
59

Average-Case Complexity of Learning Polynomials

Frank Stephan

�

Mathematis
hes Institut

Universit�at Heidelberg

Im Neuenheimer Feld 294

69120 Heidelberg, Germany

fstephan�math.uni-heidelberg.de

Thomas Zeugmann

y

Institut f�ur Theoretis
he Informatik

Medizinis
he Universit�at L�ube
k

Wallstra�e 40

23560 L�ube
k, Germany

thomas�t
s.mu-luebe
k.de

Abstra
t

The present paper deals with the average-

ase
omplexity of various algorithms for learn-

ing univariate polynomials. For this purpose

an appropriate framework is introdu
ed. Bas-

ed on it, the learnability of univariate polyno-

mials evaluated over the natural numbers and

of univariate polynomials de�ned over �nite

�elds is analyzed.

Our results are manifold. In the �rst
ase,

onvergen
e is measured not relative to the de-

gree of a polynomial but with respe
t to a mea-

sure that takes the degree and the size of the

oeÆ
ients into a

ount. Then standard inter-

polation is proved not to be the best possible

algorithm with respe
t to the average number

of examples needed.

In general, polynomials over �nite �elds are

not uniquely spe
i�ed by their input-output-

behavior. Thus, as a new form of data repre-

sentation the remainders modulo other poly-

nomials is proposed and the expe
ted example

omplexity is analyzed for a rather ri
h
lass

of probability distributions.

1 Introdu
tion

Learning
on
epts eÆ
iently has attra
ted
onsider-

able attention during the last de
ade. However, within

the �eld of indu
tive inferen
e traditionally the main

emphasis has been put on analyzing the update time,

i.e., the e�ort to
ompute a single new hypothesis. On

the other hand, starting with Valiant's [21℄ pioneer-

ing paper, the total amount of examples and/or time

needed to solve a given learning problem has be
ome

quite popular. Nevertheless, the
omplexity bounds

�

This author was supported by the Deuts
he Fors
hungs-

gemeins
haft (DFG) under grant no. Ste 967/1{1.

y

Supported by the Grant-in-Aid for S
ienti�
 Resear
h

in Fundamental Areas from the Japanese Ministry of Edu
a-

tion, S
ien
e, Sports, and Culture under grant no. 10558047.

proved within the PAC model are usually worst-
ase

bounds.

Sin
e experimental studies have shown quite often a

large gap between the worst-
ase bounds proved and the

a
tual runtime observed, several authors advo
ated to

analyze the average-
ase behavior of learning algorithms

(
f., e.g., [7, 10, 12, 14, 15, 16, 17, 18℄). We
ontinue

along this line of resear
h.

Within this paper we deal with the problem to learn

eÆ
iently univariate integer valued polynomials as well

as univariate polynomials over �nite �elds from two dif-

ferent sour
es of information. The underlying model is

Gold [9℄-style learning in the limit, i.e., the learner has

to produ
e a sequen
e of hypotheses that stabilizes to a

orre
t and �nite des
ription of the target polynomial.

We always
hoose the target
lass of all relevant poly-

nomials as hypothesis spa
e.

Classi
ally, the sour
e of information are in
remen-

tally growing sequen
es of pairs argument{value. An-

gluin and Smith [2℄ des
ribe two methods for learning

integer valued polynomials in this setting. The �rst

method is identi�
ation by enumeration (
f. Gold [9℄).

Here, a
anoni
al enumeration of all target polynomials

is assumed and the learner sear
hes on every input for

the �rst polynomial in the enumeration that mat
hes

the data. Clearly, it then
onverges to the �rst enumer-

ated polynomial that equals the target.

The se
ond method is learning by interpolation, i.e.,

the learner always
omputes the interpolation polyno-

mial from the data given. Polynomial interpolation

is a widely studied and well understood problem (
f.,

e.g., Bini and Pan [4℄). So in the general
ase, there

are algorithms whi
h synthesize a formula for a desired

polynomial over the rational or real numbers from n+1

pairs (x; g(x)) where g is the desired polynomial and

n is its degree.

We aim to
ompare these methods with respe
t to

their average-
ase example and time
omplexity. Part

of our motivation is a result obtained by Gold [9℄ and

generalized by Jantke and Bei
k [13℄ stating that iden-

ti�
ation by enumeration is an optimally data eÆ
ient

method. Here, the data eÆ
ien
y of a learner is mea-

sured by the quantity of data it needs to
onverge to a

60

orre
t hypothesis. If L

1

and L

2

are two learning algo-

rithms, then L

1

is as data eÆ
ient as L

2

i�, for every

admissible information presentation and every target,

L

1

does not need more data than L

2

to
onverge. L

1

is stri
tly more data eÆ
ient than L

2

if L

1

is as data

eÆ
ient as L

2

but there is a target and a data presenta-

tion for it su
h that L

1

needs stri
tly less data than L

2

until
onvergen
e. Finally, a learning method is
alled

optimally data eÆ
ient if there is no other learner that

is stri
tly more data eÆ
ient.

While these investigations have been undertaken in

a setting where learning is required from every infor-

mation presentation, our goal is to analyze the average-

ase
omplexity of these two methods. We de�ne our

average-
ase model by spe
ifying a rather ri
h
lass of

probability distributions over the natural numbers (
f.

Se
tion 2). Then, every datum x will be drawn inde-

pendently at random with a
ertain probability. Thus,

one obtains randomly generated sequen
es ((x; g(x)))

and the learner is fed in
rementally growing initial seg-

ments of the sequen
e generated.

Then we
onsider the problem of learning polynomi-

als over a �nite �eld. For seeing the main two di�er-

en
es, let us assume that we have to learn polynomials

de�ned over the �nite �eld IF

2

.

(1) Now, the polynomials
onsidered are de�ned only

for two inputs, i.e., input 0 and input 1 . Therefore

they are not fully des
ribed by the mapping x ! g(x)

for x 2 f0; 1g and one has to look for other ways to

des
ribe them. The way
hosen in the present paper is

to supply the data as a random sequen
e of pairs (a; b)

where b is the remainder polynomial obtained when

the target polynomial g is divided by polynomial a .

This generalization reintrodu
es a mode to des
ribe the

whole polynomial. We refer to this model as to learning

from remainder sequen
es.

(2) In the standard
ase, all data fed to the learner

are of the form (x; g(x)) and have the same information

ontent. Thus, n+ 1 di�erent data items | whatever

they are | des
ribe exa
tly the target polynomial g

while n do not do it. This beautiful property is lost in

the model
onsidered here, i.e., when learning from re-

mainder sequen
es. Taking for example a produ
t g

1

g

2

;

then all pairs (a; b) where a is dividing g

1

do not
on-

tribute any knowledge about g

2

, but there might be 2

n

divisors for some polynomial g

1

of degree n

2

| for ex-

ample obtained by multiplying n
oprime polynomials

of length n . So the degree is not an upper bound on

the number of data-items needed to learn a polynomial.

On the other hand, a single data-item
an give a full

des
ription of the polynomial: if deg(a) > n then the

b in the pair (a; b) is already the
orre
t polynomial

wanted.

For de�ning our average-
ase model, we have to in-

trodu
e a
lass of probability distributions over the set

IF

q

[x℄ of all relevant polynomials (where IF

q

is a �nite

�eld of order q). Clearly, this
lass should be
hosen in-

dependently of the target polynomial. That is, we �rst

�x the
lass of admissible probability distributions D

and then analyze the expe
ted
omplexity of learning

from remainder sequen
es drawn with respe
t to some

distribution from the
lass D .

For de�ning D , all polynomials from IF

q

[x℄ should

have a non-zero probability ex
ept the zero polynomial.

Sin
e IF

q

[x℄ is in�nite, the limit superior (as n tends to

in�nite) of the probability to show up for a polynomial

of degree n has to be zero. That is, high degree poly-

nomials have low probability and the higher the degree

the smaller is the relevant probability. On the other

hand, there is no reasonable
ause to assume di�erent

probabilities for polynomials of the same degree. Thus,

the distributions in D
onsidered in the present work

are all of a quasi uniform type.

The
omplexity of our learning algorithms is ana-

lyzed with respe
t to two average measures: The exam-

ple
omplexity is the average number of examples used

by the learning algorithm until it
omes up with the

orre
t hypothesis. The time
omplexity is the average

number of
omputation steps until the
orre
t polyno-

mial g is found. Naturally, the example
omplexity is

also a lower bound for the time
omplexity.

Next, we introdu
e some notions and notations used

within the present paper.

By IN = f0; 1; 2; : : :g we denote the set of all natural

numbers, and we set IN

+

= IN n f0g . The symbol ZZ

is used for the set of all integers. Any �nite �eld is

denoted by IF . If IF is a �nite �eld, we write p for its

hara
teristi
 and q for its order. Note that p is always

a prime and q = p

`

for some ` 2 IN

+

. Therefore, we

usually write IF

q

for the, up to isomorphism, unique

�eld of order q . For more information
on
erning �nite

�elds the reader is referred to Berlekamp [3℄.

If g is any polynomial; then we use deg(g) to de-

note its degree.

Finally, we re
all the following important proposi-

tion from probability theory that will be used frequently.

Proposition 1 (Feller [8℄). Assume that there is

a sour
e of examples su
h that every example has with

probability r > 0 a
ertain property u . Then the aver-

age number of examples to be drawn until some example

satisfying u
omes up is just

1

r

. The average number

of examples ne
essary to draw n su
h examples is

n

r

.

This paper is organized as follows. In Se
tion 2

we present a new algorithm for learning integer valued

polynomials from sequen
es argument-value and ana-

lyze its average-
ase
omplexity with respe
t to a rather

large
lass of probability distributions. The average-

ase
omplexity of learning polynomials over �nite �elds

from remainder sequen
es is studied in Se
tion 3. Fi-

nally, we outline
on
lusions.

61

2 Learning Polynomials on Natural

Numbers

Throughout this se
tion, the target
lass is the set

of all integer-valued polynomials. For learning a target

polynomial g , the sour
e of information given to the

learner are pairs (x; g(x)) , where x 2 IN . Next, we

have to spe
ify the
lass of admissible probability dis-

tributions D over IN . That is, a datum x will then be

drawn with probability p(fxg) , and the learner is fed

(x; g(x)) . For de�ning a rather ri
h
lass of probability

distributions, we make only the following two assump-

tions about p . First, p(fxg) > 0 for all x 2 IN , sin
e

we have no reason to distinguish any x 2 IN by assign-

ing probability 0 to it. Se
ond, p(fxg) � p(fyg) for

all x; y 2 IN with x � y . The motivation for the se
-

ond assumption is as follows. Sin
e IN is in�nite, the

limit superior of p(fxg) (as x tends to in�nite) has

to be zero. That means, large numbers must have low

probability and the larger x is the lower is the relevant

probability.

As we shall see later, it will be more
onvenient to

deal with the probability that some datum from the

set fx; x + 1; x+ 2; : : :g has been drawn rather than a

parti
ular one. Therefore, we spe
ify the
lass D via

fun
tions f de�ned by f(x) = p(fx; x + 1; : : :g) , i.e.,

f des
ribes the probability to draw some datum from

fx; x+ 1; x+ 2; : : :g . Now, one easily veri�es that f is

de
reasing, and the following properties are ful�lled:

(1) f(0) = 1 ,

(2) lim

x!1

f(x) = 0 ,

(3) f(x) > 0 for all x 2 IN , and

(4) f(x)� f(x+ 1) � f(x+ 1)� f(x+ 2) .

So f is very parallel to the parameter fun
tion f

used in the next se
tion. D is now the set of all prob-

ability distributions generated by a de
reasing fun
tion

f satisfying (1) through (4) above.

Interpolation is the best known method for learning

polynomials. It returns to all data-items a hypothesis

in polynomial time and its average-
ase
omplexity is a

bit below

1

f(0)�f(1)�:::�f(n)

(
f. [20℄):

� There are polynomial time algorithms to
ompute

a formula for a polynomial g of least degree inter-

polating given data (x

0

; y

0

); (x

1

; y

1

); (x

2

; y

2

); : : : ;

(x

n

; y

n

) .

� It needs n+ 1 di�erent examples for identifying a

polynomial of degree n ; the average example
om-

plexity is just the number of draws ne
essary un-

til n + 1 di�erent values are obtained. An upper

bound of the expe
ted example
omplexity of learn-

ing polynomials by interpolation is then

1

f(0) � f(1) � : : : � f(n)

:

Gold [9℄ as well as Jantke and Bei
k [13℄ showed that

learning by enumeration is optimally data-eÆ
ient. The

same is true also for interpolation.

Proposition 2. Interpolation is optimally data-

eÆ
ient.

Proof. Interpolation returns to any n+ 1 di�erent

data-items a polynomial of degree n and keeps that

hypothesis until some data
omes up showing that it

is in
orre
t. Assume by way of
ontradi
tion that some

other algorithm M would be stri
tly more data-eÆ
ient

than interpolation. Then M learns some polynomial g

before it is interpolated, that is, M outputs a
orre
t

hypothesis for g on some data (x

0

; y

0

); (x

1

; y

1

); : : : ;

(x

n

; y

n

) although deg(g) > n . As a
onsequen
e, M

does not identify the polynomial g

0

interpolating this

sequen
e from these n + 1 data-items, whi
h
ontra-

di
ts the fa
t that M is at least as data-eÆ
ient as

interpolation.

So alternatives to interpolation are more in
ompa-

rable to it than better on all possible polynomials and

data-sequen
es. The main axiom of interpolation is that

the easiest way to des
ribe a set of data is to take the

polynomial of least degree interpolating it. That is, in-

terpolation is based on the assumption that a data-item

of the form

(10000; 100020001)

is more likely to des
ribe the polynomial

g(x) = 100020001

than the polynomial

h(x) = x

2

+ 2x+ 1 ;

so the size of the
oeÆ
ients is totally ignored. The

subsequent model therefore tries to �nd for given data

rather a polynomial having small absolute values of the

oeÆ
ients rather than being of small degree. This ap-

proa
h leads us to a de�nition of the size of a polynomial

that takes into a

ount not only the degree but also the

absolute value of the
oeÆ
ients. Integer valued poly-

nomials may have rational
oeÆ
ients, for example the

learly integer-valued polynomial

x! 0 + 1 + : : :+ x

has the formula

1

2

x

2

+

1

2

x :

Every integer-valued polynomial of degree k is of the

form

g(x) = a

0

�

x

0

�

+ a

1

�

x

1

�

+ : : :+ a

k

�

x

k

�

;

where all a

i

2 ZZ ; a

k

6= 0 and

�

x

h

�

=

x � (x� 1) � : : : � (x � h+ 1)

1 � 2 � : : : � h

is the binomial
oeÆ
ient for x and h . Note that

�

x

h

�

= 0 for all x < h :

62

For example,

g(x) =

1

2

x

2

+

1

2

x

has then the form

g(x) =

�

x

1

�

+

�

x

2

�

;

i.e., a

0

= 0 , a

1

= a

2

= 1 .

Using this general form, a natural de�nition of the

size of a polynomial g is

size(g) = maxf1; deg(g); ja

0

j; ja

1

j; : : : ; ja

k

jg:

Here deg(g) � k , and equality holds in the
ase that

a

k

6= 0 . The next theorem shows that | with high

probability | every polynomial of size n
an be learned

within polynomial time from logarithmi
ally many ex-

amples.

Theorem 3. Let g be any target polynomial whose

size is unknown to the learner. Then, an optimal al-

gorithm learning g from data-items drawn at random

with respe
t to f needs

(1) at least (f(size(g)))

�1

and

(2) at most (f(5 � (size(g))

2

))

�1

many examples until

onvergen
e.

Proof. For proving Assertion (1),
onsider the two

polynomials x!

�

x

n

�

and x! �

�

x

n

�

. They have size

n and do not di�er at the pla
es 0; 1 : : : ; n� 1 . Thus,

the learner has to see some pair (x; g(x)) with x � n

to make up its mind. So, the expe
ted number to draw

examples until su
h a pair
omes up is

1

f(size(g))

.

For proving Assertion (2),
onsider the following al-

gorithm:

Let (x; g(x)) be the data-item with the largest

x seen so far.

Let n be the largest natural number su
h that

5n

2

� x .

Initialize a

0

; a

1

; : : : ; a

n

with the value �n .

For m = n; n � 1; : : : ; 0 in
rement a

m

until

either a

m

= n or g

0

(x) +

�

x

m

�

> g(x) for the

polynomial g

0

de�ned by the
urrent values of

the
oeÆ
ients a

0

; a

1

; : : : ; a

n

.

Output g(x) = a

0

+ a

1

�

x

1

�

+ : : :+ a

n

�

x

n

�

.

It is easy to see, that this algorithm
onverges. Sin
e

ea
h a

m

is in
reased at most 2n times and sin
e there

are only n variables, the whole algorithm needs to
om-

pute the
urrent values of g

0

(x) +

�

x

m

�

at most 2n

2

times.

Next, it is shown that the output is
orre
t under

the assumption that size(g) � n .

Assume now by way of
ontradi
tion, that the algo-

rithm terminates with some g

00

su
h that g

00

6= g . Let

b

0

; b

1

; : : : ; b

n

be the
oeÆ
ients of g and a

0

; a

1

; : : : ; a

n

those of g

00

. There is a largest m su
h that b

m

6= a

m

.

If a

m

< b

m

, then the algorithm stops at the m -

th loop before in
rementing a

m

to b

m

, in parti
u-

lar, �n

�

x

0

�

� n

�

x

1

�

� : : : � n

�

x

m�1

�

+ (a

m

+ 1)

�

x

m

�

+

a

m+1

�

x

m+1

�

+ : : : + a

n

�

x

n

�

> g(x) . This implies by

a

k

= b

k

for k > m that �n

�

x

0

�

�n

�

x

1

�

�: : :�n

�

x

m�1

�

+

(a

m

+ 1)

�

x

m

�

> b

0

�

x

0

�

+ b

1

�

x

1

�

+ : : : + b

m�1

�

x

m�1

�

+

b

m

�

x

m

�

. This assumption
ontradi
ts to the fa
t that

the a

m

+ 1 � b

m

and �n � b

k

for all k . So this
ase

does not o

ur.

Otherwise a

m

> b

m

. This implies that �n

�

x

0

�

�

n

�

x

1

�

� : : :�n

�

x

m�1

�

+(b

m

+1)

�

x

m

�

� b

0

�

x

0

�

+ b

1

�

x

1

�

+

: : : + b

m�1

�

x

m�1

�

+ b

m

�

x

m

�

sin
e otherwise a

m

ould

never been in
remented to a value greater than b

m

.

So one gets that

�

x

m

�

� (b

0

+ n)

�

x

0

�

+ (b

1

+ n)

�

x

1

�

+

: : : + (b

m�1

+ n)

�

x

m�1

�

. Using b

k

� n , m �

x

5

and

that, for k <

x

5

,

�

x

k

�

<

1

2

�

x

k+1

�

one gets that

�

x

m

�

�

2n � (2

1�m

+ 2

2�m

+ : : : + 2

0

)

�

x

m�1

�

� 4n �

�

x

m�1

�

. In

parti
ular x + 1 � m � 4nm whi
h
ontradi
ts the

requirements m � n and x � 5n

2

from the
hoi
e of

m and n . Thus, a

m

> b

m

is impossible either.

So, it follows from the
ase-distin
tion that g

00

= g

whenever the parameter n is an upper bound for the

size of g . In parti
ular the example
omplexity of the

algorithm is (f(5 � (size(g))

2

))

�1

.

Before dis
ussing further
onsequen
es of our Theo-

rem 3, we shortly illustrate the learner des
ribed in the

proof above.

Example 4. Let g with g(x) = 1 for all x be

the target polynomial to be learned by the algorithm

given in the proof above. Thus, size(g) = 1 and we

therefore
onsider the data item (5; 1) whi
h has the

smallest possible x .

Now, �rst the algorithm
omputes n = 1 , and there-

fore g

0

1

(x) = �x�1 . During the �rst loop, i.e., m = 1 ,

only the
oeÆ
ient a

1

is possibly
hanged while the a
-

tual a

0

= �1 remains un
hanged.

Sin
e a

1

= �1 6= 1 = n , the algorithm then tests

�5� 1 + 5 > 1 whi
h is false. Therefore, g

0

2

(x) = �1 .

Sin
e 0 6= 1 , it tests �1 + 5 > 1 whi
h is true. This

�nishes the loop for a

1

with a

1

= 0 , and the se
ond

loop, i.e., m = 0 , is started with g

0

2

(x) = �1 . Now,

the
ondition to be
he
ked is �1 = 1 or �1 + 1 > 1

whi
h returns false. Thus, g

0

3

(x) = 0 . Sin
e 0 6= 1 , it

tests 0 + 1 > 1 whi
h is false. Finally, g

0

4

(x) = 1 , and

the algorithm terminates, sin
e 1 = 1 . Hen
e, it has

orre
tly learned the target g .

Note that the time-
omplexity of the algorithm pre-

sented in the proof of Theorem 3
ould be improved by

sear
hing the a

m

via interval sear
h; the main reason

for giving the algorithm as above was to get an eas-

ier veri�
ation. The following example gives
on
rete

63

bounds for the
ase that the distribution is given by

f(n) =

1

log(n+ 2)

:

Example 5. There is an algorithm whi
h learns

polynomials with example
omplexity

log(2 + 5 � (size(g))

2

)

where the distribution is given by f(n) =

1

log(n+2)

.

Next, we
ompare the latter result to learning by in-

terpolation. Let n > 1 ; there are (2n + 1) � (2n+ 1)

n

many polynomials having size at most n . Among these

polynomials, there are 2n � (2n+1)

n

many polynomials

that have degree n . For these polynomials of degree n

the standard interpolation pro
edure requires n+1 dif-

ferent data-items. On the other hand, for the distribu-

tion des
ribed by f(n) =

1

log(n+2)

, our algorithm needs

for all polynomials of size at most n only log(5n+2)

2

many examples. So the example
omplexity of the al-

gorithm presented above is for the great majority of

the polynomials of size at most n better than standard

interpolation when measured with respe
t to the dis-

tribution des
ribed by f(n) =

1

log(n+2)

and taking the

size instead of the degree as a key parameter.

On the other hand, interpolation beats this algo-

rithm if the underlying probability distribution is given

by f(n) = 2

�n

. Then the example
omplexity to get

all values g(0); g(1); : : : ; g(n) is 2

n(n+1)=2

while the ex-

ample
omplexity to get one value g(x) with x � 5n

2

is 2

5n

2

.

Next, we turn our attention to the problem that an-

alyzing only the expe
ted number of examples needed

until
onvergen
e is not so interesting. As often
riti-

ized by statisti
ians, expe
ted values alone are not so

informative. Thus, we are interested in knowing on how

often the example
omplexity ex
eeds the average sub-

stantially.

For that purpose, we �rst note that the learner pre-

sented in Theorem 3 has two important properties, i.e.,

it is
onservative and set-driven. A learner is set-driven,

if its output depends only on the range of its input (
f.

Wexler and Culi
over [22℄), while
onservative learners

maintain their a
tual hypotheses at least as long as they

have not seen data
ontradi
ting them (
f. Angluin [1℄).

Now, let X be a random variable standing for the ex-

ample
omplexity of the algorithm in the proof of The-

orem 3, and let E[X ℄ denote the expe
tation of X .

Then, using a result by Rossmanith and Zeugmann [19℄,

we dire
tly obtain the following
orollary.

Corollary 6. Pr(X � 2tE[X ℄) � 2

�t

for all

t 2 IN .

Consequently, our learner additionally possesses ex-

ponentially shrinking tail bounds for the example
om-

plexity. We
an therefore transform the above algorithm

into one that probably exa
tly identi�es every target

polynomial of size at most n provided a
omputable

upper bound

^

f for f is available to the learner. Prob-

ably exa
t learning is de�ned in the same way as PAC

learning, ex
ept that the hypothesis output has to be

orre
t rather than approximately
orre
t. Addition-

ally, it assumes a bit knowledge
on
erning the under-

lying distributions.

Theorem 7. Let n 2 IN , and let

^

f be a
omputable

upper bound for f . Then there is an algorithm probably

exa
tly learning every target polynomial of size at most

n for every distribution f 2 D with f(x) �

^

f(x) for

all x 2 IN using (2

^

f(5n

2

))

�1

log

1

Æ

many examples.

Proof. The desired learner takes any Æ 2 (0; 1) as

additional input. Now, using the algorithm de�ned in

the proof of Theorem 3, the learner performs log(1=Æ)

many rounds.

In ea
h round it requests (2

^

f(5n

2

))

�1

many exam-

ples. During the �rst round, it
omputes a hypothesis

by using the learner from Theorem 3. By Corollary 6,

this hypothesis is already
orre
t with probability at

least 1=2 . In the remaining rounds, a new hypothesis

is only
omputed if a data item (x; g(x)) is re
eived

su
h that x > y for all y in the data items (y; g(y))

re
eived so far. The last hypothesis
omputed is then

output.

Therefore, the probability that none of the
omputed

hypotheses is
orre
t
an be bounded by Æ , i.e., with

probability 1� Æ the learner outputs a
orre
t hypoth-

esis after having pro
essed (2

^

f(5n

2

))

�1

log(1=Æ) many

examples. Sin
e

^

f is an upper bound for f , the theo-

rem follows.

We �nish this se
tion by
omparing the latter result

to PAC learning. Clearly, the PAC model is distribution

free, and therefore, the best one
an hope for is to get

better bounds on the number of examples needed for

spe
ial
lasses of distributions. This is indeed the
ase

as we shall see.

Assuming n to be again a bound on the size of all

target polynomials, one
an easily determine the VC

dimension of the
lass of all these polynomials to be n .

Thus, a PAC learner needs at least O(

1

"

log

1

Æ

+

n

"

) many

examples. Compared to the bound in Theorem 7, this

bound is worse provided

^

f(n) <

1

p

n+1

.

Further generalizations are possible by removing the

parameter n for the upper bound of the size. For the

PAC model, this has been shown in [11℄. Their te
h-

nique
an be generalized to the setting
onsidered in

Theorem 7.

3 Learning from Remainder Sequen
es

Next, we turn our attention to learning univariate

polynomials over �nite �elds. As already mentioned in

64

the introdu
tion, now the situation is slightly di�erent

from that studied in the previous subse
tion, sin
e even

omplete sequen
es of pairs argument-value do not pro-

vide enough information to learn the target polynomial.

Therefore, we propose a new sour
e of information,

i.e., learning from remainder sequen
es. That is, now

the learner has a

ess to pairs (a; b) , where a is any

polynomial and b is the remainder of the target polyno-

mial when divided by a . Again, we require the learner

to infer the target in the limit from any su
h sequen
e.

This information shares some ni
e properties with

the standard sour
e of information given by sequen
es

of argument-value. First, it is also easy to
ompute

(only a bit more
ompli
ated than polynomial evalua-

tion). Se
ond, it
ontains enough information to learn

the target polynomial. Third, though one
an learn the

target from this information, learning does not be
ome

easier in the sense that learning in the limit
ould be

repla
ed by �nite learning. Here, �nite learning means

that the learner
an de
ide whether or not it has already

su

essfully �nished its learning task (
f. Gold [9℄).

In some sense, learning even be
omes harder. As

we have already said, in the standard
ase it is always

suÆ
ient to have n + 1 data items argument-value to

learn any polynomial of degree n . This ni
e property

is lost in our new model. Taking into
onsideration

that there are (q� 1)q

m

di�erent polynomials in IF

q

[x℄

of degree pre
isely m , it is easy to see that it may

take exponentially many examples (in the degree n of

the target polynomial) until
onvergen
e. On the other

hand, a single data item is suÆ
ient in the best-
ase (if

deg(a) > deg(g) , where g is the target polynomial).

Consequently, in the new setting the best-
ase and

worst-
ase are overly optimisti
 and pessimisti
, respe
-

tively. Therefore, we study the average-
ase
omplexity

of this learning task. This requires the introdu
tion of

a
lass of probability distributions over the whole set

IF

q

[x℄ of polynomials. Sin
e IF

q

[x℄ is in�nite, there is

no uniform distribution. We therefore
onsider a rather

ri
h
lass of quasi uniform distributions over IF

q

[x℄ de-

�ned as follows.

Definition 8. For every �nite �eld IF

q

we de�ne

the
lass D of quasi uniform distributions over IF

q

[x℄

to be the set of all probability distributions generated

by any de
reasing fun
tion f satisfying

(1) f(0) = 1 ,

(2) lim

n!1

f(n) = 0 ,

(3) f(n) 6= 0 for all n � 1 , and

(4) f(n)� f(n+ 1) � f(n+ 1)� f(n+ 2) .

The probability of a non-zero polynomial a is then

just

(f(deg(a))� f(deg(a) + 1)) �

1

(q � 1) � q

deg(a)

Conditions (1) and (2) in De�nition 8 are ne
essary

to obtain a probability distribution. For seeing this,

note that there are pre
isely (q� 1) � q

m

many polyno-

mials of degree m . Thus, the probability to draw some

polynomial a of degree d is (f(deg(a)) � f(deg(a) +

1)) . Now, looking at the sequen
e (S

m

)

m2IN

of partial

sums, we get that

S

m

=

m

X

d=0

(f(d) � f(d+ 1)) = f(0)� f(d+ 1) ;

and hen
e lim

m!1

S

m

= f(0) = 1 .

Furthermore, Condition (3) ensures that all polyno-

mials have a non-zero probability. Finally, Condition

(4) formalizes the requirement that all polynomials of

degree n + 1 have a lower probability than those of

degree n .

First, we establish lower and upper bounds for learn-

ing from remainder sequen
es. In the following, when-

ever talking about learning algorithms for polynomials

from IF

q

[x℄ , it is assumed that all these algorithms infer

to whole target
lass IF

q

[x℄ .

Theorem 9. Let g 2 IF

q

be any target polynomial

of degree n (where n is unknown to the learner) .

Then we have:

(1) Every algorithm learning the target polynomial g

from remainder sequen
es drawn at random with

respe
t to f needs at least

(f(log

q

(n)� 2 log

q

log

q

(n)))

�1

many examples until
onvergen
e.

(2) There exists an algorithm learning g from remain-

der sequen
es drawn at random with respe
t to f

that needs at most (f(n + 1))

�1

many examples

until
onvergen
e.

Proof. For proving Assertion (1),
hoose the unique

m su
h that mq

m+1

< n � (m + 1)q

m+2

. Let g

1

be

the produ
t of all polynomials of degree up to m . There

are pre
isely (q�1) �q

d

many polynomials of degree d ;

thus the degree of g

1

an be upper bounded by

m � (q � 1) �

m

X

d=1

q

d

� m � q

m+1

:

Let g

2

be any polynomial of degree n � deg(g

1

) .

Now the lower bound is obtained by analyzing the ex-

pe
ted number of examples ne
essary for learning the

polynomial g = g

1

g

2

. Any polynomial of degree up

to m is a divisor of g

1

. Therefore, no data (a; b)

with deg(a) � m gives any information on the par-

ti
ular form of g

2

. Hen
e, the learner
annot su
-

eed before seeing at least one data item (a; b) with

deg(a) > m . Su
h a polynomial a o

urs with prob-

ability at most f(m + 1) and therefore, the example

omplexity is at least (f(m+ 1))

�1

whi
h is an upper

bound for (f(log

q

(n)� 2 log

q

log

q

(n)))

�1

.

65

For proving Assertion (2)
onsider the learning al-

gorithm that always
onje
tures b for the pair (a; b)

seen so far where a has the highest degree. Note that

b = p whenever deg(a) > deg(p) . Sin
e su
h an a

has to be drawn up eventually, the algorithm
onverges.

It remains to show the example bound given by this

algorithm mat
hes the bound given in (2). The event

that deg(a) > n has probability f(n + 1) and thus,

by Proposition 1, the expe
ted number of examples is

(f(n+ 1))

�1

until su
h a polynomial a shows up.

Next, we dis
uss the bounds obtained in Theorem 9

by looking at very slowly and very rapidly de
reasing

fun
tions f . For the former, let f(2

n

) =

1

2

f(n) and

require f to be uniformly de
reasing for all arguments

inbetween two
onse
utive powers of 2 . That is, f(0) =

1 by Condition (1) in De�nition 8, f(1) = 1=2 , f(2) =

1=4 f(3) = 3=16 , f(4) = 1=8 , f(5) = 15=128 , f(6) =

14=128 , f(7) = 13=128 , f(8) = 3=32 , . . . , f(16) =

1=16 , . . . , and so on. Now, it is easy to see that the

di�eren
e between the bounds given in Theorem 9 is

only a
onstant fa
tor.

But for distributions given by other fun
tions f like

f(n) = q

�n

the gap is large. Now, the upper bound

q

n+1

and the lower bound

q

log(n)�2 log log(n)

= n � (log(n))

�2

di�er exponentially.

Consequently, while the gap between lower and up-

per bound in Theorem 9
an be large for some distri-

bution in D , one
an expe
t better bounds for parti
-

ular distributions. So the next two results improve the

bounds for the distribution given by f(n) = q

�n

.

Theorem 10. Let g 2 IF

q

[x℄ be any target polyno-

mial of degree n (n again unknown to the learner) .

Then every algorithm learning g from remainder se-

quen
es drawn at random with respe
t to the distribution

generated by f(n) = q

�n

has at least example
omplex-

ity q

�4

�

n

2

log(n)

for suÆ
iently large n .

Proof. (Sket
h) This lower bound is obtained by

adapting the previous proof and by exploiting spe
ial

knowledge on the distribution. Let m be the unique

number with (q+m+1)q

m+1

< n � (q+m+2)q

m+2

.

As in the proof of Theorem 9 let g

1

be the produ
t of

all moni
 polynomials of degree less than or equal to m

and g

2

is some polynomial of degree n�deg(g

1

) . Sin
e

the degree of g

1

is at most mq

m+1

, the degree of g

2

is at least q

m+2

. As in the previous lower bound proof,

again only polynomials whose degree is at least m + 1

ontribute to some knowledge on g

2

. The expe
ted

degree of these polynomials
an be upper bounded by

m+3 . In order to re
onstru
t g

2

the sum of the degrees

of these polynomials must be q

m+2

and so at least

q

m+2

m+3

examples are needed to do the job. Also only one out of

q

m

examples quali�es to have at least degree m , so a

lower bound for the example
omplexity is

q

2m+2

m+3

. Sin
e

n � (q+m+2)q

m+2

and log(n) � m , one
an estimate

q

2m+2

m+3

� n

2

� q

�3

� (q +m+ 2)

�1

� q

�4

�

n

2

log(n)

and get

that, for suÆ
iently large n , q

�4

�

n

2

log(n)

examples are

ne
essary to learn any given polynomial of degree n .

Theorem 9 gives for f(n) = (n + 1)

�k

, k 2 IN

+

,

dire
tly an algorithm whi
h learns every polynomial g

of degree n with average example
omplexity (n+2)

k

.

Considering that every example has to be read through

on
e, the time
omplexity of the algorithm is (n+2)

k+1

.

This does not longer work for distributions like f(n)

= q

�n

. Here the lower bound is polynomial, but the

upper bound is exponential. Therefore, the next theo-

rem shows how to improve the upper bound from ex-

ponential to polynomial time. So both bounds are un-

der this parti
ular distribution quadrati
 modulo some

poly-logarithmi
 term.

Theorem 11. There is an algorithm that learns ev-

ery polynomial from IF

q

[x℄ from remainder sequen
es

drawn at random with respe
t to the probability distri-

bution generated by f(n) = q

�n

that needs on average

at most q

7

n

2

many examples and time O(n

2

log(n))

until
onvergen
e on target polynomials of degree n .

Proof. The learner does not use all data-items (a; b)

but only those whi
h belong to irredu
ible polynomi-

als a . Furthermore, one
an divide the polynomial a

by its leading
oeÆ
ient. Note that this division does

not
hange the remainder b . Thus, we
an assume a

to be moni
 without
hanging the remainder b . This

normization enfor
es that equivalent irredu
ible polyno-

mials like x

2

+ 1 and 2x

2

+ 2 o

ur only in the form

x

2

+ 1 . So one makes the polynomials moni
 and per-

forms a test for irredu
ibility before further pro
essing.

As a
onsequen
e the learning algorithm avoids fa
tor-

ing and similar work. Furthermore before updating its

hypothesis, the learner �rst
he
ks whether it has al-

ready seen the data
oming in. This
he
k allows to

pro
ess ea
h irredu
ible polynomial at most on
e and to

establish the low time
omplexity of the learning pro-

ess. All data, whi
h pass these two
he
ks, are then

used in order to
onstru
t a hypothesis about the poly-

nomial to be learned by applying the Chinese Remain-

der Theorem. As soon as the learner has a

umulated a

suÆ
ient large basis of
oprime (even irredu
ible) poly-

nomials, the target is fully des
ribed by its
orrespond-

ing remainders. We
ontinue with a formal des
ription.

Within the algorithm, (a; b) denotes the
urrent in-

put data, h is a variable standing for the hypothesis

about the polynomial to be learned, L is just the set of

all irredu
ible polynomials for whi
h the
orresponding

remainder of the target is known and d is the produ
t

of all polynomials in L . The variable d just keeps this

produ
t in order to avoid doing the same multipli
ation

several times. Now the formal algorithm is presented.

Note that this algorithm outputs only �nitely many hy-

66

potheses the last of whi
h will
orre
tly des
ribe the

target to be learned.

Initialize h = 0 , d = 1 and L = ; and do

the following for ever:

Read (a; b) .

Make a moni
, that is, divide a by its leading

oeÆ
ient.

If a is irredu
ible and a =2 L then

Compute the remainder
 of h mod-

ulo a .

Let L = L [fag .

If b 6=
 then

Compute the smallest e su
h

that e � d has the remainder

b�
 modulo a .

Let h = h+ e � d .

Output the new hypothesis h .

Let d = a � d .

Continue the loop with reading the next data-

items.

First note that the polynomials in L are all moni

and irredu
ible and thus
o-prime. Furthermore, d is

always the produ
t of these polynomials and h satis�es

(9q) [h = aq + b℄ for all irredu
ible polynomials a and

the
orresponding b seen so far. This
an be proved,

for every a 2 L and the
orresponding b , as follows:

At some step, the algorithm pro
esses (a; b) in the loop

and the innermost loop guarantees that the new h has

the
orre
t remainder by
hoosing e su
h that e �d has

the remainder b�
 ; then the sum h+e �d , whi
h gives

the new h , has the remainder
+ (b �
) = b modulo

a . In all later steps, a divides d and only terms having

the remainder 0 modulo a are added to h so that the

orre
t remainder modulo a is preserved.

Se
ond, it is an invariant of the
onstru
tion that

deg(h) < deg(d) : It holds at the initialization (by de�n-

ing deg(0) < 0) and whenever the values of h and d

are updated to h + ed and ad , respe
tively, then the

property is preserved sin
e deg(h+ed) < deg(ad) . This

an be seen as follows: The degree of ad is the sum

deg(a) + deg(d) . Furthermore, the degree of h + ed

is bounded by maxfdeg(h); deg(ed)g where deg(h) <

deg(d) < deg(a) + deg(d) and deg(ed) = deg(e) +

deg(d) < deg(a) + deg(d) . This last relation is based

on the fa
t that deg(e) < deg(a) and this fa
t is the

onsequen
e of the observations, that a is irredu
ible

and so e
an be
hosen as the smallest representative of

the quotient (b�
)=d in the �eld of polynomials mod-

ulo a ; this quotient is well-de�ned sin
e a and d are

o-prime. Note that e = 0 is the solution for the
ase

b�
 = 0 , therefore one
an abstain from pro
essing the

inner-most loop in this
ase.

Third, if h

0

is the target polynomial and deg(d) >

deg(h

0

) , that is, deg(d) > n , then h = h

0

sin
e, by the

Chinese Remainder Theorem, h and h

0

are both the

unique polynomial of degree below deg(d) whi
h has,

for all a 2 L , the
orresponding remainder b when

divided by a .

Fourth, there are in�nitely many irredu
ible moni

polynomials a and ea
h a is eventually presented to-

gether with the
orresponding remainder b . So the

event deg(d) > n must happen eventually and the al-

gorithm
onverges to the
orre
t hypothesis.

It remains to verify the time bound given and to es-

timate the expe
ted number of examples ne
essary until

onvergen
e.

First, we
ompute the number of examples ne
essary.

For that purpose it suÆ
es to ask how many examples

are ne
essary until d has rea
hed some degree greater

than n . To get su
h an estimation, let m be the least

degree su
h that there are

2n

m

irredu
ible polynomials

of degree m in IF

q

[x℄ . Using the lower bound

I

m

>

q

m

� q

m=2+1

m

on the number I

m

of moni
 irredu
ible polynomials

of degree m in IF

q

[x℄ (
f. Berlekamp [3℄), we obtain

that 2n is near to q

m

, more pre
isely, that q

m�2

<

2n < q

m+2

. As long as less than n of the irredu
ible

polynomials of degree m have o

urred in the data

seen so far, the probability of getting one further one

of them is

n

m

� q

�2m�1

where q

�m�1

is the probabil-

ity of getting a polynomial of degree at least m and

n

m

q

�m

is a lower bound for the probability that this

polynomial is among the still unseen irredu
ible poly-

nomials of degree at least m . The expe
ted number of

examples ne
essary to re
eive

n

m

di�erent irredu
ible

polynomials of degree at least m
an therefore be es-

timated by the upper bound q

2m+1

. The degree of

their produ
t is n so that after q

2m+1

many examples

the size of d is n . Note that 2n > q

m�2

and thus

q

2m+1

� 4n

2

� q

5

� q

7

n

2

. So q

7

n

2

is an upper bound

on the expe
ted number of examples needed until
on-

vergen
e.

Now the
omplexity of ea
h step is analyzed. There

are two parts, whi
h have to be dealt separately with:

(a) the part whi
h is done for every data-item, and

(b) the part within the �rst \if"-statement after the

\then" whi
h is not exe
uted for most of the data-

items.

The part (a)
onsists of reading the hypothesis of

(a; b) , the
he
k whether a is irredu
ible and the test

whether a 2 L . The test whether a 2 L has the time

omplexity deg(a) log(jLj) by keeping L as an ordered

list. The size of L does not ex
eed n . So for ea
h data-

item, the
omputations of type (a) need with probabil-

ity q

�k�1

the time p(k) log(n) for some polynomial p .

Sin
e the sum over q

�k�1

p(k)
onverges to some
on-

stant r , the step has time
omplexity r log(n) for ea
h

67

single data item and time
omplexity rq

7

n

2

log(n) in

total.

In part (b) let k denote the degree of a . The degree

of d and the size of L do not ex
eed n when entering

this part of the algorithm. Now
omputing the remain-

der
 needs O(nk) time steps and gives a polynomial of

degree below k . b�
 is
omputed in O(k) time steps,

e is
omputed in O(nk) steps where e is obtained by

taking the smallest representative of the quotient

b�

d

in the �eld generated by the irredu
ible polynomial a ,

the multipli
ation e � d needs O(nk) time steps, the

addition to and update of h needs O(n) steps, the

produ
t ad is
omputed within O(nk) time steps, the

update of d to ad needs O(n) time steps and the up-

date of L needs O(n) time steps (
f. [4℄). So a single

run through part (b) needs r

0

nk time steps where r

0

is some
onstant. During the whole time, the degrees of

the polynomials summed up satisfy k

1

+k

2

+: : :+k

last

�

n + k

last

. Hereby it
an be estimated that k

last

does

not ex
eed n with reasonable probability. So one has

that all runs through part (b) together have time
om-

plexity r

0

(k

1

+ k

2

+ : : :+ k

last

)n � 2r

0

n

2

.

The total example
omplexity of the algorithm has

the upper bound q

7

n

2

and the time
omplexity has up-

per bound (rq

7

log(n)+2r

0

)n

2

, that is, O(n

2

log(n)) .

The next example illustrates the learning algorithm

of Theorem 11 for a
on
rete polynomial over the �nite

�eld with three elements.

Example 12. Assume that the polynomial x

3

in

IF

3

[x℄ should be learned; note that �1 = 2 in IF

3

.

Consider some data-sequen
e starting with (x

2

; 0) ,

(x

2

+ 2; 2x) , (x+1; 2) , (x+2; 1) , (x

2

+1; 2x) , (x+1;

2) , (x; 0) , (a(x); b(x)) would be the initial part of the

data-sequen
e where a(x) is an irredu
ible and moni

polynomial not seen before. From these data-items,

(x

2

; 0) and (x

2

+ 2; 2x) do not qualify sin
e x

2

and

x

2

+2 are not irredu
ible in IF

3

. Furthermore, the se
-

ond o

urren
e of (x+1; 2) also does not qualify, sin
e

x + 1 2 L after the �rst o

urren
e of (x + 1; 2) . The

following table gives now an overview on the values of

the other variables of the algorithm after exe
uting the

interior loop where data, whi
h did not qualify, is omit-

ted. The
urrent value of h is also always the
urrent

hypothesis.

data-item
 e d h

� � � 1 0

(x+ 1; 2) 0 2 x+ 1 2

(x+ 2; 1) 2 1 x

2

+ 2 x

(x

2

+ 1; 2x) x x x

4

+ 2 x

3

(x; 0) 0 0 x

5

+ 2x x

3

(a(x); b(x)) b(x) 0 (x

5

+ 2x)b(x) x

3

If d

0

and h

0

are the values of d and h from the pre-

vious row, then the update rule for these two variables

is d = a�d

0

and h = h

0

+e�d

0

. So, the updates of h are

from 0 to 0+2�1 = 2 , then from 2 to 2+1�(x+1) = x

and �nally from x to (x+1)+x � (x

2

+2) = x

3

. From

then on, b �
 and thus also e are always 0 and no

further updates are done, that is, the learner has sta-

bilized on the
orre
t hypothesis x

3

. After pro
essing

some data-item, L
ontains all moni
 and irredu
ible

polynomials pro
essed from the beginning up to the
ur-

rent data-item, so after pro
essing (a(x); b(x)) , the
on-

tent of L are the polynomials x + 1 , x + 2 , x

2

+ 1 ,

x and a(x) .

Sin
e q = 3 and n = 3 , the average number of

examples needed until su

essful learning has the up-

per bound 3

9

= 19683 . On the one hand, this bound

is not optimal, but on the other hand, the above sam-

ple sequen
e was also a bit unrealisti
 in the sense that

it
ontained mu
h more useful data than a randomly

distributed sequen
e of this length would give.

4 Con
lusions

The learnability of univariate intervalued polynomi-

als over the natural numbers and univariate polynomials

over �nite �elds has been investigated. For both
ases,

we gave lower and upper bounds of the average exam-

ple
omplexity. Measuring the
onvergen
e not relative

to the degree of a polynomial but relative to a mea-

sure whi
h takes into a

ount also the size of the
oeÆ-

ients, standard interpolation is not any more the best

possible algorithm. We found a quite natural distribu-

tion where the new learning algorithm gives a speed-up

from polynomial to logarithmi
 example
omplexity on

polynomials with small
oeÆ
ients. Nevertheless, we

show that interpolation is an optimally data-eÆ
ient

strategy; so no other learning algorithm behaves on all

input-sequen
es better than interpolation.

Sin
e polynomials over IF

q

are not uniquely spe
i-

�ed by their input-output-behavior, we
hose as data-

representation the remainder modulo other polynomi-

als. In this model, the general gap between lower and

upper bound of the example
omplexity obtained by

optimal learning still is large for many distributions |

we hope that future work might narrow this gap. But

we
ould obtain mu
h tighter results for the
on
rete

distribution on the remainders indu
ed by f(n) = q

�n

.

Referen
es

[1℄ Angluin, D. (1980). Indu
tive inferen
e of for-

mal languages from positive data. Information and

Control, 45, 117{135.

[2℄ D. Angluin and C.H. Smith. Indu
tive inferen
e:

theory and methods. Computing Surveys 15:237{

269, 1983.

[3℄ E.R. Berlekamp. Algebrai
 Coding Theory.

M
Graw-Hill, New York, 1968.

[4℄ D. Bini and V. Pan. Polynomial and Matrix Com-

putations: Volume 1, Fundamental Algorithms.

Birkh�auser, Boston, 1994.

68

[5℄ N.H. Bshouty. On learning multivariate polyno-

mials under the uniform distribution. Information

Pro
essing Letters 61(6):303{309, 1997.

[6℄ N.H. Bshouty and Y. Mansour. Simple learning al-

gorithms for de
ision trees and multivariate poly-

nomials. in \Pro
. 36th Annual Symposium on

Foundations of Computer S
ien
e," pp. 304{311,

IEEE Press 1995.

[7℄ T. Erleba
h, P. Rossmanith, H. Stadtherr, A. Ste-

ger and T. Zeugmann. Learning one-variable pat-

tern languages very eÆ
iently on average, in par-

allel, and by asking queries. in \Pro
. 8th Interna-

tional Workshop on Algorithmi
 Learning Theory

- ALT'97," (M. Li and A. Maruoka, Eds.), Le
ture

Notes in Arti�
ial Intelligen
e 1316, pp. 260{276,

Springer-Verlag 1997.

[8℄ W. Feller. An Introdu
tion to Probability Theory

and its Appli
ations, Vol. 1. John Wiley & Sons,

New York, 1968.

[9℄ M.E. Gold. Language identi�
ation in the limit.

Information and Control, 10:447{474, 1967.

[10℄ M. Golea. Average
ase analysis of a learning al-

gorithm for � -DNF expressions. in \Pro
. 2nd

European Conferen
e on Computational Learning

Theory - EuroColt'95," (P. Vitanyi, Ed.), Le
ture

Notes in Arti�
ial Intelligen
e 904, pp. 342{356,

Springer-Verlag 1995.

[11℄ D. Haussler, M. Kearns, N. Littlestone and

M.K. Warmuth. Equivalen
e of models for poly-

nomial learnability. Information and Computation,

95:129{161, 1991.

[12℄ D.S. Hirs
hberg, M.J. Pazzani and K.M. Ali. Av-

erage
ase analysis of k-CNF and k-DNF learning

algorithms. in Computational Learning Theory

and Natural Learning Systems, Vol. II: Interse
-

tions Between Theory and Experiment, pp. 15{28,

MIT Press 1994.

[13℄ K.P. Jantke and H.R. Bei
k. Combining postu-

lates of naturalness in indu
tive inferen
e. Elek-

tronis
he Informationsverarbeitung und Kybernetik

(EIK) 17:465{484, 1981.

[14℄ P. Langley and S. Sage. Tra
table average-
ase

analysis of naive Bayesian
lassi�ers. in \Pro
. 16th

International Conferen
e on Ma
hine Learning, pp.

220{228, Morgan Kaufmann 1999.

[15℄ S. Okamoto and K. Satoh. An average-
ase anal-

ysis of k -nearest neighbor
lassi�er. in \Pro
. 1st

International Conferen
e on Case-Based Reason-

ing Resear
h and Development," Le
ture Notes in

Computer S
ien
e 1010, 253{264, Springer-Verlag,

1995.

[16℄ M.J. Pazzani and W. Sarrett, A framework for

average
ase analysis of
onjun
tive learning algo-

rithms. Ma
hine Learning 9:349{372, 1992.

[17℄ R. Reis
huk and T. Zeugmann. Learning one-

variable pattern languages in linear average time.

in \Pro
. 11th Annual Conferen
e on Computa-

tional Learning Theory - COLT'98," pp. 198{208,

ACM Press 1998.

[18℄ R. Reis
huk and T. Zeugmann. A
omplete and

tight average-
ase analysis of learning monomials.

in \Pro
. 16th International Symposium on Theo-

reti
al Aspe
ts of Computer S
ien
e - STACS'99,"

Trier, Mar
h 1999, (C. Meinel and S. Tison, Eds.),

Le
ture Notes in Computer S
ien
e 1563, pp. 414 -

423, Springer-Verlag 1999.

[19℄ P. Rossmanith and T. Zeugmann. Learning k -

variable pattern languages eÆ
iently sto
hasti
ally

�nite on average from positive data. in \Pro
. 4th

International Colloquium on Grammati
al Infer-

en
e - ICGI'98," (V. Honavar and G. Slutzki, Eds.),

Le
ture Notes in Arti�
ial Intelligen
e 1433, pp.

13{24, Springer-Verlag 1998.

[20℄ J. Stoer. Numeris
he Mathematik, Vol. 1. Springer-

Verlag, Berlin 1989.

[21℄ L.G. Valiant. A theory of the learnable. Com-

mun. ACM 27:1134-1142, 1984.

[22℄ K. Wexler and P. Culi
over. Formal Prin
iples

of Language A
quisition. MIT Press, Cambridge,

Mass., 1980.

