The Role of Critical Sets in Vapnik-Chervonenkis Theory
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One of the main issues in Statistical Learning Theory is the
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Abstract

In the present paper, we present the theoretical ba-
sis, as well as an empirical validation, of a protocol
designed to obtain effective VC dimension estima-
tions in the case of a simple pattern recognition
issue. We first formulate particular (distribution-
dependent) VC bounds in which a special atten-
tion has been given to the exact exponential rate of
convergence. We show indeed that the most sig-
nificant contribution in such bounds is due to the
“worst” elements of the model class (designated
asthe critical sets). We then explain how these
results can lead to a rigorous framework for com-
puter simulations involving speed-up techniques
for rare event simulation (importance sampling) as
well as parameter estimation (linear regression).
We thus obtain accurate empirical estimates of the
complexity measure and of the multiplicative con-
stant in VC bounds. In particular, we develop the
idea of alocal complexity characterization associa-
ted to every critical set.
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class of models in order to provide some intuitive arguments
on the behavior of the probability tail of worst deviationeW
then state our main result providing an exact distribution-
dependent exponential rate for the typical VC bound. We
also suggest a precise formula which should be valid for data
samples of sufficiently large size. The final section is de-
voted to a brief overview of a simulation protocol aiming at
the experimental validation of such theoretical resultsaA
application, we obtain effective VC dimension estimations
with a proper treatment of calibration issues.

2 Setting

In order to keep things as simple as possible, we restriet our
selves to the simplest setting. Thus, we shall consider the
example of pattern recognition, in the particular case of bi
nary deterministic classification. Thus, the model clagdl sh
be thought as a family of sets.

2.1 Notations

Let I' be a family of measurable sets of Rvith finite VC
dimension’. The data are represented by a saniple) =
{X4, ..., X,,} ofii.d. random variables with probability dis-
tribution . over R!. We denote by, = % ?:1 dx,, the
empirical measure ovex (n). We recall some basic defini-
tions from Vapnik-Chervonenkis (VC) theory.

improvement of bounds on the generalization error of lear- Definition 2.1 (trace)

ning machines in model selection problems. Those bounds
rely on rates of convergence in uniform laws of large num-

Tr(T,z(n)) = {CNx(n), C €T}.

bers. Seminal results are due to Vapnik and Chervonenkis [g]Pefinition 2.2 (theoretical VC dimension)

and they have witnessed continuous improvements over the
years (see [4] or [11] for a review). In this paper, we appeal
to large deviations techniques (see [1] or [2]) to show that
there still is some room for improving classical VC bounds
by introducing some additional considerations both on the
model class and the underlying distribution. A key concept
in the present study is the onewftical element of the model
class. An element is said to heirical if it achieves the
worst, in some sense, expected risk. We will show that a
proper characterization of the critical elements in a parti

Vin(T) :=V(T)

=max{k € N : sup |[Tr(T, z(k))| = 2*} .

(k)
Definition 2.3 (empirical VC dimension)
Vemp (L, 2(n)) :=

max{k,k<n : sup

|Tr(T, z(k))| = 27} .

In the present study, we will focus on the estimation of the

ular learning problem leads to a significant improvement of one-sided probability tail of the worst deviation of the em-
the rate of uniform convergence of empirical risk towards ex pirical mean from its expectation on the familydescribed
pected risk. First, we shall study the simple case of a finite by
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Classical VC theory is devoted to the control of such small
probabilities by means of some complexity concept (mainly
VC entropy, or VC dimensionydependently of the under-
lying distribution u. These probability tails are known to
behave like

K (ne?)? exp {—AnGZ} ,

whereK is some constang is a complexity exponent linked
to the VC dimensiorl/, and A is the exponential rate (see
[11] for an overview of universal VC bounds). The best
distribution-free result is the one obtained by Talagrasid [
in whichA = 2andg = V — 1/2. We suggest here some
directions in computing refined bounds taking into account
particular distributions. In the following formulationgje
shall make use of the information function

)

p

H(q,p) = qlog (%) +(1—q)log (T

in order to express the exact exponential rate in VC bounds.

Remark 2.4 Note that for € small, we have
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H(Q+€,Q)~m~

2.2 Basic definitions

We now define the notion afritical value andcritical set of
I" relatively to the fixed distributiop.

Definition 2.5 We introduce

o the range of admissible values of j1(C') denoted by
J:={pu(C) : CeT},
e the p-critical value p := arg min ¢ ; H(q + ¢, q),

o the p-critical subfamily
L, :={CeT : u(C)=p},

o and the pi-critical sets which are the elements of the sub-
SJamily Ty,

Remark 2.6 The value p minimizing H (q+e¢, q) depends on

¢ but, since we have H(q + €,q) , actually it is

2

€
e—0 29(1—q)
very close to 1/2. One could retain, for simplicity, that p is
the closest admissible value to 1/2.

In several applications such as concept learning, the know-
ledge ofa priori information on the target set (or concept)
allows to consider a restricted part of the whole family of
candidates. This knowldege could induce serious regiristi

on the range/ of admissible values. Our point is that the
constraints on the possible valuesigt”), for C'in T, lead

to a consequent improvement of the bound on generalization.

In particular, a small part of' actually contributes to the
probability of worst deviation.
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3 Heuristics - The Finite Case

The theoretical point on which we want to insist is the sig-
nificant improvement that can be obtained in classical VC
bounds in a distribution-dependent setting. Indeed usater
bounds are based on Hoeffding’s inequality, but as soon as
the critical value is different from 1/2, then it would much
more appropriate to use Chernoff’s inequality. Indeedafor
single element’, it gives

Pr {11, (C) — 1(C) > €} < exp {—nH (u(C) + €, u(C))}

Moreover, we know (see [1]) by Cramér-Chernoff theorem
on large deviations that this rate is asymptotically exact a
thus it cannot be improved. In practical learning problems
where “bad” models can be eliminated, one can consider that
the range/ can be significantly constrained. Let us assume
that the familyT" is finite. Then, we obtain an improved
exponential rate on the upper bound of the probability tail
p(p, n, €) thanks to the union-of-events bound jointly with
Chernoff’s bound,

plp,n,€) < |Tlexp{—nH(p+¢€ p)} 1)

wherep is thep-critical value ofl". More precisely, we shall
have, forn large, a behaviour like

p(p,n,€) ~ [Tplexp{—nH(p+¢,p)} 2

and we see that the main contributions in the value of the
probability tail are due to the critical sets bf

Our first step shall be to extend such a reasoning to infinite
familiesI".

4 Distribution-Dependent VC Bound - Result
and Conjecture

Indeed, we have already tackled the question of distributio
-dependent VC bounds in a previous paper [11], but here we
provide a finer result together with some conjectures ontexac
asymptotics of VC probability tails. Moreover, we stress th
role of critical sets in these results and we point out the fac
that theoretical VC dimensions actually mask the presehce o
local complexity exponents attached to each of those atitic
sets. The main theorem actually improves our previoustresul
from [11] since we have managed to get rid of the disturbing
corrective term. We formulate a VC bound with an exact
exponential term which exceeds the universal rate 2 as
soon as the rangédoes not contain a neighbourhood around
the value 1/2. Moreover, the general form of the capacity
term has been recovered. A sketch of proof is provided in
the Appendix while the detailed proof can be found in [10].

Theorem 4.1 Let I' C {C’ C R® : C measurable } a to-
tally bounded family of sets and let p be the pi-critical value

of I'. We shall assume that p # % There exist some constants
M and K (V') such that, ife < min(1 — p,p) andn > M,

plp,n,e) < K(V) V2 exp {-nH(p+e¢p)}. ()

However, this result can still be improved in the sense that
the capacity term has to be computed more precisely. Com-
bining the previous theorem with a result by Talagrand [5],
we formulate the following conjecture.



Conjecture 4.2 (Azencott-Talagrand) Under the same as- 5.1 Distribution-dependent concepts

sumptions, with ne* sufficiently large, Classical definitions of VC dimension, growth function and
. _ VC entropies are known to beorst-case since they are dis-
plp,n,€) < K(V) (ne?)V =12 exp {—nH (p+€,p)} . tribution-fpree quantities. Indeed, one single com)‘ggmrab?f
4) points is enough to increase the VC dimension. However, it
has been noticed ([6], [7]) that on a particular sample, the
empirical VC dimension can be much smaller. In our expe-
riments, we assume that the probability distribution utyder
ing the data is known and we want to observe if the predic-
tions of VC theory are confirmed. As we have to adapt the
theory taking into account the particular exponential, raie
also have to specify the corresponding particular concepts

Now let us try to refine this conjecture. As we have seen Thus, we introduce the notion effective VC dimensionin a
it in the finite case, the worst deviation over the family is different manner than in [9].

expected to be achieved at one of the critical sets. We denote

Remark 4.3 In some particular cases (for instance, if I' =
{hal fspaces}), we shall have V — 1 instead of V — 1/2

(indeed this is the case for Smirnov statistics).

by Definition 5.1 (Effective VC dimension)
Cy, = argsup(p, (C) — p(C)), (5) _ Elog|Tr(I', X(n))|
gapplhn () =) Vs (o) = 200D ™)

the empirical critical set. We propose to partition the éven  Note that this definition allows non-integer values for th@ V
} dimension.

(1.1, 0) = { 5ub(10,(€) = (C) >

cer 5.2 Rare-event simulation

with respect to the location @f,,, and particularly, regarding !N order to validate our conjectures on the analytical espre
its proximity to some critical set. We assume, for simpyicit ~ Sion of the probability tail through simulation, we face the
that the critical subfamilyl’, is finite. Thus, fora small ~ iSsue of effectively simulating the event

enough, we have the following decomposition
Qp,n,e) = {sup(un(C’) —u(C)) > e} .

plp,n, €)= cer
But as a rare event, it hardly never can be observed. Thus,
; Pr{Q(“’ n,€) ﬂ (1(Cndy) < a)} we propose to use a speed-up technique, knowimpsr-
Yelp

tance sampling, in order to carry out reasonable computer
i Pr{Q(ﬂ’ n,e) () K(a) } ’ experiments. The basic idea is

¢ to change the distribution underlying the data such that

where K (a) = \,er, {#(Cndy) > a}. As the second the event can frequently be observed, and then,

term is a residue, we can thus conjecture the following re-
fined estimate of the probability tail, far sufficiently large, ¢ to put some weights on the empirical estimator in order
to obtain the proper correction on the numerical value.

L

plp,n,€) ~ (Z K; (n@)ﬁ’) exp{-nH(p+ep)} (6) First we fix an element’, of I which is au-critical set {.e.

i=1 #(Cy) = p). We assume in the sequel thats theuniform
distribution with supporf’. Consider the distribution de-
fined by the exponential change of measufkhis change of
measure will force most of the trajectory paths to be "near”
to the critical element’,. We denote by/ the random va-
riable with distribution. We obtain, in our case,

where thes;’s are complexity exponents related to each cri-
tical set andL = |I',|. These exponents could certainly be
linked to some concept @dcal VC dimension characterizing
the capacity of the subfamily of sets around a critical eleime

'

p .
if wedly,
5 Validation Through Simulations du () pte
o) =
One of our motivations in the present study was to obtain ef- dv 1-p if uek-—Cy.

fective VC dimension estimations in the spirit of [9]. Indee l—p—e
\rlgj fg:}’g%gtat :rr\]grlesos\;]eer Ogr?gt'scﬁ(l) SlfjtspP(f\/eiggde:(r)otr)ecg?nnpsllj?swe notice that is absolutely continuous with respect o
tions and confidence intervals on the estimations in order to and that it puts a mass pf+ € on Cy (while  putp). By
draw further conclusions. We show that the previous theore-  11yis is the same change of measure as the one usedin the proof
tical (_:onSId_eratlons are necessary in order to face efflgien  of the Cramér-Chernoff theorems on large deviations otheir-

the simulation part. Our first step is to specify the nature of ical mean of independent real random variables (see [2§. dit

the concepts we shall be able to measure. tribution v is also known as thavisted distribution.
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U(n) we denote the i.i.d. sample of sizewith distribution 1. localization of critical sets

v. Then the event Practical issue : provide a detailed description of the

Qv,n, ) = (C) — u(C)) > submanifold of critical sets which is obtained as the set
(v, <) {SUI; (v (€)= u(C) 6} of minimizers of the functional
is not a rare event. We use the Importance Sampling (IS)
estimator, Cer — H(u(C)+ep(C)) €R.
. 1 2. for each critical set, simulate the event
p(VanaE):MZZma (8)
o =l {20 n, 0 ((Coay) < a)}
where theZ,,,’s are independent copies of the same random
variable and compute its measupéy).
_Z = Tlown.e - Wwa(Co),p, ", ©) Practical issues : compute the supremum over an infi-
and the weights due to the change of measure nite family T’ of sets and achieve the estimation of very
nw n(l—=) small probabilities.
_ (P l—p
Wiz, p €)= (10) L
pte l—p—ce¢ 3. we use the following fit
correspond to Radon-Nykodym derivatives. The IS estima- . . N
tor satisfies two important properties: p(y) = Ky(ne”)"  exp {—nH(p +€,p)}
e p(v,n,€) is an unbiased estimator @fy, n, €), mea- to estimate the multiplicative constafit, and the com-
ning thatlEZ = p(u, n,¢) plexity exponents,.
e 7 possesses the variance reduction property Practical issue : achieve parameter estimation.
Var(Z)

~exp{—nH(p+erp},
Var(T) Taking care of practical and algorithmic issues

whereT’ = Tlau,» ) IS the standard estimator. In this exploratory work, we have decided to limitate as much

In order to control the experimental results we need to go as possible the practical problems by choosing the simplest
through calibration considerations. Our approach herptado examples. At this point, we aim at validating the protocol
some rough simplifications but turns out to be efficient in and its basic components which are rare event simulation

simulation. Denote by and parameter estimation. Thus, we shall not consider the
1 M problem of localizing critical sets in general. We basigall
6% = T Z (Zm — p)* (11) construct the example by choosing the critical sets in tie fir

1 place. The second and very significant issue is how to com-

the empirical variance estimator, whe¥eis the number of ~ Pute the supremum over an infinite family of sets. In the
trials. Then, by an approximate use of the Central Limit The- one-dimensional and two-dimensional case (at least for the
orem, we obtain the order of relative error with high confi- uniformdistribution), itis possible to show that there iy

dence (95%). afinite number of sets to consider. The main problemis then
. . to control the algorithmic complexity of the procedure and
lp =l ~ @Uﬁ . (12) some solutions are explored in [10] using some ideas from
P VM p the field of computational geometry. The question of esti-
In simulations, we achieve a relative error @smaller than mating very small probabilities has been developped in the
10%. subsectiors.2 where the rare event simulation procedure has
L. . . . been explained. The last issue is rather standard since para
5.3 Application - the effective VC dimension meter estimation can be achieved by simple linear regnessio

Our idea in introducing these ideas was to validate through Indeed, we set
simulations the following exact form of VC bounds 5
ey X =log(ne”)

plp,n,€) ~ K (ne?) exp{—-nH(p+ep)}t, (13) Y =nH(p+ ¢ p)+logp,
whereV shall denote, from now on, the effective VC dimen- ) i
sion of the familyT. As an application, it is then possible ~@nd we use the linear model = X + log K. The com-
to get effective VC dimension estimations. The procedure plexity parametep = V' — 1 is then obtained as the slope of
we develop consists in treating every critical set seplrate  the linear regression model.
Indeed, even though the IS estimator is unbiased and should
provide a good estimation for a sufficicnetly large number of Example
iterations, a rough application can generate unexpected flu

tuations due to the behaviour of the weights. We have experimented this protocol on constrained Smirnov

statistics. We consider real-valued random variables aad w

Simulation protocol take

GivenT, u, o, we go through the following steps. F={[0,2] : 2 <q},
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G [V [ W [ K [K/K :
1.0[ 1.00] 0.22 | 0.95| 23% |
0.9 0.99]0.20 [ 0.97| 23%
0.8]0.99]0.14 | 0.95| 15%
0.7 1.03|0.14 | 0.90| 16% e
0.6 1.06] 0.18 | 0.80| 20%
05]0.98]0.14 | 0.67| 16%
0.4 0.78] 0.09 | 0.53| 10%
03] 0.68]0.06 | 042 %
0.2[062[0.04 | 0.33] 5% ittt
0.1] 057|004 | 023 4%

) ) ) _ ] Figure 1: Comparison of the regression lines for various val
Table 1: Effective VC dimension and constantwith confi- ues ofg
dence intervals

Plot of K=f(a) Plot of V=f(a)
1

whereq € [0,1]. We haveJ = [0, ¢]. Hence, the critical '
subset is here reduced to the only elenjénp] where ]
p=argminf(z+¢ ), < os| 1 e
zed oal i
and we have for the theoretical VC dimensiGifl') = 1. 7
We have checked the formula o®
p(ﬂ,n,E) ~ K (nEZ)V_leXp{—nH(p—i—e,p)} ’ (14) oz o4 “oe os 1 0z o= o6 os
n—od

whereV’ designates the effective VC dimension. Note also Figure 2: Graph of the experimental functioAg¢) and
that, if = 1, this is exactly the one-sided Smirnov statistics, Vig

because we then havé = 1 and H(p + ¢,p) ~ 2¢%. We

have provided an experimental validation of this result and

an extension of the formula in the case where: 1. The Appendix - Sketch of proof for Theorem 4.1
regression model behaves well on our simulations and we

provide a synthesis of experimental resultsTuble 1 and  Basically, we follow the combinatorial scheme ([8]) as isha
Figures 1, 2. been stated by Devroye ([3]) using an adaptive size for the

symmetrized sample. We denote Ay») andY (m) two
i.i.d. samples with distributiop, respectively of sizes and

m, and bypﬁlX) , uﬁ,i” the corresponding empirical measures.
Our machinery has also been tested on other families (seeWVe shall setn ~ n3. By symmetrization, we are led to the
[10] for further examples). The idea is to consider the cases following probability tail

where there are many critical sets, as for example the family

of intervals of size smaller than some fixed T(p,n,€) = Pr{sup (uﬁlX)(C) - ug)((})) > e} :
Cer

: : We then notice that, for a fixed samp¥gn) x Y (m), there
6 Conclusions and Open Questions is only a finite number of setS' in I' to be considered. We

From the experimental part of the present study, we can drawdenote byl'™ this finite (and random) subfamily df and,
the following conclusions: using the union-of-events bound, we have

Other examples

e The VC bound we have conjectured provides an exact T(p,n,€) <

formula for the constrained Smirnov statistic. Z Pr uﬁlX')(C) _ Ng')(c) > 6} dp®n+m)

cerr
where the probability under the integral is the probabiity
a sampling without replacement draw.®f(n) x Y’ (m) out
of X(n) xY (m). Forafixed seC inI'*, we setr = »(C') =
Yo e (X5) + 500, Ne(Y5). Thus, we have

o Effective VC dimension can take non-integer values stri-
ctly smaller than theoretical VC dimension.

¢ As soon as/ contains the valué/2, effective and the-
oretical VC dimensions are the same.

Moreover, we have introduced the concept of local VC di-  Pr {ﬂﬁlx NC) = pY () > 6} <
mension which is unavoidable in the design of simulations
whenever there are many critical sets. However, the theore- Pr {%X’)(C) __T > ( m ) 6} ’
tical relevance of such a notion still has to be investigated n+m n+m
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and we can then use some combinatorics in order to controlReferences

the deviations of a sample without replacment draw from its
expectation. Thanks to Stirling’s formula and some mono-

tonicity arguments concerning the functiHn( - HLm) ,we
can bound the last probability tail by

7 r m r

(n+m) exp{ nH (N + (N) E,N)} ,
after settingVv = n + m. Integrating this quantity requires
some technical steps which aim at formulating a uniform
Varadhan-Laplace estimate. Note tfat~ 1 and the dom-
inating term corresponds t§ ~ p. The basic problem is
to control the integral over the rare event which is to ob-
serve an empirical frequeney (n + m) far above the crit-
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(4, N Kpg;) U(A; N Kg,;), whereKg ; is the open ball of
centerC; and radius? for the empirical measure. Note that
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[1]) applies, while on the second set, a uniform control of
local deviations of empirical means is required. A weaker
version ofTheorem 4.1 we have established in [10], based
on the work of Talagrand [5], conducts to proper estimations
A final optimization leads to the optimal choice bfwhich
shall be likel.
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