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Abstract

Most of the performance bounds for on-line learn-
ing algorithms are proven assuming a constant
learning rate. To optimize these bounds, the learn-
ing rate must be tuned based on quantities that are
generally unknown, as they depend on the whole
sequence of examples. In this paper we show that
essentially the same optimized bounds can be ob-
tained when the algorithms adaptively tune their
learning rates as the examples in the sequence are
progressively revealed. Our adaptive learning rates
apply to a wide class of on-line algorithms, includ-
ing p-norm algorithms for generalized linear re-
gression and Weighted Majority for linear regres-
sion with absolute loss.

We emphasize that our adaptive tunings are rad-
ically different from previous techniques, such as
the so-called doubling trick. Whereas the doubling
trick restarts the on-line algorithm several times
using a constant learning rate for each run, our
methods save information by changing the value
of the learning rate very smoothly. In fact, for
Weighted Majority over a finite set of experts our
analysis provides a better leading constant than the
doubling trick.

1 Introduction

In this paper we analyze on-line learning algorithms thagetu
their learning rate in an on-line fashion. In this introduc-
tion we will use the (randomized) Weighted Majority algo-
rithm [Lit89, LW94, Vov90, Vov98, CBFH97] as a moti-

vating example to describe the problem we are interested

in. In the main part of the paper we will apply our tech-
nigues to the much more general clasg@isi-additive al-
gorithms [GLS97, KW98h].

1.1 An illustrating example

The Weighted Majority algorithm processes the examples bound as suggested by the previous section,

one at a time in trials. In each trialthe algorithm receives
a binary vectorr; € {—1,+1}"™ and is asked to predict
the value of an unknown binary labgl] € {—1,+1} as-
sociated withx,. The algorithm keeps a weight vectar,
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representing its current hypothesis. The veetgris ann-
dimensional probability vector. The algorithm’s predicti
at timet is the linear combinatiof); = w; - ¢, € [—1, +1].
After receiving the correct labe);, the algorithm incurs a
lossl; = L|y: — | € [0,1]. Finally, the algorithm updates
the weights according to the rule

W41, = Wt exp{—n|y: — wt7i|}/th

wheren is thelearning rate andW; is the normalizing factor
makingw,, a probability vector. Now, leL; 7 = |{1 <

t <T:ay; # yi }| be the number of times thigh input com-
ponent disagreed with; on a sequence & trials (i.e., the
number of “mistakes” of théth component). The analysis
of the Weighted Majority algorithm with fixegl shows that,

up to lower-order terms, the cumulative lass = 23’:1 l;
can be upper bounded as

Ly <(1+4n) L+ clnn,

where L}, = min;<;<, L;7 andc is a suitable positive
constant. To obtain an optimal bound (up to lower-order
terms) the learning rate has to be chosen with respect to
L. For instance, the bound above is optimizedspy=

c(nn)/L% which yields
Ly < LG +2/Liclnn+clnn.

Thus, according to the last bound, the loss of the algorithm
is asymptotically the same as the loss of the best fixed com-
ponent, if we disregard lower-order terms. Obviously this
tuning needs: priori knowledge about the optimal number
of mistakesL?., which is usually not available. To solve this
tuning problem, we will use an adaptive learning rat¢hat
varies over time, depending on the information the algarith
gains abouf. during the learning process.

1.2 Incremental update of the learning rate versus the
doubling trick

A standard method to deal with the tuning problem is the
so-called “doubling trick™ An upper bound® on L% is
assumed and the learning rate is tuned with respect to this
i.8..=

/(¢ 1nn)/B. We call “round” a sequence of trials where
B is constant. If during the learning process the loss of
the best component exceeds boundhen this bound is in-
creased, the learning algorithm is restarted, and a newdroun



begins. A sophisticated analysis of the doubling trick ft  Such problems have been widely investigated in the last
Weighted Majority algorithm can be found in [CBF197]. years (see, e.g., Littlestone [Lit89, Lit91], Vovk [Vov90,
We may say that the doubling trick makes an on-line al- Vov97, Vov98, Vov99], Littlestone and Warmuth [LW94],
gorithm coarsely adaptive, as the learning rate is constantCesa-Bianchi et al. [CBFH97, CBLW96, CB99], Kivinen
within a round and makes big jumps between rounds. How- and Warmuth [KW97, KW98b], Yamanishi [Yam98], Grove
ever, a major disadvantage is that the on-line algorithm is et al. [GLS97], Gentile and Littlestone [GL99], Azoury and
restarted from scratch at the beginning of each round, henceWarmuth [AW99], and references therein).
losing all the information collected during the past rounds In linear regression the learner’s hypothesis at tinie
More disadvantages arise if the learning setting is maderepresented by a weight vectar; € R"™, and the predic-
more general. For instance, in generalized linear regressi tion g, is often a function ofw; - «;. For instance, ifL
[KW98b] checking the termination condition for the cur- is the square los&(y¢, §:) = (y: — 9:)* and the predic-
rent round might be computationally expensive. Further- tion is justg; = w; - =, then we compare the cumula-
more, it is not clear how the doubling trick could be ap- tive lossL 4 r(S) of the algorithm with the least cumulative
plied when the loss on each trial can be arbitrarily large. In square loss that could be incurred by predicting with a fixed
contrast, this paper analyzes on-line learning algorittivas weight vectoru in the comparison class. In particular, set-
are “|ncremen'gally adap_tlve”, as thgy modify their leaguin  ting Lur(S) = ZtT:l L(y:,u-x,), our goal is to bound the
rates possibly in each trial, and typically by a small amount |oss difference (this is also called th&ret or relative loss)

Via our approach we design on-line algorithms whose per- La7(S)—ming Ly, r(S), for an arbitrary trial sequencg
formance bounds are in some cases better, and never sig- | the absolute loss setting we haliéy,, j;) = %Iyt _

nificantly worse, than those proven for the_ d_oubling tri_ck. j¢|. Inthis paper we only consider the case when the lapels
Moreover, some of our techniques are efficiently applica- p e rangé—1, +1]. The predictiony, is a suitable clipping

ble to very general Ie_arning §ettings and can even handleg,nction ofw, -z, whose range is agajr-1, +1]. As a con-

unbounded loss functlor_ls. Fmally, we expect that our al- sequencel(y:, j:) € [0,1]. We are still aimed at bounding
gorlth_ms b_ehave better in practice than those based on th§ne cumulative (absolute) loss df but the way we measure
doubling trick. the performance of the best off-linemight be different (see

As a rema(k, we note that algorithms with an incre- ggction 3.1). The casg € {—1,+1} is of special interest,
mentally adaptive learning rate were also proposed by VoVK gjnce it can be interpreted as a binary classification proble
[Vov97] and Azoury and Warmuth [AW99] for the problem  \here the algorithm is allowed to make randomized predic-
of on-line linear regression with square ldsslowever, their tions. The absolute Ios§|yt — 4| is then the probability of
prooftechniques are different from ours and do not seem eas-, prediction mistake, i.e., the probability that £ §;, and
ily extendible to more general regression problems. the cumulative loss is just the expected number of mistakes.
For instance, the Weighted Majority algorithm of Sectioh 1.

_ ] ] ) _ can be seen as an algorithm for the following restrictedsclas
In this section we describe the learning model more pregisel of regression problems: the loss function is the absoluste lo
and give our basic notation. Aexample is a pair(z,y), L(yt,9:) = |ye — ), the prediction igj; = w; -z, and
wherex € R" is called annstance, andy € R is thelabel the comparison class is the set of thanit vectors.
associated witlr. On-line learning proceeds in trials. In the

t-th trial the on-line algorithm receives an instanceand 1.4 Incrementally adaptive on-line learning algorithms

is required to give @rediction j; about the unknown label | this section we distinguish two ways how we will tune

y: associated witle;. Theny, is revealed and the algorithm 0 |earning rates of the algorithms. The more obvious way
incurs a lossl(y¢, ), measuring the discrepancy between g 14 set the learning rate with respect to the loss of the

the predictionj, and the label,. We call a sequencé = comparison class observed so far. For the Weighted Majority

,y1), (x2,y2), ... ) ofinstances and labels processed b . . . .
t(fgcglalzélczrit(r?r; |yn2?':1 run)arial sequence. P Y algorithm of Section 1.1 this would bg = /(¢ In n)/Ly,

N . _ . t 1 .

We adopt a well-established mathematical model to an- Where Lj = mini<i<n 3, 5|y — ;[ In Section 2
alyze these algorithms. It is a generalization of a learning We analyze this choice of the learning rate for the Weighted
model introduced by Littlestone and Warmuth [Lit88, Litg9, Majority algorithm. . . .

LW94] and Angluin [Ang88]. We are given emparison An alternative way for tuning the learning rateis to use
class of predictors and a loss functioh. Broadly speak- the loss of the Iearn_lng algorithmto caIcuIa;eTh_ls is done
ing, the goal ofA is to learn on the fly the best off-line under the assumption that the current cumulative loss of the
predictor in the comparison class for the whole Sequencealgonthm closely matches the current cumulative loss ef th
S. Formally, we measure the performance/fon S by comparison class. We call such algorithses-confident, as

the cumulative losg. 4 (S) the algorithmA suffers onS: they “trust themselves” in tuning,. There are two reasons
Lax(S) = ZtT:l L(ye, ). We compare this loss to the loss to use a self-confident tuning instead of a tuning based on

of the comparison class. i.e. to the loss of the best pradict the true current loss of the comparison class. First, as we
. part PN . P said in Section 1.2, the evaluation of the loss of the com-
in the comparison class for the same trial sequehce

This paper focuses on the linear regression problem with parison class might be computationally hard: storing 2t pa

various losses, mainly the square loss and the absolute Iossexamples and resorting to numerical methods might be nec-
' y q essary for loss functions more difficult than the square.loss
1The learning rate in those papers is actually a covariance ma Second, the analysis of self-confident algorithms seems to

trix. be much simpler in most cases. In fact, we have been able to

1.3 The formal learning model
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analyze the tuning based on the current loss of the compar-loss bound:

ison class only for the relatively simple Weighted Majority . -
algorithm. This is done in Section 2. Self-confident leagnin Lr < Lp+2y2Lplnn
algorithms will be analyzed in Sections 3.1 and 3.2. +g(ln n)(In(1 + L3)) +6lan + 1,
2 An incrementally adaptive Weighted where .
Majority algorithm . .
J yalg LT = min %|yt — wt,i|- O
1<i<n =)

In this section we present an incrementally adaptive varsio

of the Weighted Majority algorithm for prediction with ab-  Thjs resultimproves on results obtained by the doubliratri
solute loss. To keep the analysis simple, we consider the[cBFH+97], where it was shown thdt; < L% +(3.3302+

randomized classification case. That is, we assume that Ve .
8 ) h * i < *
x4, ye € {—1,+1}. However, the main result of this sec- o(1))/Linn asT — oo. Our result givedy < Li +

tion, Theorem 1, holds with minor modifications also for the (283 +0(1))y/L7 lnn asT’ — oc.
regression case, whete;,y: € [—1,+1]. Recall the nota-
tion of Section 1.1. The construction of the algorithm, see
Figure 1, is quite straightforward from the original Weigtit

2.1 Analysis of the algorithm

The analysis proceeds in the usual way by bounding the cor-
responding Bregman divergenads, ) (see Section 3). In
the scenario of the Weighted Majority algorithm the compar-

Fort=1,2,...,T: ison class consists of the unit vectars i = 1,... ,n, and
) the Bregman divergence is just the relative entropy. Thus
1. Calculate the weights as d(u;,w;) = — Inw, ;. For the analysis we will bound
Wi = Ozt_Li't_l/Wt, lnwt+17i;‘+1 _ In Wi, i
1 Inn €i+1 €t
€ = ming{ —, /2 , . . . .
4 Ly, wherei; = argmax; w ; iS the componentwith the minimal
1 number of mistakes so far. SBf; = " | at_L“ so that
@ = 7T € wy ;= a;L“/Wt’ would be the weights for the next trial if
n the learning rate were not changed. We get
_ —Li¢ 1,
Wy = ;at ) lnwt+17i;‘+1 3 In wy ;
. . . €t41 €t
2. Getinstance; and predict withj; = w; - xy; 1 1
i — = 1 < - —
3. Getlabel, and incur loss;[y; — g¢/. N W13y, <6t+1 et)
Inwepry,, — lnwait*“ N In wi’i;H — Inwy i+
€t €t
Figure 1: The incrementally adaptive Weighted Majority al- > _lan I 1
gorithm - €41 €t
. . . 1 o Liw! 1 oLt 1. W
Majority algorithm [Lit89, LW94, Vov90, CBFFi97]. Es- +-In—t 4 S —t 4 —In—.
. ™ . . . . € —L; € —-Ly_, € w!
sentially, the only modification necessary is the introghrct t oy Wi oy ¢ ¢
of a varying learning rate. (In this section we found it more 1)

convenient to sej; = ln a; and focus on the tuning af;.) o ) ) ]
There is a subtle point here, though, since the learning rate\We denote the three logarithmic factors in the right-mai si

is changed also retrospectively: In step 1 of the algorithm of (1) as
—Lit—1

the weightw, ; is set proportionally tax, , Whereas a L ol W,
. L Ny — 4 s . t+1 t t
one might expect that it is set 1o,_; ;a; ¥~ “*l. Setting Big=ln—7r——, Boy=In—p—, Bsy =In 7k
it—1 o " Wi a; t

the weight tht_L actually means that the new learning _
rate parametey; is applied to all past trials. This is quite We proceed by lower bounding, ¢, Bz; and Bs;. To
essential for the analysis. Notice that in Figure 1 we have bound B, ; we use the following technical lemma whose
L;o = L{ = 0. Thusw;; = 1/n ande; = 1/4. For this proof is given in the appendix.

algorithm we have the following result.
9 g Lemma2 For1 < a < Bandany l1,... 41 > 0 it

Theorem 1 Let S = (x1,y1), (T2,Y2), ..., where (x4, y;) € holds that
{-1,+1}" x {—1,4+1}. Then the adaptive Weighted Ma- 1+ Z?:ll gt lnn
Jjority algorithm in Figure 1, run on a prefix of S of arbi- In HZn—il_e >—(B-a)

i=1 &

trary length T', achieves the following cumulative absolute Ina
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Thus

Inn

Biy > —(as — atﬂ)lna o
t+

We assume that; # a;+1 ande; < 1/4 (there is at most
one trial withay; # a1 ande; = 1/4). ThenL; = L}, +
1, and sincey, as a function ofL;_, is convex we get

3
_ ¢

9 Inn o2
2(L;_,)3 ~ '4lnn’

(67 ap = Qg

— a1 < 2L
t—1

Analogously we get

< <1 Inn 1( )
lnatH T €41 T €t 6% 2(LZ 1) - €t 4lnn’"
Thus
a262 62 62
By, > -t iys G
Lt 2~ ( il ) > 1 (1 + 5er)

for trials t with a; # ;41 ande, < 1/4. For trials with
ar = ag We haveB; ; = 0.

For the next bound we ude(1 —¢) > —¢ — €?/2 — ¢
fore <1/4:

_L:‘

(0%
_ t
B27t = 1I1 —L;f,l

> —er(Ly — Li_ ) (1 + e/2+ €).
Qy

Finally, B; ; is bounded in the usual way,

2 Ve
Wi

n
—In (Z wt7iatyt$t.i|/2>
i=1
—1In (1 + Zwm (at_‘yt_m'iw — 1))
i=1
S (o )
i=1

n
€t Z wt,i|yt - -Tt,z'|/2
i=1

B3,t = 1

v

n
etlye — Z Wy, Tt i /2
i1

Et(Lt — Lt—l)-
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Using the bounds 0B, +, B, ¢, Bs ; in (1) and summing for
t=1,...,T gets

don > Inwriip,, B Inw; ;
€T+1 €1
1 1
> —Inn - —
€T+1 €1
€
-1— > (1+5et)zt
tierp17€r,60<1/4
T
—Lp =Y (et/2+)(L; = Li_y)
t=1
+Lt
1
> —Lj+Ly— ——+4lnn—1
€T+1
3 .
~2 Z (er + 3€)
trerp1Fer, e <1/4
- Z (€:/2 + €2)
t:Lf  #LYee=1/4
> —Lp+Ly—/Li(lnn)/2+4lnn -1
_§/L’% 2lnpn  Glon) o
4 32Inn—1 L L
1 1
_39Inn(= + —
3 nn(8 + 16)
> —Lp+Lr—/Li(lnn)/2 —2lnn -1
3 9
—5\/2L*T Inn — E(lnn)(ln(l + L%))
> —Lp+ Ly —2y/2L%(nn) —2lnn -1

9
—E(ln n)(ln(l+ L7)).
This proves Theorem 1.

3 Quasi-additive learning algorithms

This section describes a general class of algorithms we will
deal with in the remainder of the paper. This class of algo-
rithms was introduced by Grove et al. [GLS97]in the context
of binary classification and also, independently, by Kivine
and Warmuth [KW98b] in the context of (generalized) lin-
ear regression. These algorithms are caljedsi-additive
in [GLS97] andgeneral additive in [KW98b]. This class
of algorithms covers a wide variety of learning algorithms.
For instance, in the binary classification setting thislas
cludes Perceptron [Ros62, Blo62, Nov62] and algorithms in
the Winnow family [Lit88, Lit89], such as Weighted Major-
ity; in the regression setting this class includes the Widro
Hoff rule [WH60] and algorithms in the EG family [KW97].
The general additive algorithms also include the subfamily
of the p-norm algorithms [GLS97, GL99], which are treated
in Section 3.1.

All these algorithms have the same basic structure. In
the generic triat the algorithm stores the weight vectog,



lying in a suitable weight space. Combined with the cur- inversef—! of f is given by [GL99]f ! : R" — R,

rent instancer,, the vectorw, determines the algorithm's £~ = (f;'%,..., f=1), where

predictiony,, which is a function ofw, - ;. Then, based . .

on the labely;, the algorithm performs the weight update  —1 gy _ sign(e:) 161" o _ Or,....60,) € R

stepw; — wiyq- 1At the core of the weight update lies : ICIT o ’

the rulew;,, = £ (f(wy) + n: 9(ye, §¢) ), Wheref is a i i i i ) ,

smooth bijgctive ma(péing)fro?n trge ad()the)d weight space to -6~ is obtained fronf by replacing; with p. Notice that
R”, £-1 is the inverse of andg is a suitable function of  if » = 2 thenf is the identity function. _ ,

y: andg;. For instance, in linear regression with square loss  1he Bregman divergence associated with the gradient
we haveg(y;, §:) = y¢ — ;. The Widrow-Hoff rule is then ~ Mappingf given in (2) is

obtained wherf is the identity mapping, while the EGU al- - P _p —(u—w)-f 3
gorithm [KW97] is given by the componentwise logarithm de (u, w) r(w) r(w) = (u —w)-f(w), 3
f(wy) = (nwea, ... ,Inwp). whereP is as above. Observe that from the strict convexity

The standard way to analyze these algorithms (e.g., of P it follows thatdg(u,w) > 0 with equality holding if
[Lit88, Lit89, LW94, HKW95, AW98, CBLW96, CBFH 97, and only ifu = w.
GLS97, KW97, Byl97, GW98, AW99, GL99]) is to define a The Bregman divergence defined in (3) has also been
measure of progress related to the mapgdinghe measure  used in [GL99]. It is easy to check [GL99] (see also Gor-

of progress we use here is the so-caBeegman divergence don [G099]) thatls(u, w) can be rewritten as
[Bre67, CL81] associated with We denote the divergence . - )
by de(u, w), whereu andw are weight vectors. Informally, de(u,w) = 5 [|ul[; + 3 [|w]|[; —w- f(w).  (4)

we can definelg (u, w) as follows. Assume thdtis the gra- | ice that th ial ield
dient of some convex functioRe on a convex weight space. f\so, not|c2e that the special cape= 2 yields dr(u, w) =
Thends (u, w) is the difference betweef () and the first- 3llu —wlf5.

order Taylor expansion afr aroundw. (Thus by convex- The_following lemmais a Bregman divergenc_e version of

ity de(u,w) > 0.) For instance, iff is the identity then a classical result about projection operators. This lemasa h

de (u w)’ _ lﬁu o w||2, whereas }f is the componentwise also been used in the context of on-line learning by Herbster
Y - 92 ’

logarithm thendz (u, w) is the (unnormalized) relative en- nd Warmuth [HW98].
tropy divergenceds (u, w) = 3 ;_, (u; In Z,_ +wi —ui). A Lemma 3 [Bre67, CL81] Let YW C R™ be closed and con-
further example of Bregman divergence is provided in Sec- vex, w € R™, ané let w' — argm_in wew de(w, w) be the
tion 3.1, where we analyze a self-confident version of the yrgiectionof w onto W w.rt. the Bregman div;rgence ds
p-norm algorithms. In Section 3.2 we discuss how to extend given in (3). Then for any u € W the following holds:
this analysis to algorithms in the Winnow-EG family.
df(u7 ’UJ) Z df(ua w,) + df(w,7 ’UJ) Z df(uv w’)' U

3.1 Self-confident p-norm algorithms
This section defines and analyzes our self-configemrm In this section we take our comparison class to be the convex
algoritms. We deal with two linear regression settings: 1) setWy = {w e R" : ||w|.|q < U} and we will always l_)e_
the square loss setting; 2) the absolute loss setting withProjecting ontoV;. By a simple Kuth—TuckeranaIyS|s.|t IS
binary labels (i.e., the binary classification problem vener Not hard to verify ,that in such a case’ = (wU)/||wl, if
the algorithm makes randomized predictions). Our results ||@ll; > U andw’ = w, otherwise. (This specific projec-
for square loss are easily extended to more general regrestion occurs in the algorithms of Figures 2 and 3.) We also
sion frameworks, such as Helmbold, Kivinen and Warmuth’s have the following lemma, whose proof is in the appendix.
[HKW95, KW98b] generalized linear regression model. 2

We first need to recall some preliminaries about the dual Lemma 4 [fu,w € Wy then de(u, w) < 2U°. O
norms technology we will be using in this section. Given & The -norm algorithms are a versatile on-line learning tool.
vectorw = (wi,... ,w,) € R" andp > 1 we denote by s noticed in [GLS97, GL99] that by varyingthese algo-
||w||, thep-norm ofw, i.e.,||w||, = (>, |w,v|P)1/” (also, ][ithms can bef;]ave ina rfa(:]ically diffelrent manner. C(?Ssider

o n /P _ o or instance, the case of the square loss. Hete 2 yields

lnglL;)oan dzrzfgdja(lzi%il-iwf':) 1 hol drgé}l?g;uégérx\ﬁ:ﬁe the Widrow-Hoff rule, whilep = 2 Inn gives rise to an al-

) P ) gorithm which is very similar to EG.
1-norm is dual to theo-norm and the 2-norm is self-dual. We now describe the self-confideptnorm algorithms
For the rest of this section we assume thandg are some o square loss and absolute loss. Both algorithms are as-
pair of dual values witlp > 2. sumed to knové a bound on theg-norm of the comparison

The p-norm algorithms [GLS97, GL99] are defined in  yector, This assumption could be removed by applying the
terms of the following bijective mappinf(ap indexing for results we mention in Section 3.2.

fis understood)f : R" — R", £ = (f1,... , f»), where We observe that, unlike previous on-line regression anal-
sian(w; ) w21 yses [KW97, HKW95, KW98b, GL99], our algorithms do
fZ(W):%, w:(wl,...,wn)ER". T . . i
[|lw]|d It is worth noticing that, in order to make a constant leagnin

2) rate algorithm achieve bounds of the form of Theorems 8 and 9,
both the norm of the besi and its loss seem to be a necessary prior

The functionf is just the gradient ofr(w) = %||w]|2. The knowledge [KW97, AW98].
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not have any prior knowledge about the norm of the in-
stances.

The algorithms are given in Figures 2 and 3. In Figure 2
we denote by, the cumulative square loss of the algorithm
up to trialt, i.e., L, = >.._, li;, wherel, = (y, — ).

In Figure 3 we denote by; the cumulative absolute loss of
the algorithm up to triat, i.e., L; = Zle l;, wherel;
+lye — |- Also, in both figuress, = (p — 1) X? U?, where
X = max;. i<t 1,50 |2 |p-

Initialization: Initial weight vectorw,; € Wy;
Fort=1,2,...,7T:

Get instancer; € R"™;

Predict with §; = w; - x;

Get labely; € R;

Incur lossl; = £ (y: — §¢)%;

If I, > 0 then update weights as follows:

wy = (F(we) + e (ye — ) ),

y _{wzﬂ o eyl <
t+1 = § wr .
I otherwise,
where
- Ct 1
N R P ek
S Vi
t - T 5
Vki + L — Vkt
ke = (p—l)XfUz,
X, = |-
¢ z‘:irgnt?l}f>o||wl”p

Figure 2: The self-confident-norm algorithm for square
loss.

The algorithms maintain an-dimensional weight vec-
tor. They start fromw; € Wy, and in the generic triglthey
are required to predict the unknown lalyglassociated with
the instancer;. The square loss algorithm predicts the label
y; € R through the linear combinatiojy = w; - x;, while
the absolute loss algorithm predicts the lajget {—1,+1}
through the clipped linear combinatign = o., (w; - «;),
as specified in Figure 3. Notice that the krpbf the clip-
ping functiono,, tends to get close to 1 as the cumulative
absolute losd.; grows. When the laba}, is received, the
algorithms incur a losk. As we already said, this loss is the

square loss for the algorithm in Figure 2 and the absolute los

for the algorithm in Figure 3. Finally, the algorithms upelat

their weights as indicated. In both figures the update has two

steps. The first step computes™ by the conventional up-
date of thep-norm algorithms, as in [GL99]. The second step
computesw:; by projectingw;® onto)Vy w.r.t. dg. Notice
that the algorithms do not update their weights i 0.3

Initialization: Initial weight vectorw,; € Wy.
Fort=1,2,...,T:

e Getinstancer; € R™;
o let
ke /4
ay = T 4 T 1
kt/4 + Ltfl + 1
ke = (p - 1) Xt2 U2’
X, = ;
t i:igﬁfw IEAIPS
e = l—ay

e Predict withj; = o, (wy - x;)

1 if Wy * Tt 2 Ct,
W H

=q 7 ifwem € (—e ),
-1 if Wit - Tt S —Ct;

e Getlabely, € {—1,+1};
Incur lossl; = £y — §¢l;
e If /; > 0 then update weights as follows:
wi* = £ (F(wy) + ne ye @),
it JJwi"|ly <U,
otherwise,

Figure 3: The self-confident-norm algorithm for absolute
loss and binary labels.

We need the following three technical lemmas. The first
lemma is taken from [GL99], but it essentially follows from
a combination of [KW97] and [GLS97]. The second lemma
appears in various forms in [JW98, KW98b, GW98, GL99].
The third lemma is a simple technical tool for our self-
confident analysis. Its proof is given in the appendix.

Lemma5 Let u,w; € R", , € R™, with ||z¢]|, < Xy,
and set w = £ (f(we) + me (ye — Ge) ), with n;
(1+Ct)(61:—1)X_t2’ ct >0, Xt > 0andy:,9: € R. Then the

following inequality holds: *

Lo — )2 — e Y(u — u - 2
1-|-ct2(yt Ut) Ct2(yt u - Ty)

< (p = 1) X{(de(u, we) = dp(u, wi")). O

Lemma 6 Let u,w:,x; € R", n: > 0 and set wi*
=L (F(w;) + ne ye ). Then the following equality holds:

yt(u-wt—'wt-wt)
= o (de(u,wy) — de(u, i) + de(wy, wi)) . O

*Inthe degenerate case thét = 0 we havew;” = w;. Insuch

3The algorithms do not update also in the degenerate case thaia caser; is not defined, but the inequality of the lemma trivially

:L’t:O.
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Lemma 7 Letly, Io, ..., Iy and § be nonnegative real num- to see thay(z, L) is nondecreasing im > 0 foranyL > 0

bers. Then and nondecreasing ib > 0 for anyz > 0. Now simple
algebra gives
d [ 2
E 7t S 2 Xt+1 . Lt+1
¢ — =9 Xp1, s
=170+ L Ct+1 p-1)U
L X2
where % = 0. O >g(x, —= ) =2t
Vo _g< Pp-1)U? ct

The bounds of Theorems 8 and 9 below have the samethereby proving (6).
form of those proven for algorithms whose constant learn- Therefore the RHS of (5) can be bounded as follows.

ing rate has been optimized in terms of the total loss of the 2

comparison class (e.g., [KW97, KW98b, AW98]). We did  (de(w, wy) — de(u, wipy))

not optimize the constants in our proofs. Notice that the Ct

bound for the absolute loss algorithm is in terms of dae X? X2

viation D (u; (1,y,)) of a linear threshold classifier with =, drlwwe) = 2R de(w, wi)
threshold 0 on examplex, y;), defined ad (u; (x¢,y¢)) = X2 X2
max{0,1 — y; u - &, }. The quantityl D (u; (z, y;)) is re- + de(u, wip) ( t+l _t>
lated to a “loss” ofu on example(x,y;). For instance, Ct+1 Ct

if w is thed-th unit vector ande; € [—1, +1]", we obtain X2 X2,

the finite expert framework considered in [CBFBI7]. Here < . de(u, wt) — i de(w, wii1)

the ¢-th prediction of thei-th expert isz;; = u - x;, and ) )
%D(u; (xe,ye)) = %|yt — x| € [0,1] is exactly the abso- Y ic <Xt+1 _ ﬁ)
lute loss suffered by théth expert in the-th trial. As an- Ct4+1 c )’

other example, it andz, aren-dimensionak0, 1}-vectors where in the inequality we applied (6) and Lemma 4.

then %D_(u; (z¢,y:)) corresponds to the so-called attribute Plugging back into (5) and summing ovee 1,...,T
error [Lit91] of u on (x,y;). This quantity counts the min- gives

imal number of components af; that need to be flipped to

makeu classify(x¢, y;) correctly. ( Ct > LI
- t — Lu,T
Theorem 8 Let Wy = {w € R" : ||w|| < U} and S = t=1 1+c
(@1,y1), (®2,92), ..., where (x4, y;) € R™ X R. Then for (p—1)X? (p—1) X2
any u € Wy the regression algorithm in Figure 2, run on < 071 de(u, w) — 077"4-1 de(u, wr1)
a prefix of S of arbitrary length T, achieves the following ! I+l
cumulative square loss bound: Iy <kT+1 _ ﬂ) .
5 Cr41 C1
Lr < Lu,r +4kr + 4\ kr Lux + K, Sinceds (u, wr+1) > 0 anddg(u, w;) < 2U? this implies
where , T o 2 o
Ly — l; <L +—, 7
L’U,7T = Z l’u,t T t:zl 1 + C b= SuT cr ( )
1 ) =t where we setr;1 = ¢y and X7y, = X7 (so that (6) is not
and lue = 5(ye — u - x¢)". violated andky 1 = kr).

Proof. We notice that Lemma 5 applies. We can write Since

Ct ) . C _ kt kT
i —celus < (p— 1) Xi(de(u, wi) — de(u, wy")). 1+e¢; Vki+Le =V kpr+L)

1+4+¢
we can apply Lemma 7 to the second term of the LHS of (7),

:/(\)/?03\'/\2? gobuyrf édi?g ?L)?ely bl_ye(ri‘rf\(rzai.tlf;l.svl\cleemombgﬁ:lows us along with the bound ORfL- just given. We also substitute

_ VEr i i i
1 L (p—1) X2 » o ) the valuecr = ThetL. vk Nto the RHS. This results in
—lyp £ ———— (de(u, w) — de(u, w .
T+e @ Ct ! t+1(5) Ly — 2kr (\/M— \/E)
We need to upper bound th_e RHS of (5) For this purpose, < Ly, + 2V kr (\/kT + Ly — \/kT) .
we first claim that the following inequalities hold: Simplifying and rearranging gets
2 2
Ko Xy 1 (6) bt + Ly < 4/kr /by + Ly + Luz — 3 kr.
C C
_ t“. t . _ We solve forLy + k¢ and simplify. The larger of the roots

To prove this claim, we define the functiof(z,L) = of the equation obtained by using “=" instead &f™gives

x ( x?+ L — x) Computing its first derivatives, it is easy the desired boundl
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Theorem 9 Let Wy = {w € R" : ||w|| < U} and S =
(x1,y1), (T2,92), ..., where (xz¢,y:) € R™ x {—1,+1}.
Then for any uw € Wy the algorithm in Figure 3, run on
a prefix of S of arbitrary length T, achieves the following
cumulative absolute loss bound:

Ly <iDyr+0 (kT + kT Du,T) )

where

T

Dy, = g Dy
t=1,1;,>0

and Du,t = D(u, (wtayt))'

Proof. We denote byM the set of trials where the algorithm

incurs a nonzero loss. Let us focus on a single trial M

and letw;" be as in Figure 3. We apply Lemma 6 and up-

per bound the last termle (w;, wi*) as in [GLS97, GL99]:
de(wy, w™) < % (p — 1) X2. This yields
yt(u-wt—wt-wt)

7]2

< L (de(u, w0) — de(u, w™) + 1) X7).

un

Next, we exploit the definition ab (u; (x¢, y¢)), from which
it follows thaty; w - ¢ > 1 — D(u;(x¢,y¢)). Then, by
Lemma 3, we lower bound (u, w}") throughdg (u, wii1)

and rearrange:

1—ytwt $t—%( —].)XZ

1
S D’U,7t + — (df(u,wt)

" — de(u, wit1)) -

Next, we claim that for any trial such that; > 0 the LHS
of the last inequality is at leagk; l;, wherec; = 1 — «y.
This would give us the one-trial loss bound

1
2¢ily < Dy + m (de(u, wi) — de(u,wep1)),  (8)
¢

holding for anyt such that, > 0 and anyu € Wy. We
prove this claim by a case analysis oygr= —1, +1. We

work out the details only fo:r/t = —1, the other case being

similar. If y, = —1 thenl; = —( + ¢¢). Hence it suffices to
prove that for any: > —c¢; we have

1+r—%( —1) X2 > ¢ (1+0,(r)). 9)

(The caser < —c¢; is not our concern, as this would det=
0.) We split into two subcases: > ¢; and—¢; < r < ¢.
If » > ¢; then the RHS of (9) i®¢, sinceo,, (r) = 1. On
the other hand, recalling the valuemgfin Figure 3, the LHS
of (9)isatleastl + ¢; — ay = 2¢4. If —¢; < r < ¢ then

o, (r) =r/c. Itis easy to see that in this case both sides of

(9) are equal te; + . This concludes the proof of (8).
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The RHS of (8) is upper bounded as follows.

%OM%WQ—%WMHM

1 X2
= DX G, w0) - de(w,wr0)
20(,3
p—1(X? X?
= T ( a: df('u, wt) O(:j:ll df(u,th)
X2 X2
+ d(u, wii1) ( HL _t> )
Q41 Qi

X? X2
< p_ (—df(u wy) — b+l de(u, wiyq)
o773 Q41

+2U2 <X1;2+1 _ X_t2>
Q41 Qi ’

where the last inequality follows from Lemma 4 and the fact

(straightforward to check) that

Xin X—E t=1,...,T. (10)
Qi+1 Oét7 ’ ’

We plug this back into (8), sum over alle M, drop the
nonnegative term involvingg(uw, wy41), divide by 2 and
rearrange. We obtain

T
LT — Z Qg lt
t=1

< 0 4 d u, w
- 2 4 [e%} f( 1)

+20U? <XT+1 - X—12>
ar41 aq

_ Dygr | krya A
T2 " 2ary ap)
where we have set
(p — 1) X7 de(u, w1)

A= %kl — A
We now handle (11) as follows. We s&t; = X, so that

(20) is not violated andvr41 = ,/#/L‘*H Next, since

A > 0 (Lemma 4) andy; < 1, we upper bound‘i by A.
Finally, we upper bound; in the left-most side of (11) by

,/% and then apply Lemma 7 with the bound an
just given. This leads to

Ly — Vkr (VEr/a+ Lt - 1v/kr)
< M + \/kT\/kT/4+LT+ 1-A.

By virtue of the mequahth +z< \/_+ 20, the
second term of the RHS is bounded from above by

1
ﬁ( T T+ WHM)

<Vkp\kr/4+ Ly + 1.

(11)




Simple algebra then gives 4 Conclusions and ongoing research

Du,r T T T T We have studied on-line learning algorithms with an incre-
kr/4+Lr < 2 +2vkr Vkr/A+ Lr—kr/4+1-A. mentally adaptive learning rate. We have provided the first

L . analysis of an adaptive Weighted Majority in the finite exper
We solve forLy + kr/4 and simplify. Again, we compute o ework to date. This result compares favourably with
the larger of the roots of the equation obtained by using *=" ,o\ious bounds for Weighted Majority based on doubling
instead of <”. This gives the boun_d of the_ theorem. . strategies. For more general regression tasks we sketched a
These two results have some interesting properties. The,grsatile and general technique to turn a constant learning
dual norms quantity:y is a function of the normp. This

: : rate algorithm into a variable learning rate algorithm|exhl
affects the dependence of thenorm algorithm on the di-  geit.confident algorithm. We focused on the analysis of self
mensionn of the input space. Recall thit;||, < X for

> [ ) confidentp-norm algorithms proving regret bounds that are
all t implies thatkr < (p — 1) X>U>. Jorinstance, if  easily generalizable to a wide range of convex losses.

p = 2Inn [GLYY] ther? ky < 2e lnnU? X3, wherelU, As pointed out before, our analysis yields suboptimal re-
is an upper bound on the 1-normafand X is an upper g5 when applied to Winnow-EG-like algorithms, and we
bound on thex-norm of the instances. In the expertcase we 4re cyrrently investigating the extent to which this praile
havelU, = Xo = 1. Thusp = 2Inn yieldskr < 2elnn. could be fixed. Further ongoing research concerns the ap-
This gives rise to a loss bound which is similar to the one we plication of our techniques to settings more general than

have proven in Section 2 for the adaptive Weighted Majority the one studied here, e.g., the so-called shifting target se
algorithm. (The constants hidden in the bound of Theorem 9 ting [HW98, AW98, HW98].

are actually slightly larger.) Finally, we are performing experiments applying our
. . . variable learning rate algorithms to the problem of hand-
3.2 Self-confident Winnow-EG:-like algorithms written digit recognition. The preliminary results we have
From the proofs of Theorems 8 and 9 the reader can see thabbtained so far are very encouraging. We are reporting on
our technique applies to a generic quasi-additive algarith  them in [G0Q].

with mappingf, as long as we can both: find a constant upper

bound® on the divergence termg (u, w;;), and show a Acknowledgments
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Consider applying this proof technique to algorithms
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A Appendix

This appendix contains the proofs of Lemmas 2, 4 and 7.

Proof of Lemma 2
First we show by induction that

1+ Z’H B 14 (n-1)p7"
1+ et T T+ (n—Ta
for somef > 0. Assume that we have
1+ 8% 1+ (k-1 + X0 !
1+ et 1+ (k—Dat+ Y0 at

for somek > 1 andZ > 0. Now we prove that there is an
¢' > 0 such that

1+(k—1)ﬁ*‘+2?;ﬁB*‘
1+ (k-Dat+ Y a
14+ kB~ + 30 kﬂﬂ i
1+ ka=t + 307 a7l

(12)

(13)

1+ (k=1 472 4500 ,M
1+ (k—1a M 4 g2 + 50 ,ma

and find by a simple calculation that

FA,A) =

f(6 L) — f (L, Cr)
f, ) — f(¢,0)
_ _(k_1)1+ka’l+zl L+1O‘ —Li

1+ ka=t + 307 H_la —ti

Thusf (¢, L) — f (L, L) andf (¢, L) — f (¢, £) have different
sign. Then, since is a continuous function, there is @h
between? and ¢y, such thatf(¢,¢;) — f(¢',¢') = 0. This
gives (13) and by induction (12).

We proceed with the proof of Lemma 2 by upper bound-

ing In (%) Since this term is increasing jhand

In(-) is a monotone and concave function we get

< (ﬂ—a)%ln<%>‘gza
= p-oit e
< p-opise

In the following we use the fact thét,—¢ is maximal when
¢ =1/Ina, isincreasing irf for smaller¢, and is decreasing
in ¢ for larger{. Assume that > 1“” . Then forn > 2 we
havel/ > 1/In«a and

(n —1)ta="
14 (n—-1at—

Inn
lna’
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Forn = 2 we get

(n —1)la~* 1
<
1+(n—1at~ (e+1)lna

In2
“lna’

Now assume < {2, Then
(n —1)a™*
14+ (n—1)a-t

This completes the proof of the lemma.

lnn

“lna’

Proof of Lemma 4
The assertion follows from (4) and Holder's inequality
on the termu - f(w), for u - f(w) < ||u|l, [[f(w)]], =

[|lully [|w]], < U?, where the equality uses the fact that
|[f(w)|], = ||w]|, (see Lemma 1, part 3 in [GLIY])]

Proof of Lemma 7

Letlp =dandL; = '_,l;,t =0,...,T. In the inequal-
ity 3o <1—1—u, x <1, setz = {~ and then multiply
both terms of the resulting inequality RYL;. This yields

1l
— <\/_ VL.

The claim is then obtained by summing over 1, ...
m|

T



