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Abstract

In the present paper, we present the theoretical ba-
sis, as well as an empirical validation, of a protocol
designed to obtain effective VC dimension estima-
tions in the case of a simple pattern recognition
issue. We first formulate particular (distribution-
dependent) VC bounds in which a special atten-
tion has been given to the exact exponential rate of
convergence. We show indeed that the most sig-
nificant contribution in such bounds is due to the
“worst” elements of the model class (designated
as the critical sets). We then explain how these
results can lead to a rigorous framework for com-
puter simulations involving speed-up techniques
for rare event simulation (importance sampling) as
well as parameter estimation (linear regression).
We thus obtain accurate empirical estimates of the
complexity measure and of the multiplicative con-
stant in VC bounds. In particular, we develop the
idea of alocal complexity characterization associa-
ted to every critical set.

1 Introduction

One of the main issues in Statistical Learning Theory is the
improvement of bounds on the generalization error of lear-
ning machines in model selection problems. Those bounds
rely on rates of convergence in uniform laws of large num-
bers. Seminal results are due to Vapnik and Chervonenkis [8]
and they have witnessed continuous improvements over the
years (see [4] or [11] for a review). In this paper, we appeal
to large deviations techniques (see [1] or [2]) to show that
there still is some room for improving classical VC bounds
by introducing some additional considerations both on the
model class and the underlying distribution. A key concept
in the present study is the one ofcritical element of the model
class. An element is said to becritical if it achieves the
worst, in some sense, expected risk. We will show that a
proper characterization of the critical elements in a partic-
ular learning problem leads to a significant improvement of
the rate of uniform convergence of empirical risk towards ex-
pected risk. First, we shall study the simple case of a finite
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class of models in order to provide some intuitive arguments
on the behavior of the probability tail of worst deviation. We
then state our main result providing an exact distribution-
dependent exponential rate for the typical VC bound. We
also suggest a precise formula which should be valid for data
samples of sufficiently large size. The final section is de-
voted to a brief overview of a simulation protocol aiming at
the experimental validation of such theoretical results. As an
application, we obtain effective VC dimension estimations
with a proper treatment of calibration issues.

2 Setting

In order to keep things as simple as possible, we restrict our-
selves to the simplest setting. Thus, we shall consider the
example of pattern recognition, in the particular case of bi-
nary deterministic classification. Thus, the model class shall
be thought as a family of sets.

2.1 Notations

Let � be a family of measurable sets of IRd with finite VC
dimensionV . The data are represented by a sampleX(n) =

fX

1

; :::; X

n

g of i.i.d. random variables with probability dis-
tribution� over IRd. We denote by�

n

=

1

n

P

n

i=1

�

X

i

, the
empirical measure overX(n). We recall some basic defini-
tions from Vapnik-Chervonenkis (VC) theory.

Definition 2.1 (trace)

Tr(�; x(n)) = fC \ x(n); C 2 �g :

Definition 2.2 (theoretical VC dimension)

V

th

(�) :=V (�)

=maxfk 2 IN : sup

x(k)

jTr(�; x(k))j = 2

k

g :

Definition 2.3 (empirical VC dimension)

V

emp

(�; x(n)) :=

maxfk; k � n : sup

x(k)�x(n)

jTr(�; x(k))j = 2

k

g :

In the present study, we will focus on the estimation of the
one-sided probability tail of the worst deviation of the em-
pirical mean from its expectation on the family� described
by

�(�; n; �) := Pr

�

sup

C2�

(�

n

(C)� �(C)) > �

�

:
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Classical VC theory is devoted to the control of such small
probabilities by means of some complexity concept (mainly
VC entropy, or VC dimension)independently of the under-
lying distribution �. These probability tails are known to
behave like

K (n�

2

)

�

exp

�

�An�

2

	

;

whereK is some constant,� is a complexity exponent linked
to the VC dimensionV , andA is the exponential rate (see
[11] for an overview of universal VC bounds). The best
distribution-free result is the one obtained by Talagrand [5]
in whichA = 2 and� = V � 1=2. We suggest here some
directions in computing refined bounds taking into account
particular distributions. In the following formulations,we
shall make use of the information function

H(q; p) = q log

�

q

p

�

+ (1 � q) log

�

1� q

1� p

�

in order to express the exact exponential rate in VC bounds.

Remark 2.4 Note that for � small, we have

H(q + �; q) �

�

2

2q(1� q)

:

2.2 Basic definitions

We now define the notion ofcritical value andcritical set of
� relatively to the fixed distribution�.

Definition 2.5 We introduce

� the range of admissible values of �(C) denoted by

J := f�(C) : C 2 �g ;

� the �-critical value p := argmin

q2J

H(q + �; q),

� the �-critical subfamily

�

p

:= fC 2 � : �(C) = pg ;

� and the �-critical sets which are the elements of the sub-
family �

p

.

Remark 2.6 The value p minimizingH(q+�; q) depends on

� but, since we have H(q + �; q) �

�!0

�

2

2q(1�q)

, actually it is

very close to 1/2. One could retain, for simplicity, that p is
the closest admissible value to 1/2.

In several applications such as concept learning, the know-
ledge ofa priori information on the target set (or concept)
allows to consider a restricted part of the whole family of
candidates. This knowldege could induce serious restrictions
on the rangeJ of admissible values. Our point is that the
constraints on the possible values of�(C), for C in �, lead
to a consequent improvement of the bound on generalization.
In particular, a small part of� actually contributes to the
probability of worst deviation.

3 Heuristics - The Finite Case

The theoretical point on which we want to insist is the sig-
nificant improvement that can be obtained in classical VC
bounds in a distribution-dependent setting. Indeed universal
bounds are based on Hoeffding’s inequality, but as soon as
the critical value is different from 1/2, then it would much
more appropriate to use Chernoff’s inequality. Indeed, fora
single elementC, it gives

Pr f�
n

(C)� �(C) > �g � exp f�nH(�(C) + �; �(C))g :

Moreover, we know (see [1]) by Cramér-Chernoff theorem
on large deviations that this rate is asymptotically exact and
thus it cannot be improved. In practical learning problems
where “bad” models can be eliminated, one can consider that
the rangeJ can be significantly constrained. Let us assume
that the family� is finite. Then, we obtain an improved
exponential rate on the upper bound of the probability tail
�(�; n; �) thanks to the union-of-events bound jointly with
Chernoff’s bound,

�(�; n; �) � j�j expf�nH(p + �; p)g (1)

wherep is the�-critical value of�. More precisely, we shall
have, forn large, a behaviour like

�(�; n; �) � j�

p

j exp f�nH(p+ �; p)g (2)

and we see that the main contributions in the value of the
probability tail are due to the critical sets of�.

Our first step shall be to extend such a reasoning to infinite
families�.

4 Distribution-Dependent VC Bound - Result

and Conjecture

Indeed, we have already tackled the question of distribution-
-dependent VC bounds in a previous paper [11], but here we
provide a finer result together with some conjectures on exact
asymptotics of VC probability tails. Moreover, we stress the
role of critical sets in these results and we point out the fact
that theoretical VC dimensions actually mask the presence of
local complexity exponents attached to each of those critical
sets. The main theorem actually improves our previous result
from [11] since we have managed to get rid of the disturbing
corrective term. We formulate a VC bound with an exact
exponential term which exceeds the universal rateA = 2 as
soon as the rangeJ does not contain a neighbourhood around
the value 1/2. Moreover, the general form of the capacity
term has been recovered. A sketch of proof is provided in
theAppendix while the detailed proof can be found in [10].

Theorem 4.1 Let � �

�

C � IRd : C measurable
	

a to-
tally bounded family of sets and let p be the �-critical value
of�. We shall assume that p 6= 1

2

. There exist some constants
M and K(V ) such that, if � < min(1� p; p) and n � M ,

�(�; n; �) � K(V )n

5V+21

exp f�nH(p+ �; p)g : (3)

However, this result can still be improved in the sense that
the capacity term has to be computed more precisely. Com-
bining the previous theorem with a result by Talagrand [5],
we formulate the following conjecture.
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Conjecture 4.2 (Azencott-Talagrand) Under the same as-
sumptions, with n�2 sufficiently large,

�(�; n; �) � K(V ) (n�

2

)

V�1=2

exp f�nH(p+ �; p)g :

(4)

Remark 4.3 In some particular cases (for instance, if � =

fhalfspacesg), we shall have V � 1 instead of V � 1=2

(indeed this is the case for Smirnov statistics).

Now let us try to refine this conjecture. As we have seen
it in the finite case, the worst deviation over the family is
expected to be achieved at one of the critical sets. We denote
by

C

n

= arg sup

C2�

(�

n

(C)� �(C)) ; (5)

the empirical critical set. We propose to partition the event


(�; n; �) =

�

sup

C2�

(�

n

(C)� �(C)) > �

�

with respect to the location ofC
n

, and particularly, regarding
its proximity to some critical set. We assume, for simplicity,
that the critical subfamily�

p

is finite. Thus, for� small
enough, we have the following decomposition

�(�; n; �) =

X


2�

p

Pr
n


(�; n; �)

\

(�(C

n

�
) � �)

o

+ Pr

n


(�; n; �)

\

K(�)

o

;

whereK(�) =

T


2�

p

f�(C

n

�
) > �g. As the second
term is a residue, we can thus conjecture the following re-
fined estimate of the probability tail, forn sufficiently large,

�(�; n; �) �

 

L

X

i=1

K

i

(n�

2

)

�

i

!

exp f�nH(p+ �; p)g (6)

where the�
i

’s are complexity exponents related to each cri-
tical set andL = j�

p

j. These exponents could certainly be
linked to some concept oflocal VC dimension characterizing
the capacity of the subfamily of sets around a critical element
C

i

.

5 Validation Through Simulations

One of our motivations in the present study was to obtain ef-
fective VC dimension estimations in the spirit of [9]. Indeed,
we found that the issue of critical sets needed to be conside-
red and that, moreover, one should provide error computa-
tions and confidence intervals on the estimations in order to
draw further conclusions. We show that the previous theore-
tical considerations are necessary in order to face efficiently
the simulation part. Our first step is to specify the nature of
the concepts we shall be able to measure.

5.1 Distribution-dependent concepts

Classical definitions of VC dimension, growth function and
VC entropies are known to beworst-case since they are dis-
tribution-free quantities. Indeed, one single configuration of
points is enough to increase the VC dimension. However, it
has been noticed ([6], [7]) that on a particular sample, the
empirical VC dimension can be much smaller. In our expe-
riments, we assume that the probability distribution underly-
ing the data is known and we want to observe if the predic-
tions of VC theory are confirmed. As we have to adapt the
theory taking into account the particular exponential rate, we
also have to specify the corresponding particular concepts.
Thus, we introduce the notion ofeffective VC dimension in a
different manner than in [9].

Definition 5.1 (Effective VC dimension)

V

eff

(�; �) =

IE log jTr(�; X(n))j

log 2

(7)

Note that this definition allows non-integer values for the VC
dimension.

5.2 Rare-event simulation

In order to validate our conjectures on the analytical expres-
sion of the probability tail through simulation, we face the
issue of effectively simulating the event


(�; n; �) =

�

sup

C2�

(�

n

(C)� �(C)) > �

�

:

But as a rare event, it hardly never can be observed. Thus,
we propose to use a speed-up technique, known asimpor-
tance sampling, in order to carry out reasonable computer
experiments. The basic idea is

� to change the distribution underlying the data such that
the event can frequently be observed, and then,

� to put some weights on the empirical estimator in order
to obtain the proper correction on the numerical value.

First we fix an elementC
0

of � which is a�-critical set (i.e.
�(C

0

) = p). We assume in the sequel that� is theuniform
distribution with supportK. Consider the distribution� de-
fined by the exponential change of measure1. This change of
measure will force most of the trajectory paths to be ”near”
to the critical elementC

0

. We denote byU the random va-
riable with distribution�. We obtain, in our case,

d�

d�

(u) =

8

>

>

<

>

>

:

p

p+ �

if u 2 C

0

;

1� p

1� p � �

if u 2 K� C

0

:

We notice that� is absolutely continuous with respect to�
and that it puts a mass ofp + � onC

0

(while � put p). By

1This is the same change of measure as the one used in the proof
of the Cramér-Chernoff theorems on large deviations of theempir-
ical mean of independent real random variables (see [2]). The dis-
tribution � is also known as thetwisted distribution.
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U (n) we denote the i.i.d. sample of sizen with distribution
�. Then the event


(�; n; �) =

�

sup

C2�

(�

n

(C)� �(C)) > �

�

is not a rare event. We use the Importance Sampling (IS)
estimator,

�̂(�; n; �) =

1

M

M

X

m=1

Z

m

; (8)

where theZ
m

’s are independent copies of the same random
variable

Z = 1l

(�;n;�)

�W (�

n

(C

0

); p; �)

n

; (9)

and the weights due to the change of measure

W (x; p; �) =

�

p

p+ �

�

nx

�

1� p

1� p� �

�

n(1�x)

(10)

correspond to Radon-Nykodym derivatives. The IS estima-
tor satisfies two important properties:

� �̂(�; n; �) is an unbiased estimator of�(�; n; �), mea-
ning thatIEZ = �(�; n; �)

� Z possesses the variance reduction property
Var(Z)

Var(T )
� exp f�nH(p + �; p)g ;

whereT = 1l

(�;n;�)

is the standard estimator.

In order to control the experimental results we need to go
through calibration considerations. Our approach here adopts
some rough simplifications but turns out to be efficient in
simulation. Denote by

�̂

2

Z

=

1

M � 1

M

X

m=1

(Z

m

� �̂)

2 (11)

the empirical variance estimator, whereM is the number of
trials. Then, by an approximate use of the Central Limit The-
orem, we obtain the order of relative error with high confi-
dence (95%).

j�� �̂j

�

'

1:96

p

M

�̂

Z

�̂

: (12)

In simulations, we achieve a relative error on�̂ smaller than
10%.

5.3 Application - the effective VC dimension

Our idea in introducing these ideas was to validate through
simulations the following exact form of VC bounds

�(�; n; �) � K (n�

2

)

V�1

exp f�nH(p+ �; p)g ; (13)

whereV shall denote, from now on, the effective VC dimen-
sion of the family�. As an application, it is then possible
to get effective VC dimension estimations. The procedure
we develop consists in treating every critical set separately.
Indeed, even though the IS estimator is unbiased and should
provide a good estimation for a sufficicnetly large number of
iterations, a rough application can generate unexpected fluc-
tuations due to the behaviour of the weights.

Simulation protocol

Given�, �, �, we go through the following steps.

1. localization of critical sets

Practical issue : provide a detailed description of the
submanifold of critical sets which is obtained as the set
of minimizers of the functional

C 2 � �! H(�(C) + �; �(C)) 2 IR :

2. for each critical set
, simulate the event
n


(�; n; �)

\

(�(C

n

�
) � �)

o

and compute its measurê�(
).

Practical issues : compute the supremum over an infi-
nite family� of sets and achieve the estimation of very
small probabilities.

3. we use the following fit

�̂(
) ' K




(n�

2

)

�




exp f�nH(p + �; p)g

to estimate the multiplicative constantK



and the com-
plexity exponent�




.

Practical issue : achieve parameter estimation.

Taking care of practical and algorithmic issues

In this exploratory work, we have decided to limitateas much
as possible the practical problems by choosing the simplest
examples. At this point, we aim at validating the protocol
and its basic components which are rare event simulation
and parameter estimation. Thus, we shall not consider the
problem of localizing critical sets in general. We basically
construct the example by choosing the critical sets in the first
place. The second and very significant issue is how to com-
pute the supremum over an infinite family of sets. In the
one-dimensional and two-dimensional case (at least for the
uniform distribution), it is possible to show that there is only
a finite number of sets to consider. The main problem is then
to control the algorithmic complexity of the procedure and
some solutions are explored in [10] using some ideas from
the field of computational geometry. The question of esti-
mating very small probabilities has been developped in the
subsection5.2 where the rare event simulation procedure has
been explained. The last issue is rather standard since para-
meter estimation can be achieved by simple linear regression.
Indeed, we set

X = log(n�

2

)

Y =nH(p+ �; p) + log �̂ ;

and we use the linear modelY = �X + logK. The com-
plexity parameter� = V � 1 is then obtained as the slope of
the linear regression model.

Example

We have experimented this protocol on constrained Smirnov
statistics. We consider real-valued random variables and we
take

� = f [0; x] : x < q g ;
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q V �V K �K=K

1.0 1.00 0:22 0.95 23%

0.9 0.99 0:20 0.97 23%

0.8 0.99 0:14 0.95 15%

0.7 1.03 0:14 0.90 16%

0.6 1.06 0:18 0.80 20%

0.5 0.98 0:14 0.67 16%

0.4 0.78 0:09 0.53 10%

0.3 0.68 0:06 0.42 7%

0.2 0.62 0:04 0.33 5%

0.1 0.57 0:04 0.23 4%

Table 1: Effective VC dimension and constantK with confi-
dence intervals

whereq 2 [0; 1]. We haveJ = [0; q]. Hence, the critical
subset is here reduced to the only element[0; p]where

p = argmin

x2J

H(x+ �; x) ;

and we have for the theoretical VC dimensionV (�) = 1.
We have checked the formula

�(�; n; �) �

n!1

K (n�

2

)

V�1

exp f�nH(p+ �; p)g ; (14)

whereV designates the effective VC dimension. Note also
that, ifq = 1, this is exactly the one-sided Smirnov statistics,
because we then haveK = 1 andH(p + �; p) ' 2�

2. We
have provided an experimental validation of this result and
an extension of the formula in the case whereq < 1. The
regression model behaves well on our simulations and we
provide a synthesis of experimental results inTable 1 and
Figures 1, 2.

Other examples

Our machinery has also been tested on other families (see
[10] for further examples). The idea is to consider the cases
where there are many critical sets, as for example the family
of intervals of size smaller than some fixedp.

6 Conclusions and Open Questions

From the experimental part of the present study, we can draw
the following conclusions:

� The VC bound we have conjectured provides an exact
formula for the constrained Smirnov statistic.

� Effective VC dimension can take non-integer values stri-
ctly smaller than theoretical VC dimension.

� As soon asJ contains the value1=2, effective and the-
oretical VC dimensions are the same.

Moreover, we have introduced the concept of local VC di-
mension which is unavoidable in the design of simulations
whenever there are many critical sets. However, the theore-
tical relevance of such a notion still has to be investigated.
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Figure 1: Comparison of the regression lines for various val-
ues ofq
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Figure 2: Graph of the experimental functionsK(q) and
V (q)

Appendix - Sketch of proof for Theorem 4.1

Basically, we follow the combinatorial scheme ([8]) as it has
been stated by Devroye ([3]) using an adaptive size for the
symmetrized sample. We denote byX(n) andY (m) two
i.i.d. samples with distribution�, respectively of sizen and
m, and by�(X)

n

,�(Y )
m

the corresponding empirical measures.
We shall setm � n

3. By symmetrization, we are led to the
following probability tail

� (�; n; �) = Pr

�

sup

C2�

�

�

(X)

n

(C)� �

(Y )

m

(C)

�

> �

�

:

We then notice that, for a fixed sampleX(n) � Y (m), there
is only a finite number of setsC in � to be considered. We
denote by�� this finite (and random) subfamily of� and,
using the union-of-events bound, we have

� (�; n; �) �

Z

X

C2�

�

Pr
n

�

(X

0

)

n

(C)� �

(Y

0

)

m

(C) > �

o

d�


(n+m)

;

where the probability under the integral is the probabilityof
a sampling without replacement draw ofX

0

(n)�Y

0

(m) out
ofX(n)�Y (m). For a fixed setC in �

�, we setr = r(C) =

P

n

i=1

1l
C

(X

i

) +

P

m

i=1

1l
C

(Y

i

). Thus, we have

Pr
n

�

(X

0

)

n

(C)� �

(Y

0

)

m

(C) > �

o

�

Pr

�

�

(X

0

)

n

(C)�

r

n+m

>

�

m

n+m

�

�

�

;
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and we can then use some combinatorics in order to control
the deviations of a sample without replacment draw from its
expectation. Thanks to Stirling’s formula and some mono-

tonicity arguments concerning the functionH
�

� ;

r

n+m

�

, we

can bound the last probability tail by

(n +m)

7

exp

n

�nH

�

r

N

+

�

m

N

�

�;

r

N

�o

;

after settingN = n +m. Integrating this quantity requires
some technical steps which aim at formulating a uniform
Varadhan-Laplace estimate. Note thatm

N

' 1 and the dom-
inating term corresponds tor

N

' p. The basic problem is
to control the integral over the rare event which is to ob-
serve an empirical frequencyr=(n + m) far above the crit-
ical valuep. Our idea was to indroduce a fixed and finite
approximation~� = fC

1

; :::; C

I

g of the family� and then
to decompose the eventA

i

= f�(C�C

i

) < �g into A
i

=

(A

i

\ K

�;i

) [ (A

i

\ K

�;i

), whereK
�;i

is the open ball of
centerC

i

and radius� for the empirical measure. Note that
we haveI �

�

1

�

�

V

. On the fist set, Varadhan’s lemma (see
[1]) applies, while on the second set, a uniform control of
local deviations of empirical means is required. A weaker
version ofTheorem 4.1 we have established in [10], based
on the work of Talagrand [5], conducts to proper estimations.
A final optimization leads to the optimal choice of� which
shall be like1

n

.
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