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Abstra
t

We explore the notion of " suÆ
ient linear s-

tatisti
s for a 
lass of real valued fun
tions. We

show that for fun
tion 
lasses with a polyno-

mial rate of the Parametri
 Pollard dimension

one 
an �nd a set of linear empiri
al fun
tion-

als of polynomial size in the dimension that are

suÆ
ient for " approximation of any fun
tion

in the 
lass. We also present a probabilisti


s
heme for produ
ing those fun
tionals.

1 Introdu
tion

A fundamental problem in statisti
al estimation theory

is the availability of a set of empiri
al fun
tions that


apture the information on the parameters of the un-

derlying distribution. For parametri
 distributions su
h

fun
tions were 
alled \suÆ
ient statisti
s" and the ques-

tion of their possible existen
e was fully answered by

the 
elebrated theorem of Koopman [9℄, Pitman [13℄,

and Darmois [3℄, who restri
ted it to exponential fam-

ilies. A dire
t 
orollary of these results is that when

suÆ
ient statisti
s exist they 
an always be expressed

as empiri
al means (for i.i.d. samples), or as linear fun
-

tionals of the sample points. This fundamental results

makes the parameter estimation for exponential families

very eÆ
ient, both in terms of the estimate varian
e and


omputational 
omplexity.

In this paper we address the question of the avail-

ability of a similar notion for the learnability of fun
-

tions. We 
onsider the number of empiri
al fun
tion-

als (de�ned below) that 
apture the information need-

ed for approximating a fun
tion, based on its values

on a given random sample. We de�ne the notion of "-

suÆ
ient statisti
s as a set of linear fun
tionals of the

sample points, whose values suÆ
e to obtain an L

2

"-

approximation for any target fun
tion in a 
lass F .

We begin with a few de�nitions and some notation.

Throughout, � will denote a probability measure on a

set 
 � IR

d

. To avoid measurability problems, we will

assume that all the measures are Borel measures. For

every measure �, E

�

is the expe
tation with respe
t to

�, and L

2

(�) is the set of all measurable fun
tions on


 su
h that E

�

jf j

2

<1. This spa
e is a Hilbert spa
e

with respe
t to the norm kfk

L

2

(�)

=

�

E

�

jf j

2

�

1=2

.

For every set S

n

= f!

1

; :::; !

n

g � 
, let �

n

be

an empiri
al measure supported on S

n

. Thus, �

n

=

1

n

P

n

i=1

Æ

!

i

, where Æ

!

i

is the evaluation fun
tional at !

i

(i.e., Æ

!

i

(f) = f(!

i

)). 


1

is the in�nite produ
t of the

set 
. Ea
h ~! 2 


1

is of the form (!

1

; !

2

; :::), where

ea
h !

i

2 
. For every probability measure � on 
 we

endow 


1

with the in�nite produ
t measure �

1

, whi
h

is also a probability measure.

De�nition 1.1 A linear fun
tional x

�

is 
alled empiri-


al if it is a linear 
ombination of point evaluation fun
-

tionals, i.e., x

�

=

P

m

i=1

a

i

Æ

!

i

. We say that x

�

is sup-

ported on the set f!

1

; :::; !

n

g if it has a representation

as a linear 
ombination of fÆ

!

1

; :::; Æ

!

n

g.

De�nition 1.2 Let F be a 
lass of fun
tions de�ned on

a set 
 and let � be a probability measure on 
. A set of

linear empiri
al fun
tionals (S

i

)

m

1

is 
alled "-suÆ
ient

statisti
s with respe
t to L

2

(�) if, for every f; g 2 F

su
h that for every 1 � i � m, S

i

(g) = S

i

(f), then

kf � gk

2

L

2

(�)

< ". The in�mum on the number of the "

suÆ
ient statisti
s of F in L

2

(�) is denoted by S

F ;�

(").

Note that by this de�nition, the fun
tionals (S

i

) 
apture

the stru
ture of the 
lass F up to a small permitted er-

ror. For example, for any f 2 F the data

�

S

i

(f)

�

is

enough to 
hara
terize f up to an a

ura
y of ". Also,

it is important to emphasize that the sele
tion of " suf-

�
ient statisti
s must have a random element when the

measure � is unknown. Hen
e, unless prior information

on the measure is given, one has to involve sampling

a

ording to � in the sele
tion pro
ess of the suÆ
ient

statisti
s.

The problem we wish to investigate is how to esti-

mate the number of linear empiri
al fun
tionals needed

to ensure " statisti
al suÆ
ien
y.

This problem has two aspe
ts. First, one has to

bound the number of statisti
s needed for "-suÆ
ien
y.

Se
ond, (though important), one has to estimate the

size of the sample on whi
h the set of statisti
s is sup-

ported.

One example whi
h we shall fo
us on is that of uni-

form Glivenko{Cantelli 
lasses:
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De�nition 1.3 A 
lass of fun
tions F is 
alled a u-

niform Glivenko Cantelli 
lass (GC 
lass) if for every

" > 0

lim

n!1

sup

�

Pr

n

sup

m>n

sup

f2F

jE

�

f � E

�

m

f j � "

o

= 0;

where �

m

is the empiri
al measure supported the �rst m


oordinates of ~! = (!

1

; :::) 2 


1

, and for every measure

�, Pr is the in�nite produ
t measure �

1

. The supre-

mum is taken with respe
t to all the (Borel) probability

measures on 
.

For every " > 0 and 0 < Æ � 1, set n

F

("; Æ) to be the

sample 
omplexity of F , i.e., the minimal n for whi
h

sup

�2�

Pr

n

sup

m>n

sup

f2F

jE

�

f � E

�

m

f j � "

o

� Æ:

A trivial solution to the two parts of our puzzle may be

found through the Glivenko-Cantelli 
ondition. Indeed,

it is possible to show that if F is a GC 
lass of fun
tions

into [0; 1℄, then (F � F)

2

= f(f � g)

2

jf; g 2 Fg is also

GC. Hen
e, for every " > 0 and Æ 2 (0; 1), there is a set

of samples U

";Æ

� 


1

su
h that Pr(U

";Æ

) � 1 � Æ and

for every n � n

(F�F)

2
("; Æ) and every ~! 2 U

";Æ

,

sup

f;g2F

�

�

E

�

(f � g)

2

� E

�

n

(f � g)

2

�

�

< "; (1.1)

Thus, for every ~! = f!

1

; :::; !

n

; :::g 2 U

";Æ

and n =

n

(F�F)

2

("; Æ) the statisti
s S

i

= Æ

!

i

; 1 � i � n are

"-suÆ
ient.

Therefore, for every "; Æ 2 (0; 1), n

(F�F)

2
("; Æ) yields

an upper bound to the number of statisti
s S

F ;�

("), as

well as to the size of the sample on whi
h the statisti
s

are supported.

It is important to note that in order to apply this

bound one needs to use the Glivenko-Cantelli 
ondition

for the 
lass (F �F)

2

, and not with respe
t to any spe-


i�
 loss-fun
tion 
lass L

h

= f(f � h)

2

jf 2 Fg. If one

were to use any spe
i�
 loss-fun
tion 
lass asso
iated

with some h 2 F , the set of statisti
s (Æ

!

i

) would be

" suÆ
ient for that parti
ular target 
on
ept. For ex-

ample, if F is a GC 
lass and f; g 2 F have disjoint

supports, then a sample whi
h yields a good approxi-

mation for f may be 
ontained in the support of f , and

thus may prove to be a \bad" sample of g. However, we

need the suÆ
ient statisti
s to apply to every h 2 F ,

hen
e one has to use the Glivenko-Cantelli 
ondition for

(F �F)

2

.

We show that the size of a set of " suÆ
ient statisti
s

may be signi�
antly improved. The improved bound is

established using a parameter originating from the lo
al

theory of Bana
h spa
es 
alled the `-norm. It was shown

by Dudley and Sudakov that the `-norm of a set F is

related to the 
overing number and entropy integral of

F . The improvement in the upper bound be
omes more

signi�
ant as the size of the 
lass in
reases (e.g. when

the 
lass has a larger parametri
 Pollard dimension).

This is done without in
reasing the size of the sample

on whi
h the fun
tionals are supported.

Another appli
ation whi
h may be derived from the

theory we develop here is a learning pro
ess for a target


on
ept whi
h belongs to a GC 
lass.

In the usual 
ontext of a learning problem, one tries

to estimate a fun
tion based on its values on a giv-

en sample. This is usually done by sele
ting a sample

f!

1

; :::; !

n

g a

ording to the given measure �, and �nd-

ing some fun
tion f from the 
lass whi
h agrees with

the target 
on
ept h on that sample. If the 
lass is a

Glivenko-Cantelli 
lass and assuming that the sample is

large enough, it follows that kf � hk

L

2

(�)

is small with

high probability.

In the language we wish to introdu
e, one 
an say

that for every target 
on
ept h 2 F and for n large e-

nough the point evaluation fun
tionals (Æ

!

i

)

n

1

are with

high probability \"-suÆ
ient statisti
s" in the follow-

ing sense: given Æ

!

i

(h) = h(!

i

), then for every f 2

F su
h that Æ

!

i

(f) = Æ

!

i

(h) for every 1 � i � n,

kf � hk

2

L

2

(�)

< ". Thus, learning problem is redu
ed

to �nding some f 2 F whi
h satis�es the set of linear

empiri
al 
onstraints Æ

!

i

(f) = Æ

!

i

(h).

Note that the fun
tionals (Æ

!

i

) are not " suÆ
ient in

the \usual sense", sin
e the fa
t that a set (Æ

!

i

)

n

1


ap-

tures almost all the information regarding a one target


on
ept in F does not guarantee it will do the job for

other target 
on
epts in F . In other words, in the 
on-

text of a learning problem the statisti
s depend on the

target 
on
ept.

We show that for any fun
tion in the given 
lass it

is possible to redu
e the number of linear 
onstraints

(viewed as linear equations) that the sample indu
es on

the fun
tion 
lass from the sample size, to approximate-

ly its square-root, without losing any information on the

target. This suggests a more 
omputationally eÆ
ien-

t algorithm for learning a 
on
ept from a 
lass with a

�nite VC dimension or a \small" parametri
 Pollard di-

mension. (see de�nition below).

The results we present are in two generi
 
ases. The

�rst in when F is viewed as a subset of L

2

(�

n

) for some

empiri
al measure �

n

. In this 
ase the statisti
s are

supported on the same points as the empiri
al measure.

The se
ond 
ase we explore is when one views F as a

subset of L

2

(�) for a general probability measure �.

2 Theoreti
al Ba
kground

This se
tion is devoted to several well know de�nitions

whi
h will be used in the sequel. The following are def-

initions of well known 
ombinatorial parameters whi
h

are used to 
hara
terize GC 
lasses.

De�nition 2.1 Let F be a 
lass of f0; 1g fun
tions on

a spa
e 
. We say that F shatters f!

1

; :::; !

n

g, if for

every I � f1; :::; ng there is a fun
tion f 2 F for whi
h

f(!

i

) = 1 if i 2 I and f(!

j

) = 0 if j 62 I. Let

V C(F ;
) = sup

n

jAj

�

�

�

A � 
; A is shattered by F

o

:

It is possible to use a parametri
 version of the VC di-

mension, 
alled the fat-shattering dimension.

De�nition 2.2 Let F be a 
lass of fun
tions on a spa
e


 and let " > 0. We say that F "{shatters f!

1

; :::; !

n

g �


 if there is some a 2 IR su
h that for every I �
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f1; :::; ng there is a fun
tion f

I

2 F for whi
h f(!

i

) �

a+ "=2 if i 2 I and f

I

(!

j

) � a� "=2 if j 62 I. Let

V C

"

(F ;
) = sup

n

jAj

�

�

�

A � 
; A is " shattered by F

o

:

V C

"

(F ;
) is 
alled the fat shattering dimension of F .

The parametri
 Pollard dimension (de�ned below)

may serve the same purposes as the fat shattering di-

mension.

De�nition 2.3 For every " > 0, a set A = f!

1

; :::; !

n

g

is said to be "{shattered in the Pollard sense by F if

there is some fun
tion s : A ! IR, su
h that for every

I � f1; :::; ng there is some f 2 F for whi
h f(!

i

) �

s(!

i

) + "=2 if i 2 I, and f(!

j

) � s(!

j

) � "=2 if j 62 I.

Let

P

"

(F ;
) = sup

n

jAj

�

�

�

A � 
; A is " shattered by F

o

:

By the pigeonhole prin
iple it is easy to see that the

parametri
 Pollard dimension and the fat shattering di-

mension are related for 
lasses of fun
tions whi
h have a

uniformly bounded range (i.e., if there is some M 2 IR

su
h that sup

f2F

sup

!2


jf(!)j � M). In this 
ase,

there is some 
onstant C > 0 su
h that for every " > 0,

V C

"

(F ;
) � P

"

(F ;
) � C

V C

"=2

(F ;
)

"

;

where C depends only on the uniform bound on the

members of F .

The 
onne
tion between Glivenko-Cantelli 
lasses and

the 
ombinatorial parameters de�ned above is the fol-

lowing fundamental result:

Theorem 2.4 A 
lass of f0; 1g valued fun
tions is a

Glivenko{Cantelli 
lass if and only if it has a �nite VC

dimension. A 
lass of uniformly bounded real-valued

fun
tions is a Glivenko{Cantelli 
lass if and only if it

has a �nite parametri
 Pollard dimension for every " >

0.

The \if" part in the �rst 
laim is due to Vapnik and

Chervonenkis (see [16℄) while the \only if" is due to

Assouad and Dudley ([2℄). The se
ond 
laim was estab-

lished by Alon, Ben-David, Cesa-Bian
hi and Haussler

([1℄).

A key tool in the analysis of GC 
lasses are 
overing

number estimates (de�ned below). It turns out that the


overing numbers of a given 
lass not only determines

whether it is a GC 
lass or not, but, in fa
t, enable one

to estimate the sample 
omplexity (see [6℄, [1℄).

If (X; d) is a metri
 spa
e and if F � X , denote

by N(";F ; d) the minimal number of open balls with

radius " (with respe
t to the metri
 d) needed to 
over

F . N(";F ; d) are 
alled the 
overing numbers of F .

In 
ases where the metri
 is 
lear we shall denote the


overing numbers by N(";F).

The 
ourse of a
tion we take is as follows: we use

a well know geometri
 parameter from the lo
al theory

of Bana
h spa
es 
alled the `-norm. This parameter

measures how \large" a given set is. It is possible to

establish both upper and a lower bounds on `(F) by the

L

2

-log 
overing numbers of the set F . This important

fa
t is due to Dudley ([4℄) and Sudakov ([14℄). In se
tion

3 and in the Appendix we investigate the `-norms of GC


lasses in empiri
al L

2

spa
es. We provide an upper

bound to `(F) in terms of V C(F) or P

"

(F).

The `-norm estimates enable us to bound the num-

ber of the statisti
s required for " suÆ
ien
y.

Re
all that a setK is said to be symmetri
 if the fa
t

that x 2 K implies that �x 2 K. Consider a 
onvex

symmetri
 set K � L

2

(�

n

). If x

�

1

; :::; x

�

k

are linear fun
-

tionals on L

2

(�

n

) then they indu
e a k-
odimensional

se
tion ofK. Indeed, V = \

i

ker(x

�

i

) is a k-
odimensional

subspa
e of L

2

(�

n

), thus V \K is a k-
odimensional se
-

tion of K. If the diameter of this se
tion is small, then

the fun
tionals x

�

1

; :::; x

�

k

may be used to identify any

member of K: if g; f 2 K su
h that x

�

i

(g) = x

�

i

(f),

then g=2 � f=2 2 V . Moreover, sin
e K is 
onvex

and symmetri
 then g=2 � f=2 2 K, implying that

the kg=2� f=2k

L

2

(�

n

)

is bounded by the diameter of

V \ K, whi
h was assumed to be small. Intuitively,

for every ve
tor of k real numbers ~� = (�

1

; :::; �

k

), the

aÆne spa
e V (~�) = fx 2 X jx

�

i

(x) = �

i

; i = 1; :::ng

whi
h is a translation of V , sli
es K to disjoint sli
es

K \ V (~�). Ea
h sli
e has a diameter whi
h is smaller

than diam(V \K). Hen
e, if one wishes to lo
ate an un-

known element h 2 K, it is enough to �nd some f 2 K

whi
h is on the same translation of V as h. Su
h an f

will automati
ally be \
lose" to h, sin
e their distan
e

is bounded by the diameter of K \ V .

The 
onne
tion to our problem is simple. Given

the 
lass F and an empiri
al measure �

n

supported on

f!

1

; :::; !

n

g, set K=�

n

to be the symmetri
 
onvex hull

of F , viewed as subset of L

2

(�

n

). Be
ause of the de�-

nition of the empiri
al L

2

spa
e, ea
h linear fun
tional

on L

2

(�

n

) is a linear 
ombination of point evaluation

fun
tionals Æ

!

i

, 1 � i � n. Hen
e, if (x

�

i

)

k

1

are su
h that

diam

�

\

i

�

ker(x

�

i

) \K=�

n

��

<

p

", then x

�

1

; :::; x

�

k

are "

suÆ
ient statisti
s for the 
onvex hull of F in L

2

(�

n

),

sin
e they are empiri
al and 
apture almost all the rele-

vant information regarding the 
onvex hull of F . Thus,

they are " suÆ
ient for F itself.

It is possible to show that the `-norm may be used

to 
onne
t the number of fun
tionals sele
ted with the

diameter of an \almost optimal" sli
e of the given set

of that 
odimension. This 
elebrated result is due to

Pajor and Tom
zak-Jaegermann (see [11℄). Moreover,

they were able to show that an \almost optimal" se
tion

may be obtained using random sele
tion pro
ess, and, in

fa
t, most of the k-
odimensional se
tions of the set are

\almost optimal". In se
tion 4 we 
ombine their result

with the `-norm estimates dis
ussed in se
tion 3 and

provide a bound on the number of statisti
s needed to

ensure "-suÆ
ien
y in empiri
al L

2

spa
es. We then use

the Glivenko-Cantelli 
ondition to pass from empiri
al

L

2

spa
es to general L

2

spa
es and establish a bound

on the number of " suÆ
ient statisti
s in general L

2

(�)

spa
es.
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3 `-norm estimates in L

2

(�

n

)

We begin this se
tion with a several standard de�nitions

from the theory of Bana
h spa
es.

Given a Bana
h spa
e X , the dual of X (denoted by

X

�

) 
onsists of all the bounded linear fun
tionals on X ,

with the norm kx

�

k

X

�

= sup

kxk

X

=1

jx

�

(x)j. Let `

n

2

be a

real n-dimensional inner produ
t spa
e with respe
t to

the inner produ
t




;

�

and let K be a bounded 
onvex

symmetri
 subset of `

n

2

whi
h has a nonempty interior.

It follows that K is the unit ball of some norm denoted

by k k

K

. Set k k

K

�

to be the dual norm to k k

K

.

Re
all the de�nition of the `-norm of a set F :

De�nition 3.1 For every set F � `

n

2

, let

`(F ) =

�

Z

IR

n

sup

f2F

�

�




f; x

�

�

�

2

d


n

�

1

2

; (3.1)

where 


n

is the Gaussian measure on IR

n

. If F � L

2

then `(F ) = sup

H

`(F \H) and the supremum is taken

with respe
t to all �nite dimensional subspa
es of L

2

,

whi
h are identi�ed with `

n

2

by the natural isometry.

Denote by K the symmetri
 
onvex hull of a bounded

set F � `

n

2

and assume it has a nonempty interior. It

is easy to see that if g

1

; :::; g

n

are independent standard

Gaussian random variables on some probability spa
e

and if e

1

; :::; e

n

is an orthonormal basis in `

n

2

then `(F ) =

(E k

P

n

i=1

g

i

e

i

k

2

K

�

)

1=2

. Indeed, sin
e the dual norm is

determined by the extreme points ofK, whi
h all belong

to the 
losure of F [ �F , then

E
















n

X

i=1

g

i

e

i
















2

K

�

=

Z

IR

n

sup

f2F[�F




x; f

�

2

d


n

;

implying that `(K) = `(F ).

The following deep result provides a 
onne
tion be-

tween the `-norm of a set and its 
overing numbers in

`

n

2

. The upper bound was established by Dudley in [4℄

while the lower one is due to Sudakov (see [14℄). A proof

of both bounds may be found in [12℄.

Theorem 3.2 Let F � `

n

2

. Then there are absolute

positive 
onstants 
 and C su
h that


 sup

">0

" log

1

2

(N("; F )) � `(F ) � C

Z

1

0

log

1

2

(N("; F ))d":

If F is a 
lass of fun
tions on 
, then for every em-

piri
al measure �

n

, F may be viewed as a subset of

L

2

(�

n

) { whi
h is isometri
 to `

n

2

. Indeed, if �

!

i

is the


hara
teristi
 fun
tion of the set f!

i

g then

F=�

n

=

n

n

X

i=1

f(!

i

)�

!

i

jf 2 F

o

=

n

n

X

i=1

n

�

1

2

f(!

i

)e

i

jf 2 F

o

;

where e

i

is an orthonormal basis of L

2

(�

n

).

It is possible to obtain upper bounds on `(F=�

n

)

based on the entropy of the 
lass F . We shall fo
us on

two 
ases. The �rst, is when F is the a 
lass of f0; 1g

fun
tions with a �nite VC dimension. The se
ond 
ase

is when F a 
lass whi
h 
onsists of fun
tions bounded by

1, su
h that the parametri
 Pollard dimension is O("

�p

)

for some p > 0.

Below are the `-norm estimates we were able to es-

tablish. The proof of this 
laim may be found in the

Appendix.

Theorem 3.3 Let F be a 
lass of fun
tions whose range

is a subset of [0; 1℄.

1. If F is a f0; 1g 
lass su
h that V C(F) = d, then

there is some absolute 
onstant C su
h that for ev-

ery empiri
al measure �

n

, `(F=�

n

) � Cd

1=2

.

2. Assume that for every " > 0, P

"

(F) � 
"

�p

for

some 
 � 1. Then, there are 
onstants C

p

whi
h

depend only on p su
h that for every n > 1 and

every empiri
al measure �

n

,

`(F=�

n

) �

8

>

<

>

:

C

p




1

2

logn if 0 < p < 2;

C

2




1

2

log

2

n if p = 2;

C

p




1

2

n

1

2

�

1

p

logn if p > 2:

4 Appli
ation of the `-norm estimates

In this se
tion we show how the `-norm estimates as-

sist us in estimating the number of statisti
s needed to

ensure " suÆ
ien
y.

From the geometri
 point of view, we fo
us our at-

tention to the possibility of 
onstru
ting a subspa
e

V � L

2

(�

n

) whi
h has a \small" 
odimension su
h that

the diameter of its interse
tion with K=�

n

is also small,

where K is the symmetri
 
onvex hull of F .

It turns out that the diameter of an \almost opti-

mal" k-
odimensional se
tion may be estimated in terms

of the `-norm. This important result is due to Pajor and

Tom
zak Jaegermann (see [12℄). Moreover, it follows

that the desired subspa
e may be sele
ted randomly in

some sense. Indeed, let (g

ij

) be standard independent

Gaussian random variables on some probability spa
e

Y . Set G : `

n

2

! `

m

2

to be an operator whose matrix

representation with respe
t to an orthonormal basis is

(g

ij

).

Theorem 4.1 LetK � `

n

2

be 
onvex, bounded and sym-

metri
 with a nonempty interior. There is an absolute


onstant C

1

and a set Y

1

� Y , su
h that Pr(Y

1

) � 1=3

and for every y 2 Y

1

diam

�

kerG(y) \K

�

� C

1

m

�1=2

`(K):

Also, there is some absolute 
onstant C

2

su
h that

if n > m > C

2

log(1=Æ) then Y

1

may be 
hosen so that

Pr(Y

1

) � 1� Æ.

The proof of the �rst part of Theorem 4.1 appears in

[12℄. The estimate on the measure the set Y

1

may be

found in [7℄.
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In our 
ase, the n dimensional Hilbert spa
e is L

2

(�

n

)

and the set we wish to investigate is

K=�

n

=

n

n

X

i=1

k(!

i

)�

!

i

jk 2 K

o

:

Note that the assumption that K=�

n

has a nonemp-

ty interior poses no obsta
le. Due to the stru
ture of

L

2

(�

n

), the set K=�

n

has an empty interior in L

2

(�

n

)

if and only if there is some !

i

on whi
h all the ele-

ments of F vanish. Thus, by removing su
h points from


, we may assume that K=�

n

has a nonempty inte-

rior. Re
all that in L

2

(�

n

) the set (

p

n�

!

i

)

n

i=1

is an

orthonormal basis. Therefore, the fun
tionals (x

�

i

) for

whi
h diam

�

ker(x

�

i

) \K=�

n

�

is small are given by

p

n

n

X

j=1

g

ij

(y)�

!

j

:

Thus, if y 2 Y

1

and f; g 2 F su
h that for every 1 �

j � m

n

X

j=1

g

ij

(y)f(!

j

) =

n

X

j=1

g

ij

(y)h(!

j

) (4.1)

then kf � hk

L

2

(�

n

)

� C

1

m

�1=2

`(F=�

n

).

4.1 Appli
ation for SuÆ
ient Statisti
s

Here, we show how to 
onstru
t "-suÆ
ient statisti
s for

the 
lass F . We begin with the 
ase where the suÆ
ient

statisti
s are 
onstru
ted in empiri
al L

2

spa
es.

Theorem 4.2 Let F be a 
lass of fun
tions into [0; 1℄.

Put 0 < Æ < 1 and let �

n

be an empiri
al measure on 


for some n > 1.

1. If V C(F) = d then there is some absolute 
onstant

C su
h that for every " > 0, there exist a system of

at most m = C

d

"

linear empiri
al fun
tionals (x

�

i

),

su
h that if f; g satisfy that x

�

i

(f) = x

�

i

(g), then

kf � gk

2

L

2

(�

n

)

< ".

2. If P

"

(F) �




"

p

then there is a set of at most m

empiri
al linear fun
tionals (x

�

i

) su
h that if f; g 2

F satisfy that x

�

i

(f) = x

�

i

(g), then kf � gk

2

L

2

(�

n

)

<

". The number of equations required is

m �

8

>

<

>

:

C

p




"

log

2

n if 0 < p < 2;

C

2




"

log

4

n if p = 2;

C

p




"

n

1�

2

p

log

2

n if p > 2:

where C

p

is a 
onstant whi
h depends only on p.

In both 
ases the sele
tion of the fun
tionals (x

�

i

)

m

1

whi
h

determine the system of equations is random. There is

some absolute 
onstant C

1

su
h that if m > C

1

log(

1

Æ

)

then with probability larger than 1� Æ the random pro-


ess provides fun
tionals (x

�

i

)

m

1

for whi
h our assertion

holds.

We shall present a partial proof to this 
laim by estab-

lishing its �rst part. The remaining assertions follow us-

ing similar methods, by applying the `-norm estimates

from the previous se
tion.

Proof: Assume that V C(F) = d, let �

n

be an empiri-


al measure and set K=�

n

the symmetri
 
onvex hull of

F=�

n

. Thus, by Theorem 3.3, `(K=�

n

) � Cd

1=2

. Given

"; Æ 2 (0; 1) and 1 � i � m, let x

�

i

=

P

n

j=1

g

ij

(y)Æ

!

j

,

where m = O

�

log(

1

Æ

)

�

and (g

ij

) are standard indepen-

dent Gaussian random variables on a spa
e Y . By The-

orem 4.1, there is a set Y

1

� Y su
h that Pr(Y

1

) > 1�Æ,

and for every y 2 Y

1

,

diam

n

\

i=1

�

ker(x

�

i

) \K=�

n

�

� C

�

d

m

�

1

2

:

Clearly, for su
h y, the set fx

�

1

; :::; x

�

m

g are C

d

m

suÆ
ient

statisti
s for F in L

2

(�

n

). Indeed, if x

�

i

(f) = x

�

i

(g) for

every 1 � i � m then kf � hk

L

2

(�

n

)

< C

�

d

m

�

1=2

. Our


laim follows by sele
ting m = O

�

max

n

log

1

Æ

;

d

"

o

�

.

�

By the proof of Theorem 4.2 it follows that there is a

random 
onstru
tion algorithm for the suÆ
ient statis-

ti
s in empiri
al L

2

spa
es, whi
h does not depend on

the exa
t stru
ture of the 
lass F , only on its \size", as


aptured by the `-norm.

Thus far, we established a bound on the number

of " suÆ
ient statisti
s in empiri
al L

2

spa
es. When

one wishes to pass from empiri
al L

2

spa
es to general

L

2

spa
es, one has to take advantage of the fa
t that

our 
lass is a GC 
lass. Indeed, if �

n

is an empiri
al

measure su
h that

�

�

E

�

(f � g)

2

� E

�

n

(f � g)

2

�

�

< " for

every f; g 2 F , and if S

1

; :::; S

m

are "-suÆ
ient statisti
s

in L

2

(�

n

), then they are also 2"-suÆ
ient statisti
s in

L

2

(�).

We shall utilize this fa
t and establish the desired

estimates for generalL

2

(�) spa
es. To that end, we need

the following sample 
omplexity estimates for (F�F)

2

.

Re
all that for every " > 0 and 0 < Æ < 1, n

F

("; Æ)

denotes the sample 
omplexity estimate of the 
lass F

asso
iated with the a

ura
y " and the 
on�den
e Æ.

Lemma 4.3 Let F be a GC 
lass of fun
tions whose

range is a subset of [0; 1℄ and set G = (F �F)

2

.

1. If F is a f0; 1g 
lass and V C(F) = d then there is

some absolute 
onstant C su
h that

n

G

("; Æ) = O

�

d

"Æ

�

for every " > 0 and 0 < Æ < 1.

2. If P

"

(F) � 
"

�p

, then there are 
onstants C

p

whi
h

depend only on p su
h that for every " > 0 and ev-

ery 0 < Æ < 1, n

G

("; Æ) � C

p




"

2

�

1

"

p

log

3

1

"

+ log

1

Æ

�

.

The proof of the Lemma is standard, hen
e it is omitted.

An argument similar to the one used in the proof may

be found in [10℄.
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Corollary 4.4 Let F be a GC 
lass of fun
tions into

[0; 1℄ and let � be a probability measure on 
.

1. If V C(F) = d then S

F ;�

(") � C

d

"

for some absolute


onstant C. Moreover, the statisti
s are support-

ed on a sample of C

0

�

d

"

log

1

"

�

points at the most,

where C

0

is some absolute 
onstant.

2. If P

"

(F) �




"

p

then

S

F ;�

(") �

8

>

<

>

:

C

p




"

log

2 


"

if 0 < p < 2;

C

2




"

log

4 


"

if p = 2;

C

p




"

1

"

p�

4

p

log

5

(




"

) if p > 2:

where C

p

is a 
onstant whi
h depends only on p.

Ea
h fun
tional S

i

is supported on a sample of at most

D

p

(

1

"

p+2

log

3

1

"

) elements, where D

p

depends only on p.

Again, we shall prove only the �rst part of the Corol-

lary. The other 
laims follow in a similar fashion.

Proof: Let F be a f0; 1g 
lass su
h that V C(F) = d.

Let " > 0, �x some Æ 2 (0; 1) and put n = O

�

d

"Æ

log

1

"

�

,

whi
h is the sample 
omplexity estimate for (F�F)

2

. S-

in
e Æ < 1 there is some empiri
al measure �

n

su
h that

for every f; g 2 F ,

�

�

E

�

(f � g)

2

� E

�

n

(f � g)

2

�

�

< ". By

Theorem 4.2 there exist a set of m = O(

d

"

) linear em-

piri
al fun
tionals S

1

; :::; S

m

su
h that if S

i

(f) = S

i

(g)

for every 1 � i � m, then kf � gk

2

L

2

(�

n

)

< ". Therefore,

S

1

; :::; S

m

are 2" suÆ
ient statisti
s in L

2

(�). Our 
laim

follows by taking Æ ! 1.

�

4.2 Example

As an example, let F be the 
lass of all the fun
tion-

s f : [0; 1℄ ! [0; 1℄ su
h that for every x; y 2 [0; 1℄,

jf(x)� f(y)j � jx� yj. To estimate the fat shattering

dimension of F , note that if f!

1

< !

2

< ::: < !

n

g is "

shattered, then for every 1 � i � n, there is some f 2 F

su
h that

" � f(!

i+1

)� f(!

i

) =

jf(!

i+1

)� f(!

i

)j � !

i+1

� !

i

:

Hen
e,

1 � !

n

� !

1

=

n

X

i=1

!

i+1

� !

i

� n";

and n �

1

"

. On the other hand, it is easy to see that

V C

"

(F) �

h

1

"

i

:

By the 
onne
tion between the parametri
 Pollard di-

mension and the fat shattering dimension, it follows that

h

1

"

i

� P

"

(F) �

1

"

2

:

Let � be a probability measure on [0; 1℄ and set some

" 2 (0; 1). By the sample 
omplexity estimate, there is

some absolute 
onstant C su
h that

n � n

(F�F)

2

("; Æ) �




"

2

�

1

"

2

log

3

1

"

+ log

1

Æ

�

:

Thus, there is a sample f!

1

; :::; !

n

g su
h that if f; g 2 F

and if for every 1 � i � n f(!

i

) = g(!

i

) then E

�

(f �

g)

2

< ". Therefore, the set fÆ

!

1

; :::; Æ

!

n

g are " suÆ
ient

statisti
s. Sin
e su
h a sample exists for every Æ 2 (0; 1),

then

S

F ;�

(") � lim inf

Æ!0

n

(F�F)

2

("; Æ) �




"

4

log

3

1

"

:

Moreover, for every Æ 2 (0; 1) the set of statisti
s is

supported on the sele
ted sample, hen
e, on a set of

n

(F�F)

2
("; Æ) elements at the most.

Let us 
ompare this dire
t method with our ap-

proa
h. The beginning of the sele
tion pro
ess is the

same: sele
t a sample S

n

= f!

1

; :::; !

n

g su
h that if �

n

is an empiri
al measure supported on S

n

then for every

f; g 2 F ,

�

�

E

�

(f � g)

2

� E

�

n

(f � g)

2

�

�

<

"

2

: (4.2)

Next, we 
onstru
t " suÆ
ient statisti
s for F=�

n

. By

Theorem 4.2 there is a random sele
tion pro
ess whi
h

produ
esm �

C

2

"

log

4

n linear empiri
al equations (S

i

)

m

1

whi
h are supported on S

n

su
h that if f; g 2 F and

S

i

(f) = S

i

(g) for every 1 � i � m then E

�

n

(f � g)

2

<

". Sin
e for every Æ 2 (0; 1) n may be sele
ted as

n

(F�F)

2

("; Æ), then up to a logarithmi
 fa
tor in

1

Æ

,

m �

C

"

log

4

1

"

:

Now, by (4.2) it follows that (S

i

)

m

1

are " suÆ
ient s-

tatisti
s for F in L

2

(�). Thus,

S

F ;�

�

C

"

log

4

1

"

;

whi
h is mu
h better than the estimate obtained by the

dire
t method.

Let us sum-up the sele
tion s
heme for a 
lass F :

Fix the desired 
on�den
e and a

ura
y parameters.

1. Randomly sele
t an i.i.d. sample f!

1

; ::; !

n

g a

ord-

ing to �, where n = n

(F�F)

2
("=2; Æ=2).

2. Let m be as in Theorem 4.2 and assume that m �

C

1

log

2

Æ

, where C

1

is the absolute 
onstant as in

Theorem 4.1. Set G be an m� n matrix whose en-

tries are realizations of standard independent Gaus-

sian random variables.

3. For every 1 � i � m, let

S

i

=

n

X

j=1

g

ij

Æ

!

j

:

Then, with probability larger than 1 � Æ, (S

i

)

m

1

are "

suÆ
ient statisti
s in L

2

(�).

Note that our result is even stronger than what we

have 
laimed. Not only did we prove the existen
e of

suÆ
ient statisti
s, we where able to formulate a simple

random 
onstru
tion s
heme whi
h produ
es " suÆ
ient

statisti
s with arbitrarily large probability.



87

4.3 Improving the 
omputational 
omplexity

In this �nal appli
ation we indi
ate how 
onstru
ting

suÆ
ient statisti
s in empiri
al L

2

spa
es may aid in re-

du
ing the 
omputational 
omplexity of a learning prob-

lem.

Assume that h is the target 
on
ept and that �

n

is

an empiri
al measure su
h that

sup

f2F

�

�

E

�

(f � h)

2

� E

�

n

(f � h)

2

�

�

< " :

Normally, when trying to approximate a fun
tion h with

respe
t to the L

2

(�

n

) norm, one tries to solve the sys-

tem of n empiri
al linear equations Æ

!

i

(h) = Æ

!

i

(f) (i.e.

the equations f(!

i

) = h(!

i

)) subje
ted to the 
onstraint

that the solution belongs to F . By using linear fun
-

tionals on L

2

(�

n

) whi
h are linear 
ombinations of the

point evaluation fun
tionals fÆ

!

1

; :::; Æ

!

n

g, it is enough

to solve S

F ;�

n

(") << n linear empiri
al equations with

the same 
onstraint to ensure that the solution approx-

imates h in L

2

(�

n

).

Below is a summary of the learning pro
edure to-

gether with 
omplexity estimates in terms of the `-norm.

The proof of the 
laims in the example below are based

on the same idea as in the proof of Theorem 4.2.

Example 4.5 Let F be a 
lass of fun
tions on a set


, all of whi
h have a range 
ontained in [0; 1℄ and set

h 2 F to be the target 
on
ept. Let "; Æ be the a

ura
y

and 
on�den
e parameters, set n to be the sample 
om-

plexity estimate of F asso
iated with an a

ura
y of "

and 
on�den
e of Æ=2, and put `

n

= sup

�

n

`(F=�

n

).

1. Sele
t a sample (!

1

; :::; !

n

) a

ording to � and let

�

h(!

1

); :::; h(!

n

)

�

be the values of h on the sample.

2. Let m = Cmaxf`

2

n

="; log 2=Æg, where C is some

absolute 
onstant, and put G to be an m � n ma-

trix su
h that ea
h element g

ij

is a realization of a

standard Gaussian random variable.

3. Find a solution f 2 F to the system

P

n

1

g

ij

h(!

i

) =

P

n

1

g

ij

f(!

i

) whi
h 
onsists of m empiri
al linear

equations.

Then, by the sele
tion of m, kf � hk

2

L

2

(�

n

)

< " with

probability larger than 1� Æ=2. Combining this with the

sele
tion of n it follows that with probability larger than

1� Æ, kf � hk

2

L

2

(�)

< ".

It is important to note that this learning pro
edure

does not improve the sample 
omplexity estimates. One

has to start with an empiri
al measure for whi
h

sup

f2F

�

�

E

�

(f � h)

2

� E

�

n

(f � h)

2

�

�

are \
lose", where h is the target 
on
ept. This is done

by randomly sele
ting a sample a

ording to �, and the

size of the sample is determined by the given a

ura-


y and 
on�den
e parameters. On the other hand, the


omputational 
omplexity improves. As an example, let

F be a 
lass of fun
tions into [0; 1℄ su
h that for every

" > 0, P

"

(F) = O("

�2

). Given the a

ura
y and 
on-

�den
e parameters " and Æ, then m = O("

�1

), while

n = O("

�4

) up to a logarithmi
 fa
tor in

1

"

and

1

Æ

.

This learning rule may be adjusted to have a pre

pro
essing feature. Indeed, given "; Æ 2 (0; 1), if one

sele
ts n = n

(F�F)

2

("; Æ) then the empiri
al fun
tion-

als found here (whi
h are determined by the Gaussian

matrix G) do not depend on the target 
on
ept h. For

every pair f; h 2 F , if

P

n

1

g

ij

h(!

i

) =

P

n

1

g

ij

f(!

i

) for

every 1 � j � m, then with probability larger than

1 � Æ kf � hk

2

L

2

(�)

< ". The pri
e one has to pay for

this pre pro
essing feature is a worse sample 
omplexity

estimate.

5 `-norm estimates

This appendix is devoted to empiri
al `-norm estimates

of GC 
lasses based on their VC or parametri
 Pollard

dimension. Re
all that in both these 
ases, there are

known estimates for the 
overing numbers of F : if F

has a �nite VC dimension then by Haussler's inequality

(see [8℄ or [15℄) its 
overing numbers in L

2

(�) are poly-

nomial in 1=" for every probability measure �. Even

when F does not have a �nite VC dimension but it-

s parametri
 Pollard dimension P

"

(F) is polynomial in

1=", then its log-
overing numbers in L

2

(�

n

) are poly-

nomial in 1=". We shall use those estimates to establish

`-norm estimates for the sets F=�

n

.

Let us re
all Haussler's result:

Theorem 5.1 Let F be a 
lass of f0; 1g valued fun
-

tions, su
h that V C(F) = d. Then, there is an absolute


onstant C su
h that for every probability measure � on


, N(";F ; L

2

(�)) � Cd(4e)

d

"

�2d

.

Using this estimate it is easy to derive the following:

Theorem 5.2 Let F � L

2

(�) whi
h 
onsists of f0; 1g

fun
tions and assume that V C(F) = d. Then, there is

some absolute 
onstant C su
h that `(F) � Cd

1=2

.

Proof: LetH be a �nite dimensional subspa
e of L

2

(�).

Clearly, for every 0 < " � 1,

logN

�

";F \H;L

2

(�)

�

�

logN

�

";F ; L

2

(�)

�

� Cd log

2

"

:

If " > 1 then f0g is an "-
over of F , hen
e, for su
h ",

the log-
overing numbers of F vanish. By Theorem 3.2,

`(F \H) �

Z

1

0

Cd

1

2

log

1

2

1

"

d" � Cd

1

2

:

and our 
laim follows.

�

Next, Assume that P

"

(F) = O("

�p

) for some p >

0. The following estimate is due to Alon, Ben{David,

Cesa{Bian
hi and Haussler (see [1℄).

Theorem 5.3 Let F be a 
lass of fun
tions on 
, all

of whi
h have a range 
ontained in [0; 1℄ and set d =

P

"=4

(F). Then, for every empiri
al measure �

n

,

N

�

";F ; L

1

(�

n

)

�

� 2(

4n

"

2

)

d log

�

en

d"

�

:
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We may apply the same idea used in the proof of The-

orem 5.2 to 
lasses whi
h have a \small" parametri


Pollard dimension.

Theorem 5.4 Let F be a 
lass of fun
tions into [0; 1℄

su
h that P

"

(F) � 
"

�p

for some 0 < p < 2 and 
 �

1. Then, there are 
onstants C

p

su
h that for every

empiri
al measure �

n

,

`(F=�

n

) � C

p




1

2

(1 + logn);

where C

p

= 2

p

C

R

1

0

1

"

p=2

log

1

"

d" for some absolute 
on-

stant C.

Proof: By Theorem 5.3 it follows that there is some

absolute 
onstant C su
h that

logN

�

";F ; L

2

(�

n

)

�

� C

4

p




"

p

�

1 + log

2

n

"

2

�

:

Sin
e F is a subset of the unit ball of L

2

(�

n

), then for

every " � 1 it takes only a single ball of 
over F . Thus,

by Theorem 3.2,

`(F=�

n

) � 2

p

C


1

2

(1 + logn)

Z

1

0

1

"

p

2

log

1

"

d":

�

The 
ase of p � 2 is mu
h more diÆ
ult, be
ause one


an not use the upper bound in Theorem 3.2. However,

it is possible to estimate the `-norm, as des
ribed in the

following Theorem:

Theorem 5.5 Let F be a 
lass of fun
tions whose range

is 
ontained in [0; 1℄. Assume further that P

"

(F) �


"

�p

for some p � 2. Then, there is some absolute


onstant C, su
h that for every empiri
al measure �

n

,

1. if p > 2 then

`(F=�

n

) �

C


1

2

�

p

(1 + logn)(n

1

2

�

1

p

� 1) + n

1

2

�

1

p

;

where �

p

= 2

p=2

(2

p=2�1

� 1)

�1

, and,

2. if p = 2 then

`(F=�

n

) � C(1 + 


1

2

) log

2

n:

Although we 
an not apply the upper bound of theorem

3.2 dire
tly, we shall use the same idea used in the proof

of that Theorem.

Re
all that F may be viewed as an subset of L

2

(�

n

),

where �

n

is an empiri
al measure supported on the sam-

ple f!

1

; :::; !

n

g. Ea
h f 2 F is identi�ed as an elemen-

t of L

2

(�

n

) (whi
h is denoted by f=�

n

) by the map

T (f) =

P

n

i=1

f(!

i

)�

!

i

, where �

!

i

is the 
hara
teris-

ti
 fun
tion of f!

i

g. In terms of the orthonormal ba-

sis of L

2

(�

n

), f=�

n

= n

�1=2

P

n

i=1

f(!

i

)e

i

. Let (g

i

)

n

i=1

be independent standard Gaussian random variables.

For every f 2 F , let Z

f

= n

�1=2

P

n

i=1

f(!

i

)g

i

. Thus,

ea
h Z

f

is a random variable on some probability s-

pa
e (Y; P ), and denote by k k

2

the norm in L

2

(Y; P ).

From the de�nition of the `-norm it is easy to see that

`(F=�

n

) =







sup

f2F

Z

f







2

. It is possible to show (see,

for example, [12℄) that there is some absolute 
onstant

C > 0 su
h that

`(F=�

n

) � CE

�

�

sup

f2F

Z

f

�

�

= E( sup

f2F[�F

Z

f

):

Also, note that the map V : L

2

(�

n

) ! L

2

(Y; P ) giv-

en by V (

P

n

i=1

a

i

e

i

) =

P

n

i=1

a

i

g

i

is an isometry into

L

2

(Y; P ). Thus, for every f 2 F , Z

f

= V (f=�

n

).

The following Lemma plays a 
ru
ial part in the

proof of the upper bound in Theorem 3.2. It is based

on the 
lassi
al inequality of Slepian (see [12℄ or [5℄).

Lemma 5.6 Let fZ

1

; :::; Z

N

g be Gaussian random vari-

ables. Then, there is some absolute 
onstant C su
h that

E sup

i

Z

i

� C sup

i;j

kZ

i

� Z

j

k

2

log

1

2

N:

Proof of Theorem 5.5: We will assume that F is

symmetri
. The proof in the non-symmetri
 
ase is es-

sentially the same. Set Z

F

= fZ

f

jf 2 Fg and note that

sin
e V : L

2

(�

n

) ! L

2

(Y; P ) is an isometry for whi
h

V (F=�

n

) = Z

F

then

N

�

";F=�

n

; L

2

(�

n

)

�

= N

�

";Z

F

; L

2

(P )

�

:

Therefore, by Theorem 5.3 and sin
e P

"

(F) � 
"

�p

,

there is some absolute 
onstant C su
h that

logN(";Z

F

) � C

�

1 + 4

p


"

�p

log

2

n

"

2

�

:

Let "

k

= 2

�k

, put N = [p

�1

log

2

n℄ and set H

k

� Z

F

to

be a 2"

k


over of Z

F

, su
h that

log jH

k

j � C

�

1 + 4

p


"

�p

k

log

2

n

"

2

k

�

:

Hen
e, for every k and every Z

f

there is some Z

k

f

2 H

k

su
h that










Z

f

� Z

k

f










2

� 2"

k

. By writing

Z

f

=

N

X

k=1

(Z

k

f

� Z

k�1

f

) + Z

f

� Z

N

f

it follows that

E sup

f2F

Z

f

�

N

X

k=1

E sup

f2F

(Z

k

f

� Z

k�1

f

) + E sup

f2F

(Z

f

� Z

N

f

):

By the de�nition of Z

k

f

and by Lemma 5.6, there is an

absolute 
onstant C su
h that

E sup

f2F

(Z

k

f

� Z

k�1

f

) �

E sup

�

Z

i

� Z

j

jZ

i

2 H

k

; Z

j

2 H

k�1

; kZ

i

� Z

j

k

2

� 4"

k

	

�

C sup

i;j

kZ

i

� Z

j

k

2

log

1

2

jH

k

j jH

k�1

j �

C"

k

�

1 + 2

p




1

2

"

�

p

2

k

log

n

"

2

k

�

:

Sin
e Z

N

f

2 Z , there is some f

0

2 F su
h that Z

N

f

=

Z

f

0

. Hen
e,
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�

n

X

i=1

f(!

i

)� f

0

(!

i

)

p

n

2

�

1

2

=

kf=�

n

� f

0

=�

n

k

L

2

(�

n

)

= kZ

f

� Z

f

0

k

2

� "

N

;

whi
h implies that for every f 2 F and every y 2 Y ,

�

�

Z

f

(y)� Z

N

f

(y)

�

�

�

n

X

i=1

�

�

�

�

f(!

i

)� f

0

(!

i

)

p

n

g

i

(y)

�

�

�

�

� "

n

�

n

X

i=1

g

2

i

(y)

�

1

2

:

Therefore,

E sup

f2F

Z

f

� Z

N

f

� "

N

E

�

n

X

i=1

g

2

i

�

1

2

= "

N

p

n:

Combining the two estimates and sin
e "

k

= 2

�k

and

N = [p

�1

log

2

n℄,

sup

f2F[�F

Z

f

�

C

N

X

k=1

2

�k

�

1 + 2

p




1

2

2

kp

2

log 4

k

n

�

+ 2

�N

p

n �

C

�

1 + 2

p




1

2

log 2

2N

n

�

N

X

k=1

2

(�1+

p

2

)k

+ 2

�N

p

n �

C

�

1 + 2

p




1

2

logn

�




p

(n

1

2

�

1

p

� 1) + n

1

2

�

1

p

;

where 


p

= 2

p=2�1

(2

p=2�1

� 1)

�1

and the 
laim fol-

lows.

�

Remark 1 Using a similar argument, it is possible to

show that if P

"

(F) � 
"

�2

then there is some absolute


onstant C su
h that for every empiri
al measure �

n

,

`(F=�

n

) � C(


1

2

+ 1) log

2

n:
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