmois [3], who restricted it to exponential fam-
ilies. A direct corollary of these results is that when
sufficient statistics exist they can always be expressed
as empirical means (for i.i.d. samples), or as linear func-
tionals of the sample points. This fundamental results
makes the parameter estimation for exponential families
very efficient, both in terms of the estimate variance and
computational complexity.

In this paper we address the question of the avail-
ability of a similar notion for the learnability of func-
tions. We consider the number of empirical function-
als (defined below) that capture the information need-
ed for approximating a function, based on its values
on a given random sample. We define the notion of e-
sufficient statistics as a set of linear functionals of the
sample points, whose values suffice to obtain an Lo e-
approximation for any target function in a class F.

We begin with a few definitions and some notation.
Throughout, p will denote a probability measure on a
set 2 C IR?. To avoid measurability problems, we will
assume that all the measures are Borel measures. For
every measure u, [, is the expectation with respect to
w, and Lo(u) is the set of all measurable functions on
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Q such that E, |7]? < oo. This space is a Hilbert space

(B, 1£17)1%.

For every set S,, = {wi1,...,wn} C Q, let u, be
an empirical measure supported on S,. Thus, u, =
L5 | bu,, where d,, is the evaluation functional at w;
(i.e., 0w, (f) = f(w;)). O is the infinite product of the
set ). Each & € Q% is of the form (wy,ws,...), where
each w; € Q. For every probability measure p on Q@ we
endow Q°° with the infinite product measure p°°, which
is also a probability measure.

with respect to the norm [|f[|,,,

Definition 1.1 A linear functional * is called empiri-
cal if it is a linear combination of point evaluation func-
tionals, i.e., ¥ = ZZZI a;i0y,;. We say that x* is sup-
ported on the set {wi,...,w,} if it has a representation
as a linear combination of {d,,, ..., 0w, }

Definition 1.2 Let F be a class of functions defined on
a set Q) and let p be a probability measure on Q. A set of
linear empirical functionals (S;)7" is called e-sufficient
statistics with respect to Lo(u) if, for every f,g € F

such that for every 1 < i < m, Si(g) = Si(f), then
I|lf— g||i2(u) < €. The infimum on the number of the €
sufficient statistics of F in La(p) is denoted by Sr ,,(€).

Note that by this definition, the functionals (S;) capture
the structure of the class F up to a small permitted er-
ror. For example, for any f € F the data (Sl(f)) is
enough to characterize f up to an accuracy of . Also,
it is important to emphasize that the selection of € suf-
ficient statistics must have a random element when the
measure 4 is unknown. Hence, unless prior information
on the measure is given, one has to involve sampling
according to p in the selection process of the sufficient
statistics.

The problem we wish to investigate is how to esti-
mate the number of linear empirical functionals needed
to ensure ¢ statistical sufficiency.

This problem has two aspects. First, one has to
bound the number of statistics needed for e-sufficiency.
Second, (though important), one has to estimate the
size of the sample on which the set of statistics is sup-
ported.

One example which we shall focus on is that of uni-
form Glivenko—Cantelli classes:



Definition 1.3 A class of functions F is called a u-
niform Glivenko Cantelli class (GC class) if for every
e>0

lim sup Pr{ sup sup |[E, f —E,,, f| > z—:} =0,

n—oo 4y m>n feF
where (., is the empirical measure supported the first m
coordinates of G = (wy,...) € Q°°, and for every measure
w, Pr is the infinite product measure u>. The supre-
mum is taken with respect to all the (Borel) probability
measures on (1.

For everye >0 and 0 < 0 < 1, set nx(e,d) to be the

sample complezity of F, i.e., the minimal n for which

sup sup |E, f — E,,, f| > 8} < 4.

sup Pr{
m>n feF

HEA
A trivial solution to the two parts of our puzzle may be
found through the Glivenko-Cantelli condition. Indeed,
it is possible to show that if F is a GC class of functions
into [0,1], then (F — F)? = {(f — 9)*|f,g9 € F} is also
GC. Hence, for every ¢ > 0 and ¢ € (0, 1), there is a set
of samples U. 5 C Q> such that Pr(U:5) > 1— 6 and
for every n > n(r_z)2(¢g,0) and every & € Us 5,

sup |E,(f —9)* =K., (f —9)*| <s,
f.9€F

(1.1)

Thus, for every & = {w1,...,wp,...} € Ue s and n =
nr—r)2(€,0) the statistics S; = d,,, 1 < i < n are
e-sufficient.

Therefore, for every €, € (0,1), nr_z)(g,0) yields
an upper bound to the number of statistics Sx ,(¢), as
well as to the size of the sample on which the statistics
are supported.

It is important to note that in order to apply this
bound one needs to use the Glivenko-Cantelli condition
for the class (F — F)?, and not with respect to any spe-
cific loss-function class £, = {(f — h)?|f € F}. If one
were to use any specific loss-function class associated
with some h € F, the set of statistics (d,,;) would be
¢ sufficient for that particular target concept. For ex-
ample, if F is a GC class and f,g € F have disjoint
supports, then a sample which yields a good approxi-
mation for f may be contained in the support of f, and
thus may prove to be a “bad” sample of g. However, we
need the sufficient statistics to apply to every h € F,
hence one has to use the Glivenko-Cantelli condition for
(F —F)2.

We show that the size of a set of € sufficient statistics
may be significantly improved. The improved bound is
established using a parameter originating from the local
theory of Banach spaces called the £-norm. It was shown
by Dudley and Sudakov that the ¢-norm of a set F is
related to the covering number and entropy integral of
F. The improvement in the upper bound becomes more
significant as the size of the class increases (e.g. when
the class has a larger parametric Pollard dimension).
This is done without increasing the size of the sample
on which the functionals are supported.

Another application which may be derived from the
theory we develop here is a learning process for a target
concept which belongs to a GC class.
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In the usual context of a learning problem, one tries
to estimate a function based on its values on a giv-
en sample. This is usually done by selecting a sample
{w1,...,wn} according to the given measure pu, and find-
ing some function f from the class which agrees with
the target concept h on that sample. If the class is a
Glivenko-Cantelli class and assuming that the sample is
large enough, it follows that [|f — hl|,, ,, is small with
high probability.

In the language we wish to introduce, one can say
that for every target concept h € F and for n large e-
nough the point evaluation functionals (d,,)7 are with
high probability “c-sufficient statistics” in the follow-
ing sense: given d,,(h) = h(w;), then for every f €
F such that 0,,(f) = 0u;(h) for every 1 < i < n,
I|lf— h||i2(u) < e. Thus, learning problem is reduced
to finding some f € F which satisfies the set of linear
empirical constraints d,, (f) = 0w, (h).

Note that the functionals (d,,) are not e sufficient in
the “usual sense”, since the fact that a set (d,,)7 cap-
tures almost all the information regarding a one target
concept in F does not guarantee it will do the job for
other target concepts in F. In other words, in the con-
text of a learning problem the statistics depend on the
target concept.

We show that for any function in the given class it
is possible to reduce the number of linear constraints
(viewed as linear equations) that the sample induces on
the function class from the sample size, to approximate-
ly its square-root, without losing any information on the
target. This suggests a more computationally efficien-
t algorithm for learning a concept from a class with a
finite VC dimension or a “small” parametric Pollard di-
mension. (see definition below).

The results we present are in two generic cases. The
first in when F is viewed as a subset of La(u,,) for some
empirical measure p,. In this case the statistics are
supported on the same points as the empirical measure.
The second case we explore is when one views F as a
subset of Lo(u) for a general probability measure p.

2 Theoretical Background

This section is devoted to several well know definitions
which will be used in the sequel. The following are def-
initions of well known combinatorial parameters which
are used to characterize GC classes.

Definition 2.1 Let F be a class of {0,1} functions on
a space Q. We say that F shatters {wi,...,wn}, if for
every I C {1,...,n} there is a function f € F for which
flw)) =14 i eI and f(wj)) = 0 if j ¢ I. Let

VO(F,Q) = su{ 4| ‘A C Q, A is shattered by F }.

It is possible to use a parametric version of the VC di-
mension, called the fat-shattering dimension.

Definition 2.2 Let F be a class of functions on a space
Q and lete > 0. We say that F e—shatters {wy, ...,wn} C
Q if there is some a € IR such that for every I C



{1,...,n} there is a function f; € F for which f(w;) >
a+e/2ifi €l and fr(w;) <a—e/2ifj ¢ 1. Let

VO.(F,Q) = sup{|A| ‘A C Q, Ais e shattered by f}.

VC(F,Q) is called the fat shattering dimension of F.

The parametric Pollard dimension (defined below)
may serve the same purposes as the fat shattering di-
mension.

Definition 2.3 For everye > 0, a set A = {wy,...,wy}
is said to be e—shattered in the Pollard sense by F if
there is some function s : A — IR, such that for every
I C {1,...,n} there is some f € F for which f(w;) >
s(wi) +e/2 ifi eI, and f(w;) < s(wj)—e/2if j & 1.
Let

P.(F,Q) = sup{|A| ‘A C Q, A is ¢ shattered by }'}.

By the pigeonhole principle it is easy to see that the
parametric Pollard dimension and the fat shattering di-
mension are related for classes of functions which have a
uniformly bounded range (i.e., if there is some M € IR
such that sup;ezsup,eq |f(w)] < M). In this case,
there is some constant C' > 0 such that for every € > 0,
veur, o) < pr e < oL
where C depends only on the uniform bound on the
members of F.
The connection between Glivenko-Cantelli classes and

the combinatorial parameters defined above is the fol-
lowing fundamental result:

Theorem 2.4 A class of {0,1} valued functions is a
Glivenko—Cantelli class if and only if it has a finite VC
dimension. A class of uniformly bounded real-valued
functions is a Glivenko—Cantelli class if and only if it

has a finite parametric Pollard dimension for every e >
0.

The “if” part in the first claim is due to Vapnik and
Chervonenkis (see [16]) while the “only if” is due to
Assouad and Dudley ([2]). The second claim was estab-
lished by Alon, Ben-David, Cesa-Bianchi and Haussler
().

A key tool in the analysis of GC classes are covering
number estimates (defined below). It turns out that the
covering numbers of a given class not only determines
whether it is a GC class or not, but, in fact, enable one
to estimate the sample complexity (see [6], [1]).

If (X,d) is a metric space and if F C X, denote
by N(e,F,d) the minimal number of open balls with
radius € (with respect to the metric d) needed to cover
F. N(e,F,d) are called the covering numbers of F.
In cases where the metric is clear we shall denote the
covering numbers by N (e, F).

The course of action we take is as follows: we use
a well know geometric parameter from the local theory
of Banach spaces called the f-norm. This parameter
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measures how “large” a given set is. It is possible to
establish both upper and a lower bounds on £(F) by the
Ly-log covering numbers of the set F. This important
fact is due to Dudley ([4]) and Sudakov ([14]). In section
3 and in the Appendix we investigate the £-norms of GC
classes in empirical Lo spaces. We provide an upper
bound to ¢(F) in terms of VC(F) or P.(F).

The /-norm estimates enable us to bound the num-
ber of the statistics required for e sufficiency.

Recall that a set K is said to be symmetric if the fact
that z € K implies that —z € K. Consider a convex
symmetric set K C Lo(,). If 27, ...,z are linear func-
tionals on Lo (uy,) then they induce a k-codimensional
section of K. Indeed, V' = N;ker(z}) is a k-codimensional
subspace of Ly (1y,), thus VNK is a k-codimensional sec-
tion of K. If the diameter of this section is small, then
the functionals z7,...,z} may be used to identify any
member of K: if g, f € K such that z}(g9) = z}(f),
then g/2 — f/2 € V. Moreover, since K is convex
and symmetric then ¢g/2 — f/2 € K, implying that
the [lg/2 = f/2[|1,(,, is bounded by the diameter of
V' N K, which was assumed to be small. Intuitively,
for every vector of k real numbers & = («ay, ..., ), the
affine space V(a@) = {z € Xz (z) = a;, i = 1,...n}
which is a translation of V', slices K to disjoint slices
K NV(d). Each slice has a diameter which is smaller
than diam(VNK). Hence, if one wishes to locate an un-
known element h € K, it is enough to find some f € K
which is on the same translation of V as h. Such an f
will automatically be “close” to h, since their distance
is bounded by the diameter of K N V.

The connection to our problem is simple. Given
the class F and an empirical measure pu,, supported on
{wi,...,wn}, set K/u, to be the symmetric convex hull
of F, viewed as subset of Lo(u,). Because of the defi-
nition of the empirical Ly space, each linear functional
on Ly(py,) is a linear combination of point evaluation
functionals 8,,, 1 < i < n. Hence, if (z})¥ are such that
diam (N;(ker(z}) N K/pn)) < v/E, then zf, ..., z} are ¢
sufficient statistics for the convex hull of F in La(py,),
since they are empirical and capture almost all the rele-
vant information regarding the convex hull of F. Thus,
they are e sufficient for F itself.

It is possible to show that the f-norm may be used
to connect the number of functionals selected with the
diameter of an “almost optimal” slice of the given set
of that codimension. This celebrated result is due to
Pajor and Tomczak-Jaegermann (see [11]). Moreover,
they were able to show that an “almost optimal” section
may be obtained using random selection process, and, in
fact, most of the k-codimensional sections of the set are
“almost optimal”. In section 4 we combine their result
with the ¢-norm estimates discussed in section 3 and
provide a bound on the number of statistics needed to
ensure e-sufficiency in empirical Ly spaces. We then use
the Glivenko-Cantelli condition to pass from empirical
L, spaces to general L, spaces and establish a bound
on the number of ¢ sufficient statistics in general Lo ()
spaces.



3 /(-norm estimates in Ly(uy,)

We begin this section with a several standard definitions
from the theory of Banach spaces.

Given a Banach space X, the dual of X (denoted by
X*) consists of all the bounded linear functionals on X,
with the norm ||z*[|x. = sup, - |[z*(z)|. Let {3 be a
real n-dimensional inner product space with respect to
the inner product < , > and let K be a bounded convex
symmetric subset of £7 which has a nonempty interior.
It follows that K is the unit ball of some norm denoted
by || || Set || || g~ to be the dual norm to || ||

Recall the definition of the f-norm of a set F":

Definition 3.1 For every set F' C 03, let

LF) = (/]R sup |<f,$>|2d7n)%, (3.1)

n feF

where v, is the Gaussian measure on R™. If FF C Lo
then ((F) = supy {(F N H) and the supremum is taken
with respect to all finite dimensional subspaces of Lo,
which are identified with €5 by the natural isometry.

Denote by K the symmetric convex hull of a bounded
set F' C £ and assume it has a nonempty interior. It
is easy to see that if gy, ..., g, are independent standard
Gaussian random variables on some probability space
andifey, ..., e, is an orthonormal basis in £§ then £(F) =
E[>Xr, g,-e,-||i(*)1/2. Indeed, since the dual norm is
determined by the extreme points of K, which all belong
to the closure of F'U —F, then

n 2
E gi€;
i=1

implying that ¢(K) = ((F).

The following deep result provides a connection be-
tween the f-norm of a set and its covering numbers in
¢%. The upper bound was established by Dudley in [4]
while the lower one is due to Sudakov (see [14]). A proof
of both bounds may be found in [12].

E

:/ sup <m,f>2d7n,
R

n feFU—F
K+ feFU

Theorem 3.2 Let F' C (3. Then there are absolute
positive constants ¢ and C such that

csupz—:log%(N(z—:,F)) <U(F) < C/ log%(N(s,F))ds.
e>0 0

If F is a class of functions on 2, then for every em-
pirical measure p,, F may be viewed as a subset of
Lo () — which is isometric to £%. Indeed, if x,,, is the
characteristic function of the set {w;} then

F/pn =
{E s

where e; is an orthonormal basis of La(p.,).
It is possible to obtain upper bounds on £(F/u,)
based on the entropy of the class F. We shall focus on

f E}'} = {in_%f(wi)eﬂf € .7-'},
i=1

two cases. The first, is when F is the a class of {0,1}
functions with a finite VC dimension. The second case
is when F a class which consists of functions bounded by
1, such that the parametric Pollard dimension is O(e~P)
for some p > 0.

Below are the ¢-norm estimates we were able to es-
tablish. The proof of this claim may be found in the
Appendix.

Theorem 3.3 Let F be a class of functions whose range
is a subset of [0, 1].

1. If F is a {0,1} class such that VC(F) = d, then
there is some absolute constant C' such that for ev-
ery empirical measure fi,,, ((F/p,) < Cd'/?.

2. Assume that for every ¢ > 0, P-.(F) < ve™ P for
some v > 1. Then, there are constants C, which
depend only on p such that for every n > 1 and
every empirical measure fi,,

C,,v% logn if 0 < p<2,
UF[un) < { Cav? log’n ifp=2,
prén%_%logn ifp> 2.

4 Application of the /-norm estimates

In this section we show how the f-norm estimates as-
sist us in estimating the number of statistics needed to
ensure ¢ sufficiency.

From the geometric point of view, we focus our at-
tention to the possibility of constructing a subspace
V' C La(py) which has a “small” codimension such that
the diameter of its intersection with K/, is also small,
where K is the symmetric convex hull of F.

It turns out that the diameter of an “almost opti-
mal” k-codimensional section may be estimated in terms
of the £-norm. This important result is due to Pajor and
Tomczak Jaegermann (see [12]). Moreover, it follows
that the desired subspace may be selected randomly in
some sense. Indeed, let (g;;) be standard independent
Gaussian random variables on some probability space
Y. Set G : €% — (7" to be an operator whose matrix
representation with respect to an orthonormal basis is

(gij )-

Theorem 4.1 Let K C (% be convex, bounded and sym-
metric with a nonempty interior. There is an absolute
constant Cy and a set Y1 CY, such that Pr(Yy) > 1/3
and for every y € Y1

diam (kerG(y) N K) < Cim ™2 (K).

Also, there is some absolute constant Cy such that
if n > m > Cylog(1/0) then Y1 may be chosen so that
Pr(Yi) >1-56.

The proof of the first part of Theorem 4.1 appears in
[12]. The estimate on the measure the set Y; may be
found in [7].



In our case, the n dimensional Hilbert space is Lo (py,)
and the set we wish to investigate is

K/pn = {Z:L: k(wi)xw: |k € K}

Note that the assumption that K/u, has a nonemp-
ty interior poses no obstacle. Due to the structure of
Lo(pn), the set K/u, has an empty interior in Lo (uy,)
if and only if there is some w; on which all the ele-
ments of F vanish. Thus, by removing such points from
), we may assume that K/u, has a nonempty inte-
rior. Recall that in La(uy) the set (v/nxw,)?; is an
orthonormal basis. Therefore, the functionals (z}) for
which diam (ker(z}) N K/py) is small are given by

\/ﬁ Z 9ij (y)Xw]- .

Thus, if y € Y7 and f,¢9 € F such that for every 1 <
j<m

Z 9ij (y) f(wj) = Z 9 (y)h(w;) (4.1)
j=1 j=1

then |1 = hll ) < Cm="20(F /),

4.1 Application for Sufficient Statistics

Here, we show how to construct e-sufficient statistics for
the class F. We begin with the case where the sufficient
statistics are constructed in empirical Ly spaces.

Theorem 4.2 Let F be a class of functions into [0, 1].
Put 0 < 6 <1 and let pu, be an empirical measure on
for some n > 1.

1. If VC(F) = d then there is some absolute constant
C such that for every e > 0, there exist a system of
at most m = Cg linear empirical functionals (x}),
such that if f,g satisfy that z}(f) = x}(g), then

1 = 91l <&

2. If P.(F) < Z then there is a set of at most m

empirical linear functionals (x}) such that if f,g €

: * * 2
F satisfy that 7 (f) = x7(g), then [|f — gllz, ..y <
€. The number of equations required is

Cpglogfn if 0 <p<2,
m < { Crllog'n ifp=2,
Cp%nlff log®n if p> 2.

where C), is a constant which depends only on p.

In both cases the selection of the functionals (x})7* which
determine the system of equations is random. There is
some absolute constant Cy such that if m > C log(%)
then with probability larger than 1 — § the random pro-
cess provides functionals (x})* for which our assertion
holds.
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We shall present a partial proof to this claim by estab-
lishing its first part. The remaining assertions follow us-
ing similar methods, by applying the f-norm estimates
from the previous section.

Proof: Assume that VC(F) = d, let p, be an empiri-
cal measure and set K/u,, the symmetric convex hull of
F /iy, Thus, by Theorem 3.3, £(K/u,) < Cd*/?. Given
g,0 € (0,1) and 1 < i < m, let z7 = 37, 9:5(y)du;,
where m = O(log(3)) and (g;;) are standard indepen-
dent Gaussian random variables on a space Y. By The-
orem 4.1, there is a set Y1 C Y such that Pr(Y;) > 1-9,
and for every y € Y7,

1
2

diam ﬁ (ker(z) N K/py,) < C(%) .

i=1

Clearly, for such y, the set {«7, ..., 27, } are CL sufficient
statistics for F in Lo(uy,). Indeed, if z(f) = z¥(g) for

every 1 <i < m then ||f = Al < C(%)l/z. Our
claim follows by selecting m = O(max{log 5 g})
|

By the proof of Theorem 4.2 it follows that there is a
random construction algorithm for the sufficient statis-
tics in empirical Lo spaces, which does not depend on
the exact structure of the class F, only on its “size”, as
captured by the /-norm.

Thus far, we established a bound on the number
of e sufficient statistics in empirical Ly spaces. When
one wishes to pass from empirical Ly spaces to general
L> spaces, one has to take advantage of the fact that
our class is a GC class. Indeed, if p, is an empirical
measure such that |E, (f — g)? —E,, (f — g)?| < ¢ for
every f,g € F,and if 51, ..., Sy, are e-sufficient statistics
in Ly(ptn), then they are also 2e-sufficient statistics in
Ly(p).

We shall utilize this fact and establish the desired
estimates for general Ly () spaces. To that end, we need
the following sample complexity estimates for (F — F)2.
Recall that for every e > 0 and 0 < 0 < 1, nx(e,0)
denotes the sample complexity estimate of the class F
associated with the accuracy € and the confidence 6.

Lemma 4.3 Let F be a GC class of functions whose
range is a subset of [0,1] and set G = (F — F)?.

1. If F is a {0, 1} class and VC(F) = d then there is
some absolute constant C' such that

na (e, 8) = 0(%)

for everye >0 and 0 <6 < 1.

2. If P.(F) < ye P, then there are constants Cp which
depend only on p such that for every e > 0 and ev-
ery 0 <6 <1, ng(e,d) < C’,,E%(Eiplog3 1 +log%).

The proof of the Lemma is standard, hence it is omitted.
An argument similar to the one used in the proof may
be found in [10].



Corollary 4.4 Let F be a GC class of functions into
[0,1] and let u be a probability measure on €.

1. IfVC(F) =d then Sr,,(e) < C’g for some absolute
constant C'. Moreover, the statistics are support-
ed on a sample of C'(g log%) points at the most,
where C' is some absolute constant.

2. If P.(F) < =% then
C’”log‘ if 0 <p<2,
Srue) < Cz—log z ifp=2,
sz ST log (1) ifp>2.

where C), is a constant which depends only on p.

Each functzonal S; is supported on a sample of at most
Dp( 5= log® 1) elements, where D, depends only on p.

Again, we shall prove only the first part of the Corol-
lary. The other claims follow in a similar fashion.
Proof: Let F be a {0,1} class such that VC(F) = d.
Let £ > 0, fix some 6 € (0,1) and put n = O(% log 1),
which is the sample complexity estimate for (F—F)2. S-
ince § < 1 there is some empirical measure pu, such that
for every f,g € F, |Eu(f —9)* —E,, (f —9)*| <e. By
Theorem 4.2 there exist a set of m = O(%) linear em-
pirical functionals Sy, ..., Sy, such that if S;(f) = S;(g)
for every 1 < i < m, then ||f — g||22(“n) < e. Therefore,

S1, ..., Sm are 2¢ sufficient statistics in La(p). Our claim
follows by taking § — 1.
u

4.2 Example

As an example, let F be the class of all the function-
s f :[0,1] — [0,1] such that for every z,y € [0,1],
|f(z) = f(y)] < |z —y|. To estimate the fat shattering
dimension of F, note that if {w) < w2 < ... <w,}ise
shattered, then for every 1 < i < n, there is some f € F
such that

£ < flwitr) — flwi) =
|f(wit1) = fwi)| S wipr —w
Hence,
n
1>w, —w = Zwi+1 — Wwj > ne,
i=1
and n < % On the other hand, it is easy to see that

VC.(F) > E]

By the connection between the parametric Pollard di-
mension and the fat shattering dimension, it follows that

1 1
HEEGEE?
Let p be a probability measure on [0, 1] and set some
e € (0,1). By the sample complexity estimate, there is
some absolute constant C' such that

B c/1l . 41 1
n =nr_r)(g,0) < 8—2(6—210g - + log S)
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Thus, there is a sample {wy, ..., w, } such that if f,g € F
and if for every 1 < i < n f(w;) = g(w;) then E, (f —
g)? < e. Therefore, the set {d,,,-..,d,, } are e sufficient
statistics. Since such a sample exists for every ¢ € (0,1),
then

. c 31

Srule) < lim inf nF-ry2(e,0) < = log -

Moreover, for every § € (0,1) the set of statistics is

supported on the selected sample, hence, on a set of
n(r-r)2(¢,d) elements at the most.

Let us compare this direct method with our ap-
proach. The beginning of the selection process is the
same: select a sample S,, = {wy, ...,w, } such that if p,,
is an empirical measure supported on S,, then for every
f[9€F,

E.(f—9)° — (4.2)
Next, we construct € sufficient statistics for F/u,. By
Theorem 4.2 there i is a random selection process which
produces m < 02 log" n linear empirical equations (S;)7"
which are supported on S, such that if f,g € F and
Si(f) = Si(g) for every 1 <i <m then E,, (f —g)* <
e. Since for every 6 € (0,1) n may be selected as
n(F_z)(€,0), then up to a logarithmic factor in %,
c 1
m < —log* =.
€ e
Now, by (4.2) it follows that (S;)7" are ¢ sufficient s-
tatistics for F in Lo(u). Thus,

Eun (f_g)2| < %

C 1
S}',u S _10g4 ]
g g

which is much better than the estimate obtained by the
direct method.

Let us sum-up the selection scheme for a class F:
Fix the desired confidence and accuracy parameters.

1. Randomly select an i.i.d. sample {w1,..,wy } accord-

ing to p, where n = n(r_x)2(g/2, 6/2)

2. Let m be as in Theorem 4.2 and assume that m >
C1 log %, where C is the absolute constant as in
Theorem 4.1. Set G be an m X n matrix whose en-
tries are realizations of standard independent Gaus-
sian random variables.

3. For every 1 <1i < m, let
n
Si = 9ij0u,-
j=1

Then, with probability larger than 1 — 4, (S;)
sufficient statistics in Lo ().

Note that our result is even stronger than what we
have claimed. Not only did we prove the existence of
sufficient statistics, we where able to formulate a simple
random construction scheme which produces e sufficient
statistics with arbitrarily large probability.

are €



4.3 Improving the computational complexity

In this final application we indicate how constructing
sufficient statistics in empirical Lo spaces may aid in re-
ducing the computational complexity of a learning prob-
lem.

Assume that h is the target concept and that u, is
an empirical measure such that

sup |]Eu(f—h)2—]Eﬂn (f—h)2| <e.
feF

Normally, when trying to approximate a function h with
respect to the Lo(uy,) norm, one tries to solve the sys-
tem of n empirical linear equations d,,, (h) = d.,(f) (i.e.
the equations f(w;) = h(w;)) subjected to the constraint
that the solution belongs to F. By using linear func-
tionals on Lo (py,) which are linear combinations of the
point evaluation functionals {d,,...,dw, }, it is enough
to solve Sr ., (¢) << n linear empirical equations with
the same constraint to ensure that the solution approx-
imates h in La(py,).

Below is a summary of the learning procedure to-
gether with complexity estimates in terms of the /-norm.
The proof of the claims in the example below are based
on the same idea as in the proof of Theorem 4.2.

Example 4.5 Let F be a class of functions on a set
Q, all of which have a range contained in [0,1] and set
h € F to be the target concept. Let €, be the accuracy
and confidence parameters, set n to be the sample com-
plezity estimate of F associated with an accuracy of €
and confidence of §/2, and put £, = sup,, C(F/pn).

1. Select a sample (w1, ...,w,) according to p and let
(R(w1), ..., h(wn)) be the values of h on the sample.

2. Let m = Cmax{(?/e,log2/8}, where C is some
absolute constant, and put G to be an m X n ma-
triz such that each element g;; is a realization of a
standard Gaussian random variable.

3. Find a solution f € F to the system Y | gijh(w;) =
1 gij f(wi) which consists of m empirical linear
equations.

Then, by the selection of m, ||f—h||iZ(“n) < & with

probability larger than 1 —0/2. Combining this with the
selection of n it follows that with probability larger than

1=6, [[f = RllL, <€

It is important to note that this learning procedure
does not improve the sample complexity estimates. One
has to start with an empirical measure for which

sup [E, (f = h)* = E,, (f = h)*|
fer

are “close”, where h is the target concept. This is done
by randomly selecting a sample according to u, and the
size of the sample is determined by the given accura-
cy and confidence parameters. On the other hand, the
computational complexity improves. As an example, let
F be a class of functions into [0, 1] such that for every
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e > 0, P.(F) = O(e~?). Given the accuracy and con-
fidence parameters ¢ and &, then m = O(e~!), while
n=0(e™*) up to a logarithmic factor in L and .

This learning rule may be adjusted to have a pre
processing feature. Indeed, given £, € (0,1), if one
selects n = n(z_z)2(¢,d) then the empirical function-
als found here (which are determined by the Gaussian
matrix G) do not depend on the target concept h. For
every pair f,h € F, if 377 gijh(w;) = Y7 gij f(w;) for
every 1 < j < m, then with probability larger than
1-0|f - h”iz(u) < e. The price one has to pay for
this pre processing feature is a worse sample complexity
estimate.

5 /{-norm estimates

This appendix is devoted to empirical £-norm estimates
of GC classes based on their VC or parametric Pollard
dimension. Recall that in both these cases, there are
known estimates for the covering numbers of F: if F
has a finite VC dimension then by Haussler’s inequality
(see [8] or [15]) its covering numbers in Ly(u) are poly-
nomial in 1/e for every probability measure p. Even
when F does not have a finite VC dimension but it-
s parametric Pollard dimension P.(F) is polynomial in
1/e, then its log-covering numbers in Ly (py,) are poly-
nomial in 1/e. We shall use those estimates to establish
£-norm estimates for the sets F/py,.
Let us recall Haussler’s result:

Theorem 5.1 Let F be a class of {0,1} valued func-
tions, such that VC(F) = d. Then, there is an absolute

constant C' such that for every probability measure p on
Q, N(e, F, La(n)) < Cd(4e)?e=>?.

Using this estimate it is easy to derive the following:

Theorem 5.2 Let F C Lo(p) which consists of {0,1}
functions and assume that VC(F) = d. Then, there is
some absolute constant C' such that ((F) < Cd'/?.

Proof: Let H be a finite dimensional subspace of Lo ().
Clearly, for every 0 < e <1,

IOgN(&?,]:ﬂH,LZ(M)) S
log N (e, F, Ly(p)) < C’dlog;

If € > 1 then {0} is an e-cover of F, hence, for such e,
the log-covering numbers of F vanish. By Theorem 3.2,

™ | =

1
UFNH)< / Cd log? ~ds < Od?.
0

and our claim follows.
]
Next, Assume that P.(F) = O(eP) for some p >
0. The following estimate is due to Alon, Ben—David,
Cesa-Bianchi and Haussler (see [1]).

Theorem 5.3 Let F be a class of functions on Q, all
of which have a range contained in [0,1] and set d =
P.;4(F). Then, for every empirical measure fi,,

N(e,F,Loo(ptn)) < Q(i_;l)dlog (T“)



We may apply the same idea used in the proof of The-
orem 5.2 to classes which have a “small” parametric
Pollard dimension.

Theorem 5.4 Let F be a class of functions into [0,1]
such that P.(F) < ve™P for some 0 < p < 2 and v >
1. Then, there are constants C, such that for every
empirical measure i,

UF [ pn) < Cpy* (1 +logn),

where Cp, = 2PC fol —7z log 2de for some absolute con-
stant C.

Proof: By Theorem 5.3 it follows that there is some
absolute constant C' such that

4p 9 M
log N (g, F, La(pn)) < Ca_: (1 + log? 5_2)

Since F is a subset of the unit ball of Ly(py,), then for
every € > 1 it takes only a single ball of cover F. Thus,
by Theorem 3.2,

. |
UF/pn) < 2”075(1+10gn)/ — log gda.
0 €2

|

The case of p > 2 is much more difficult, because one

can not use the upper bound in Theorem 3.2. However,

it is possible to estimate the /-norm, as described in the
following Theorem:

Theorem 5.5 Let F be a class of functions whose range
is contained in [0,1]. Assume further that P.(F) <
ve~P for some p > 2. Then, there is some absolute
constant C, such that for every empirical measure py,

1. if p> 2 then
C’yéap(l +logn)(n%_% -1 +ni” ,

o=

where oy, = 2P/2(2P/2=1 — 1)~ and,

2. if p=2 then
UF [ pin) < C(1L+72)log” n.

Although we can not apply the upper bound of theorem
3.2 directly, we shall use the same idea used in the proof
of that Theorem.

Recall that F may be viewed as an subset of La (i),
where p, is an empirical measure supported on the sam-
ple {w1,...,w,}. Each f € F is identified as an elemen-
t of Lo(p,) (which is denoted by f/u,) by the map
T(f) = >, f(wi)Xw:,» where x, is the characteris-
tic function of {w;}. In terms of the orthonormal ba-
sis Of Lo(pun), f/pn = 230 flwi)eir Let (g:)7,
be independent standard Gaussian random variables.
For every f € F, let Zy = n=*/23°" | f(wi)g;. Thus,
each Z; is a random variable on some probability s-
pace (Y, P), and denote by || ||, the norm in L,(Y, P).
From the definition of the £-norm it is easy to see that
UF/pn) = ||supser Zf|,- It is possible to show (see,
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for example, [12]) that there is some absolute constant
C > 0 such that

K(]—'/un)gCIE|supi|:IE( sup Zg).
fer

FEFU-F
Also, note that the map V : La(u,) — L2(Y, P) giv-
en by V(3 I | aie;) = Y1, a;g; is an isometry into
Ly(Y, P). Thus, for every f € F, Zy =V (f/pn).

The following Lemma plays a crucial part in the
proof of the upper bound in Theorem 3.2. It is based
on the classical inequality of Slepian (see [12] or [5]).

Lemma 5.6 Let{Zi,..., Zn} be Gaussian random vari-
ables. Then, there is some absolute constant C' such that

Esup Z; < Csup || Z; — Zj|, log% N.
(2 2,

Proof of Theorem 5.5: We will assume that F is

symmetric. The proof in the non-symmetric case is es-

sentially the same. Set Zr = {Zy|f € F} and note that

since V' : La(pn) — L2(Y, P) is an isometry for which

V(F/pn) = ZF then

N({‘:;}—/H’naLZ(Mn)) N(E,Z}‘,Lz(P))

Therefore, by Theorem 5.3 and since P.(F) < &P,
there is some absolute constant C' such that

logN(e, Z5) < C’(l + 4Pe~P log? 6%)

Let e, = 2% put N = [p !log, n] and set H, C Zx to
be a 2¢, cover of Zx, such that

log |Hi| < C(l + 4Pye, P log” 5%)
k

Hence, for every k and every Z; there is some ZJ’? € Hy,

such that HZf — Z}“H < 2¢y. By writing
2

N
Zp=> (Zf -2y ")+ 2Z; - 27
k=1
it follows that
Esup Zy <
fer
N
ZE sup (Z§ — lef_l) +Esup(Z; — Z7).
=1 J€F FEF

By the definition of ZJ’E and by Lemma 5.6, there is an
absolute constant C' such that

E sup(Z}g - Z}“il) <
fer
ESUp{Zi - Zj|Zi € Hk,Zj € Hy_q, ||Z, - Zj||2 < 48k} <

1
C'sup || Z; — Zj||, log? |Hy| [H—1| <
2,]

Cey, (1 + 2”7%@:% log a%)
k

Since Z¥ € Z, there is some f' € F such that Z
Zy:. Hence,



(5 ) -
i=1
W/ tn = £ ol ) = W25 = Zp/ll, < env,
which implies that for every f € F and every y € Y,
Zs(y) = 2 (y)] <
. fwi)

S [H L )] < (3 gh)

Therefore,

n 1
Esup Z; — Z}V < z—:NIE(Zg?) C = envi.
fer =1

Combining the two estimates and since g, = 2% and
N = [p~"logy n],

sup Zjy <
fEFU-F

N
cy 2t (1 + 2732 log 4kn) r2 Ny <
k=1

N
C(1+2Py2 10g2*Vn) 3" 21480k o= N /iy <
k=1
C(1+ 2”7% logn)cp(n%_% -1+ n%_%,
where ¢, = 2P/2=1(2¢/2=1 _ 1)~! and the claim fol-
lows.
]

Remark 1 Using a similar argument, it is possible to
show that if P-(F) < ve~?2 then there is some absolute
constant C' such that for every empirical measure i,

UF[un) < C(v% + 1) log n.
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