
107

Adaptive and Self-Confident On-Line Learning Algorithms

Peter Auer
University of Technology, Graz

Institute for Theoretical Computer Science
Klosterwiesgasse 32/2

A-8010 Graz, AUSTRIA.
pauer@igi.tu-graz.ac.at

Claudio Gentile
DSI, Università di Milano,

Via Comelico 39,
20135 Milano, Italy.
gentile@dsi.unimi.it

Abstract

Most of the performance bounds for on-line learn-
ing algorithms are proven assuming a constant
learning rate. To optimize these bounds, the learn-
ing rate must be tuned based on quantities that are
generally unknown, as they depend on the whole
sequence of examples. In this paper we show that
essentially the same optimized bounds can be ob-
tained when the algorithms adaptively tune their
learning rates as the examples in the sequence are
progressively revealed. Our adaptive learning rates
apply to a wide class of on-line algorithms, includ-
ing p-norm algorithms for generalized linear re-
gression and Weighted Majority for linear regres-
sion with absolute loss.

We emphasize that our adaptive tunings are rad-
ically different from previous techniques, such as
the so-called doubling trick. Whereas the doubling
trick restarts the on-line algorithm several times
using a constant learning rate for each run, our
methods save information by changing the value
of the learning rate very smoothly. In fact, for
Weighted Majority over a finite set of experts our
analysis provides a better leading constant than the
doubling trick.

1 Introduction

In this paper we analyze on-line learning algorithms that tune
their learning rate in an on-line fashion. In this introduc-
tion we will use the (randomized) Weighted Majority algo-
rithm [Lit89, LW94, Vov90, Vov98, CBFH+97] as a moti-
vating example to describe the problem we are interested
in. In the main part of the paper we will apply our tech-
niques to the much more general class ofquasi-additive al-
gorithms [GLS97, KW98b].

1.1 An illustrating example

The Weighted Majority algorithm processes the examples
one at a time in trials. In each trialt the algorithm receives
a binary vectorx

t

2 f�1;+1g

n and is asked to predict
the value of an unknown binary labely

t

2 f�1;+1g as-
sociated withx

t

. The algorithm keeps a weight vectorw
t

representing its current hypothesis. The vectorw

t

is ann-
dimensional probability vector. The algorithm’s prediction
at timet is the linear combination̂y

t

= w

t

� x

t

2 [�1;+1℄.
After receiving the correct labely

t

, the algorithm incurs a
lossl

t

=

1

2

jy

t

� ŷ

t

j 2 [0; 1℄. Finally, the algorithm updates
the weights according to the rule

w

t+1;i

= w

t;i

expf�� jy

t

� x

t;i

jg=W

t

;

where� is thelearning rate andW
t

is the normalizing factor
makingw

t+1

a probability vector. Now, letL
i;T

= jf1 �

t � T : x

t;i

6= y

t

gj be the number of times theith input com-
ponent disagreed withy

t

on a sequence ofT trials (i.e., the
number of “mistakes” of theith component). The analysis
of the Weighted Majority algorithm with fixed� shows that,
up to lower-order terms, the cumulative lossL

T

=

P

T

t=1

l

t

can be upper bounded as

L

T

� (1 + �)L

�

T

+

1+�

�


 lnn;

whereL�
T

= min

1�i�n

L

i;T

and 
 is a suitable positive
constant. To obtain an optimal bound (up to lower-order
terms) the learning rate� has to be chosen with respect to
L

�

T

. For instance, the bound above is optimized by� =

p


(lnn)=L

�

T

which yields

L

T

� L

�

T

+ 2

p

L

�

T


 lnn+ 
 lnn:

Thus, according to the last bound, the loss of the algorithm
is asymptotically the same as the loss of the best fixed com-
ponent, if we disregard lower-order terms. Obviously this
tuning needsa priori knowledge about the optimal number
of mistakesL�

T

, which is usually not available. To solve this
tuning problem, we will use an adaptive learning rate�

t

that
varies over time, depending on the information the algorithm
gains aboutL�

T

during the learning process.

1.2 Incremental update of the learning rate versus the
doubling trick

A standard method to deal with the tuning problem is the
so-called “doubling trick”: An upper boundB on L

�

T

is
assumed and the learning rate is tuned with respect to this
bound as suggested by the previous section, i.e.,� =

p

(
 lnn)=B. We call “round” a sequence of trials where
B is constant. If during the learning process the loss of
the best component exceeds boundB, then this bound is in-
creased, the learning algorithm is restarted, and a new round



108

begins. A sophisticated analysis of the doubling trick for the
Weighted Majority algorithm can be found in [CBFH+97].
We may say that the doubling trick makes an on-line al-
gorithm coarsely adaptive, as the learning rate is constant
within a round and makes big jumps between rounds. How-
ever, a major disadvantage is that the on-line algorithm is
restarted from scratch at the beginning of each round, hence
losing all the information collected during the past rounds.

More disadvantages arise if the learning setting is made
more general. For instance, in generalized linear regression
[KW98b] checking the termination condition for the cur-
rent round might be computationally expensive. Further-
more, it is not clear how the doubling trick could be ap-
plied when the loss on each trial can be arbitrarily large. In
contrast, this paper analyzes on-line learning algorithmsthat
are “incrementally adaptive”, as they modify their learning
rates possibly in each trial, and typically by a small amount.
Via our approach we design on-line algorithms whose per-
formance bounds are in some cases better, and never sig-
nificantly worse, than those proven for the doubling trick.
Moreover, some of our techniques are efficiently applica-
ble to very general learning settings and can even handle
unbounded loss functions. Finally, we expect that our al-
gorithms behave better in practice than those based on the
doubling trick.

As a remark, we note that algorithms with an incre-
mentally adaptive learning rate were also proposed by Vovk
[Vov97] and Azoury and Warmuth [AW99] for the problem
of on-line linear regression with square loss.1 However, their
proof techniques are different from ours and do not seem eas-
ily extendible to more general regression problems.

1.3 The formal learning model

In this section we describe the learning model more precisely
and give our basic notation. Anexample is a pair(x; y),
wherex 2 Rn is called aninstance, andy 2 R is thelabel
associated withx. On-line learning proceeds in trials. In the
t-th trial the on-line algorithm receives an instancex

t

and
is required to give aprediction ŷ

t

about the unknown label
y

t

associated withx
t

. Theny
t

is revealed and the algorithm
incurs a lossL(y

t

; ŷ

t

), measuring the discrepancy between
the prediction̂y

t

and the labely
t

. We call a sequenceS =

((x

1

; y

1

); (x

2

; y

2

); : : : ) of instances and labels processed by
the algorithm in a run atrial sequence.

We adopt a well-established mathematical model to an-
alyze these algorithms. It is a generalization of a learning
model introduced by Littlestone and Warmuth [Lit88, Lit89,
LW94] and Angluin [Ang88]. We are given acomparison
class of predictors and a loss functionL. Broadly speak-
ing, the goal ofA is to learn on the fly the best off-line
predictor in the comparison class for the whole sequence
S. Formally, we measure the performance ofA on S by
the cumulative lossL

A;T

(S) the algorithmA suffers onS:
L

A;T

(S) =

P

T

t=1

L(y

t

; ŷ

t

). We compare this loss to the loss
of the comparison class, i.e., to the loss of the best predictor
in the comparison class for the same trial sequenceS.

This paper focuses on the linear regression problem with
various losses, mainly the square loss and the absolute loss.

1The learning rate in those papers is actually a covariance ma-
trix.

Such problems have been widely investigated in the last
years (see, e.g., Littlestone [Lit89, Lit91], Vovk [Vov90,
Vov97, Vov98, Vov99], Littlestone and Warmuth [LW94],
Cesa-Bianchi et al. [CBFH+97, CBLW96, CB99], Kivinen
and Warmuth [KW97, KW98b], Yamanishi [Yam98], Grove
et al. [GLS97], Gentile and Littlestone [GL99], Azoury and
Warmuth [AW99], and references therein).

In linear regression the learner’s hypothesis at timet is
represented by a weight vectorw

t

2 R

n, and the predic-
tion ŷ

t

is often a function ofw
t

� x

t

. For instance, ifL
is the square lossL(y

t

; ŷ

t

) =

1

2

(y

t

� ŷ

t

)

2 and the predic-
tion is just ŷ

t

= w

t

� x

t

, then we compare the cumula-
tive lossL

A;T

(S) of the algorithm with the least cumulative
square loss that could be incurred by predicting with a fixed
weight vectoru in the comparison class. In particular, set-
tingL

u;T

(S) =

P

T

t=1

L(y

t

;u �x

t

), our goal is to bound the
loss difference (this is also called theregret or relative loss)
L

A;T

(S)�min

u

L

u;T

(S); for an arbitrary trial sequenceS.
In the absolute loss setting we haveL(y

t

; ŷ

t

) =

1

2

jy

t

�

ŷ

t

j. In this paper we only consider the case when the labelsy

t

have range[�1;+1℄. The prediction̂y
t

is a suitable clipping
function ofw

t

�x

t

, whose range is again[�1;+1℄. As a con-
sequence,L(y

t

; ŷ

t

) 2 [0; 1℄. We are still aimed at bounding
the cumulative (absolute) loss ofA, but the way we measure
the performance of the best off-lineumight be different (see
Section 3.1). The casey

t

2 f�1;+1g is of special interest,
since it can be interpreted as a binary classification problem
where the algorithm is allowed to make randomized predic-
tions. The absolute loss1

2

jy

t

� ŷ

t

j is then the probability of
a prediction mistake, i.e., the probability thaty

t

6= ŷ

t

, and
the cumulative loss is just the expected number of mistakes.
For instance, the Weighted Majority algorithm of Section 1.1
can be seen as an algorithm for the following restricted class
of regression problems: the loss function is the absolute loss
L(y

t

; ŷ

t

) =

1

2

jy

t

� ŷ

t

j, the prediction iŝy
t

= w

t

� x

t

, and
the comparison class is the set of then unit vectors.

1.4 Incrementally adaptive on-line learning algorithms

In this section we distinguish two ways how we will tune
the learning rates of the algorithms. The more obvious way
is to set the learning rate�

t

with respect to the loss of the
comparison class observed so far. For the Weighted Majority
algorithm of Section 1.1 this would be�

t

=

p

(
 lnn)=L

�

t

,
whereL�

t

= min

1�i�n

P

t

�=1

1

2

jy

�

� x

�;i

j. In Section 2
we analyze this choice of the learning rate for the Weighted
Majority algorithm.

An alternative way for tuning the learning rate�
t

is to use
the loss of the learning algorithm to calculate�

t

. This is done
under the assumption that the current cumulative loss of the
algorithm closely matches the current cumulative loss of the
comparison class. We call such algorithmsself-confident, as
they “trust themselves” in tuning�

t

. There are two reasons
to use a self-confident tuning instead of a tuning based on
the true current loss of the comparison class. First, as we
said in Section 1.2, the evaluation of the loss of the com-
parison class might be computationally hard: storing all past
examples and resorting to numerical methods might be nec-
essary for loss functions more difficult than the square loss.
Second, the analysis of self-confident algorithms seems to
be much simpler in most cases. In fact, we have been able to



109

analyze the tuning based on the current loss of the compar-
ison class only for the relatively simple Weighted Majority
algorithm. This is done in Section 2. Self-confident learning
algorithms will be analyzed in Sections 3.1 and 3.2.

2 An incrementally adaptive Weighted

Majority algorithm

In this section we present an incrementally adaptive version
of the Weighted Majority algorithm for prediction with ab-
solute loss. To keep the analysis simple, we consider the
randomized classification case. That is, we assume that
x

t;i

; y

t

2 f�1;+1g. However, the main result of this sec-
tion, Theorem 1, holds with minor modifications also for the
regression case, wherex

t;i

; y

t

2 [�1;+1℄. Recall the nota-
tion of Section 1.1. The construction of the algorithm, see
Figure 1, is quite straightforward from the original Weighted

For t = 1; 2; : : : ; T :

1. Calculate the weights as

w

t;i

= �

�L

i;t�1

t

=W

t

;

�

t

= min

(

1

4

;

s

2

lnn

L

�

t�1

)

;

�

t

=

1

1� �

t

;

W

t

=

n

X

i=1

�

�L

i;t�1

t

;

2. Get instancex
t

and predict witĥy
t

= w

t

�x

t

;

3. Get labely
t

and incur loss1
2

jy

t

� ŷ

t

j.

Figure 1: The incrementally adaptive Weighted Majority al-
gorithm

Majority algorithm [Lit89, LW94, Vov90, CBFH+97]. Es-
sentially, the only modification necessary is the introduction
of a varying learning rate. (In this section we found it more
convenient to set�

t

= ln�

t

and focus on the tuning of�
t

.)
There is a subtle point here, though, since the learning rate
is changed also retrospectively: In step 1 of the algorithm
the weightw

t;i

is set proportionally to��Li;t�1

t

, whereas

one might expect that it is set tow
t�1;i

�

�jy

t

�x

t;i

j

t

. Setting

the weight to��Li;t�1

t

actually means that the new learning
rate parameter�

t

is applied to all past trials. This is quite
essential for the analysis. Notice that in Figure 1 we have
L

i;0

= L

�

0

= 0. Thusw
1;i

= 1=n and�
1

= 1=4. For this
algorithm we have the following result.

Theorem 1 Let S = (x

1

; y

1

); (x

2

; y

2

); :::, where (x

t

; y

t

) 2

f�1;+1g

n

� f�1;+1g. Then the adaptive Weighted Ma-
jority algorithm in Figure 1, run on a prefix of S of arbi-
trary length T , achieves the following cumulative absolute

loss bound:

L

T

� L

�

T

+ 2

p

2L

�

T

lnn

+

9

2

(lnn)(ln(1 + L

�

T

)) + 6 lnn+ 1;

where

L

�

T

= min

1�i�n

T

X

t=1

1

2

jy

t

� x

t;i

j: 2

This result improves on results obtained by the doubling trick
[CBFH+97], where it was shown thatL

T

� L

�

T

+(3:3302+

o(1))

p

L

�

T

lnn asT ! 1. Our result givesL
T

� L

�

T

+

(2:83 + o(1))

p

L

�

T

lnn asT !1.

2.1 Analysis of the algorithm

The analysis proceeds in the usual way by bounding the cor-
responding Bregman divergencesd(�; �) (see Section 3). In
the scenario of the Weighted Majority algorithm the compar-
ison class consists of the unit vectorsu

i

, i = 1; : : : ; n, and
the Bregman divergence is just the relative entropy. Thus
d(u

i

;w

t

) = � lnw

t;i

. For the analysis we will bound

lnw

t+1;i

�

t+1

�

t+1

�

lnw

t;i

�

t

�

t

wherei�
t

= argmax

i

w

t;i

is the component with the minimal

number of mistakes so far. SetW 0

t

=

P

n

i=1

�

�L

i;t

t

so that

w

0

t;i

= �

�L

i;t

t

=W

0

t

would be the weights for the next trial if
the learning rate were not changed. We get

lnw

t+1;i

�

t+1

�

t+1

�

lnw

t;i

�

t

�

t

= lnw

t+1;i

�

t+1

�

1

�

t+1

�

1

�

t

�

+

lnw

t+1;i

�

t+1

� lnw

0

t;i

�

t+1

�

t

+

lnw

0

t;i

�

t+1

� lnw

t;i

�

t

�

t

� � lnn

�

1

�

t+1

�

1

�

t

�

+

1

�

t

ln

�

�L

�

t

t+1

W

0

t

�

�L

�

t

t

W

t+1

+

1

�

t

ln

�

�L

�

t

t

�

�L

�

t�1

t

+

1

�

t

ln

W

t

W

0

t

:

(1)

We denote the three logarithmic factors in the right-most side
of (1) as

B

1;t

= ln

�

�L

�

t

t+1

W

0

t

�

�L

�

t

t

W

t+1

; B

2;t

= ln

�

�L

�

t

t

�

�L

�

t�1

t

; B

3;t

= ln

W

t

W

0

t

:

We proceed by lower boundingB
1;t

, B
2;t

andB
3;t

. To
boundB

1;t

we use the following technical lemma whose
proof is given in the appendix.

Lemma 2 For 1 < � � � and any `

1

; : : : ; `

n�1

� 0 it
holds that

ln

 

1 +

P

n�1

i=1

�

�`

i

1 +

P

n�1

i=1

�

�`

i

!

� �(� � �)

ln n

ln�

:



110

Thus

B

1;t

� �(�

t

� �

t+1

)

lnn

ln�

t+1

: 2

We assume that�
t

6= �

t+1

and�
t

< 1=4 (there is at most
one trial with�

t

6= �

t+1

and�
t

= 1=4). ThenL�
t

= L

�

t�1

+

1, and since�
t

as a function ofL�
t�1

is convex we get

�

t

� �

t+1

�

�

�L

�

t�1

�

t

= �

2

t

s

lnn

2(L

�

t�1

)

3

= �

2

t

�

3

t

4 lnn

:

Analogously we get

1

ln�

t+1

�

1

�

t+1

�

1

�

t

+

1

�

2

t

s

lnn

2(L

�

t�1

)

3

=

1

�

t

(1 +

�

2

t

4 lnn

):

Thus

B

1;t

� �

�

2

t

�

2

t

4

(1 +

�

2

t

4 lnn

) � �

�

2

t

4

(1 + 5�

t

)

for trials t with �

t

6= �

t+1

and�
t

< 1=4. For trials with
�

t

= �

t+1

we haveB
1;t

= 0.

For the next bound we useln(1 � �) � �� � �

2

=2� �

3

for � � 1=4:

B

2;t

= ln

�

�L

�

t

t

�

�L

�

t�1

t

� ��

t

(L

�

t

� L

�

t�1

)(1 + �

t

=2 + �

2

t

):

Finally,B
3;t

is bounded in the usual way,

B

3;t

= ln

W

t

W

0

t

= � ln

 

n

X

i=1

w

t;i

�

�jy

t

�x

t;i

j=2

t

!

= � ln

 

1 +

n

X

i=1

w

t;i

�

�

�jy

t

�x

t;i

j=2

t

� 1

�

!

� �

n

X

i=1

w

t;i

�

�

�jy

t

�x

t;i

j=2

t

� 1

�

= �

t

n

X

i=1

w

t;i

jy

t

� x

t;i

j=2

� �

t

jy

t

�

n

X

i=1

w

t;i

x

t;i

j=2

= �

t

(L

t

� L

t�1

):

Using the bounds onB
1;t

,B
2;t

, B
3;t

in (1) and summing for
t = 1; : : : ; T gets

4 lnn �

lnw

T+1;i

T+1

�

T+1

�

lnw

1;1

�

1

� � lnn

�

1

�

T+1

�

1

�

1

�

�1�

X

t:�

t+1

6=�

t

;�

t

<1=4

(1 + 5�

t

)

�

t

4

�L

�

T

�

T

X

t=1

(�

t

=2 + �

2

t

)(L

�

t

� L

�

t�1

)

+L

T

� �L

�

T

+ L

T

�

lnn

�

T+1

+ 4 lnn� 1

�

3

4

X

t:�

t+1

6=�

t

;�

t

<1=4

(�

t

+ 3�

2

t

)

�

X

t:L

�

t+1

6=L

�

t

;�

t

=1=4

(�

t

=2 + �

2

t

)

� �L

�

T

+ L

T

�

q

L

�

T

(lnn)=2 + 4 lnn� 1

�

3

4

Z

L

�

T

32 lnn�1

 

r

2 lnn

L

+

6 lnn

L

!

dL

�32 lnn(

1

8

+

1

16

)

� �L

�

T

+ L

T

�

q

L

�

T

(lnn)=2� 2 lnn� 1

�

3

2

p

2L

�

T

lnn�

9

2

(lnn)(ln(1 + L

�

T

))

� �L

�

T

+ L

T

� 2

q

2L

�

T

(lnn)� 2 lnn� 1

�

9

2

(lnn)(ln(1 + L

�

T

)):

This proves Theorem 1.

3 Quasi-additive learning algorithms

This section describes a general class of algorithms we will
deal with in the remainder of the paper. This class of algo-
rithms was introduced by Grove et al. [GLS97] in the context
of binary classification and also, independently, by Kivinen
and Warmuth [KW98b] in the context of (generalized) lin-
ear regression. These algorithms are calledquasi-additive
in [GLS97] andgeneral additive in [KW98b]. This class
of algorithms covers a wide variety of learning algorithms.
For instance, in the binary classification setting this class in-
cludes Perceptron [Ros62, Blo62, Nov62] and algorithms in
the Winnow family [Lit88, Lit89], such as Weighted Major-
ity; in the regression setting this class includes the Widrow-
Hoff rule [WH60] and algorithms in the EG family [KW97].
The general additive algorithms also include the subfamily
of thep-norm algorithms [GLS97, GL99], which are treated
in Section 3.1.

All these algorithms have the same basic structure. In
the generic trialt the algorithm stores the weight vectorw

t

,



111

lying in a suitable weight space. Combined with the cur-
rent instancex

t

, the vectorw
t

determines the algorithm’s
predictionŷ

t

, which is a function ofw
t

� x

t

. Then, based
on the labely

t

, the algorithm performs the weight update
stepw

t

! w

t+1

. At the core of the weight update lies
the rulew

t+1

= f

�1

(f(w

t

) + �

t

g(y

t

; ŷ

t

)x

t

); wheref is a
smooth bijective mapping from the adopted weight space to
R

n, f

�1 is the inverse off andg is a suitable function of
y

t

andŷ
t

. For instance, in linear regression with square loss
we haveg(y

t

; ŷ

t

) = y

t

� ŷ

t

. The Widrow-Hoff rule is then
obtained whenf is the identity mapping, while the EGU al-
gorithm [KW97] is given by the componentwise logarithm
f(w

t

) = (lnw

t;1

; : : : ; lnw

t;n

).
The standard way to analyze these algorithms (e.g.,

[Lit88, Lit89, LW94, HKW95, AW98, CBLW96, CBFH+97,
GLS97, KW97, Byl97, GW98, AW99, GL99]) is to define a
measure of progress related to the mappingf . The measure
of progress we use here is the so-calledBregman divergence
[Bre67, CL81] associated withf . We denote the divergence
by d

f

(u;w), whereu andw are weight vectors. Informally,
we can defined

f

(u;w) as follows. Assume thatf is the gra-
dient of some convex functionP

f

on a convex weight space.
Thend

f

(u;w) is the difference betweenP
f

(u) and the first-
order Taylor expansion ofP

f

aroundw. (Thus by convex-
ity d

f

(u;w) � 0.) For instance, iff is the identity then
d

f

(u;w) =

1

2

jju�wjj

2

2

, whereas iff is the componentwise
logarithm thend

f

(u;w) is the (unnormalized) relative en-
tropy divergence:d

f

(u;w) =

P

n

i=1

(u

i

ln

u

i

w

i

+w

i

�u

i

). A
further example of Bregman divergence is provided in Sec-
tion 3.1, where we analyze a self-confident version of the
p-norm algorithms. In Section 3.2 we discuss how to extend
this analysis to algorithms in the Winnow-EG family.

3.1 Self-confident p-norm algorithms

This section defines and analyzes our self-confidentp-norm
algoritms. We deal with two linear regression settings: 1)
the square loss setting; 2) the absolute loss setting with
binary labels (i.e., the binary classification problem where
the algorithm makes randomized predictions). Our results
for square loss are easily extended to more general regres-
sion frameworks, such as Helmbold, Kivinen and Warmuth’s
[HKW95, KW98b] generalized linear regression model.

We first need to recall some preliminaries about the dual
norms technology we will be using in this section. Given a
vectorw = (w

1

; : : : ; w

n

) 2 R

n andp � 1 we denote by

jjwjj

p

thep-norm ofw, i.e.,jjwjj
p

= (

P

n

i=1

jw

i

j

p

)

1=p

(also,

jjwjj

1

= lim

p!1

(

P

n

i=1

jw

i

j

p

)

1=p

= max

i

jw

i

j). We say
thatp andq aredual if 1

p

+

1

q

= 1 holds. For example, the
1-norm is dual to the1-norm and the 2-norm is self-dual.
For the rest of this section we assume thatp andq are some
pair of dual values withp � 2.

The p-norm algorithms [GLS97, GL99] are defined in
terms of the following bijective mappingf (a p indexing for
f is understood):f : R

n

! R

n, f = (f

1

; : : : ; f

n

), where

f

i

(w) =

sign(w
i

) jw

i

j

q�1

jjwjj

q�2

q

; w = (w

1

; : : : ; w

n

) 2 R

n

:

(2)

The functionf is just the gradient ofP
f

(w) =

1

2

jjwjj

2

q

. The

inversef

�1 of f is given by [GL99] f�1 : R

n

! R

n,
f

�1

= (f

�1

1

; : : : ; f

�1

n

), where

f

�1

i

(�) =

sign(�
i

) j�

i

j

p�1

jj�jj

p�2

p

; � = (�

1

; : : : ; �

n

) 2 R

n

;

i.e.,f�1 is obtained fromf by replacingq with p. Notice that
if p = 2 thenf is the identity function.

The Bregman divergence associated with the gradient
mappingf given in (2) is

d

f

(u;w) = P

f

(u)� P

f

(w)� (u�w) � f(w); (3)

whereP
f

is as above. Observe that from the strict convexity
of P

f

it follows thatd
f

(u;w) � 0 with equality holding if
and only ifu = w.

The Bregman divergence defined in (3) has also been
used in [GL99]. It is easy to check [GL99] (see also Gor-
don [Go99]) thatd

f

(u;w) can be rewritten as

d

f

(u;w) =

1

2

jjujj

2

q

+

1

2

jjwjj

2

q

� u � f(w): (4)

Also, notice that the special casep = 2 yieldsd
f

(u;w) =

1

2

jju�wjj

2

2

.
The following lemma is a Bregman divergence version of

a classical result about projection operators. This lemma has
also been used in the context of on-line learning by Herbster
and Warmuth [HW98].

Lemma 3 [Bre67, CL81] Let W � R

n be closed and con-
vex, w 2 R

n, and let w0

= argmin

u2W

d

f

(u;w) be the
projectionof w onto W w.r.t. the Bregman divergence d

f

given in (3). Then for any u 2 W the following holds:

d

f

(u;w) � d

f

(u;w

0

) + d

f

(w

0

;w) � d

f

(u;w

0

): 2

In this section we take our comparison class to be the convex
setW

U

= fw 2 R

n

: jjwjj

q

� Ug and we will always be
projecting ontoW

U

. By a simple Kuhn-Tucker analysis it is
not hard to verify that in such a case:w0

= (wU)=jjwjj

q

if
jjwjj

q

> U andw0

= w, otherwise. (This specific projec-
tion occurs in the algorithms of Figures 2 and 3.) We also
have the following lemma, whose proof is in the appendix.

Lemma 4 If u;w 2 W

U

then d
f

(u;w) � 2U

2. 2

Thep-norm algorithms are a versatile on-line learning tool.
It is noticed in [GLS97, GL99] that by varyingp these algo-
rithms can behave in a radically different manner. Consider,
for instance, the case of the square loss. Herep = 2 yields
the Widrow-Hoff rule, whilep = 2 lnn gives rise to an al-
gorithm which is very similar to EG.

We now describe the self-confidentp-norm algorithms
for square loss and absolute loss. Both algorithms are as-
sumed to know2 a boundU on theq-norm of the comparison
vector. This assumption could be removed by applying the
results we mention in Section 3.2.

We observe that, unlike previous on-line regression anal-
yses [KW97, HKW95, KW98b, GL99], our algorithms do

2It is worth noticing that, in order to make a constant learning
rate algorithm achieve bounds of the form of Theorems 8 and 9,
both the norm of the bestu and its loss seem to be a necessary prior
knowledge [KW97, AW98].



112

not have any prior knowledge about the norm of the in-
stances.

The algorithms are given in Figures 2 and 3. In Figure 2
we denote byL

t

the cumulative square loss of the algorithm
up to trial t, i.e.,L

t

=

P

t

i=1

l

i

, wherel
t

=

1

2

(y

t

� ŷ

t

)

2.
In Figure 3 we denote byL

t

the cumulative absolute loss of
the algorithm up to trialt, i.e.,L

t

=

P

t

i=1

l

i

, wherel
t

=

1

2

jy

t

� ŷ

t

j. Also, in both figuresk
t

= (p� 1)X

2

t

U

2, where
X

t

= max

i : i�t; l

i

>0

jjx

i

jj

p

.

Initialization: Initial weight vectorw
1

2 W

U

;
For t = 1; 2; : : : ; T :

� Get instancex
t

2 R

n;

� Predict with ŷ

t

= w

t

� x

t

;

� Get label y
t

2 R;

Incur loss l
t

=

1

2

(y

t

� ŷ

t

)

2;

� If l

t

> 0 then update weights as follows:

w

m

t

= f

�1

(f(w

t

) + �

t

(y

t

� ŷ

t

)x

t

);

w

t+1

=

(

w

m

t

if jjwm

t

jj

q

� U;

w

m

t

U

jjw

m

t

jj

q

otherwise,

where

�

t

=




t

1 + 


t

1

(p� 1)X

2

t

;




t

=

p

k

t

p

k

t

+ L

t

�

p

k

t

;

k

t

= (p� 1)X

2

t

U

2

;

X

t

= max

i : i�t; l

i

>0

jjx

i

jj

p

:

Figure 2: The self-confidentp-norm algorithm for square
loss.

The algorithms maintain ann-dimensional weight vec-
tor. They start fromw

1

2 W

U

, and in the generic trialt they
are required to predict the unknown labely

t

associated with
the instancex

t

. The square loss algorithm predicts the label
y

t

2 R through the linear combination̂y
t

= w

t

� x

t

, while
the absolute loss algorithm predicts the labely

t

2 f�1;+1g

through the clipped linear combination̂y
t

= �




t

(w

t

� x

t

),
as specified in Figure 3. Notice that the knot


t

of the clip-
ping function�




t

tends to get close to 1 as the cumulative
absolute lossL

t

grows. When the labely
t

is received, the
algorithms incur a lossl

t

. As we already said, this loss is the
square loss for the algorithm in Figure 2 and the absolute loss
for the algorithm in Figure 3. Finally, the algorithms update
their weights as indicated. In both figures the update has two
steps. The first step computeswm

t

by the conventional up-
date of thep-norm algorithms, as in [GL99]. The second step
computesw

t+1

by projectingwm

t

ontoW
U

w.r.t. d
f

. Notice
that the algorithms do not update their weights ifl

t

= 0.3

3The algorithms do not update also in the degenerate case that
x

t

= 0.

Initialization: Initial weight vectorw
1

2 W

U

.
For t = 1; 2; : : : ; T :

� Get instancex
t

2 R

n;

� let

�

t

=

s

k

t

=4

k

t

=4 + L

t�1

+ 1

;

k

t

= (p� 1)X

2

t

U

2

;

X

t

= max

i : i�t; l

i

>0

jjx

i

jj

p

;




t

= 1� �

t

;

� Predict withŷ
t

= �




t

(w

t

� x

t

)

=

8

>

<

>

:

1 if w
t

� x

t

� 


t

;

w

t

�x

t




t

if w
t

� x

t

2 (�


t

; 


t

);

�1 if w
t

� x

t

� �


t

;

� Get label y
t

2 f�1;+1g;

Incur loss l
t

=

1

2

jy

t

� ŷ

t

j;

� If l

t

> 0 then update weights as follows:

w

m

t

= f

�1

(f(w

t

) + �

t

y

t

x

t

);

w

t+1

=

(

w

m

t

if jjwm

t

jj

q

� U;

w

m

t

U

jjw

m

t

jj

q

otherwise,

where�
t

=

2�

t

(p�1)X

2

t

:

Figure 3: The self-confidentp-norm algorithm for absolute
loss and binary labels.

We need the following three technical lemmas. The first
lemma is taken from [GL99], but it essentially follows from
a combination of [KW97] and [GLS97]. The second lemma
appears in various forms in [JW98, KW98b, GW98, GL99].
The third lemma is a simple technical tool for our self-
confident analysis. Its proof is given in the appendix.

Lemma 5 Let u;w
t

2 R

n, x
t

2 R

n, with jjx
t

jj

p

� X

t

,

and set wm

t

= f

�1

(f(w

t

) + �

t

(y

t

� ŷ

t

)x

t

), with �

t

=




t

(1+


t

)(p�1)X

2

t

, 

t

� 0, X
t

> 0 and y

t

; ŷ

t

2 R. Then the

following inequality holds: 4




t

1 + 


t

1

2

(y

t

� ŷ

t

)

2

� 


t

1

2

(y

t

� u � x

t

)

2

� (p� 1)X

2

t

(d

f

(u;w

t

)� d

f

(u;w

m

t

)): 2

Lemma 6 Let u;w
t

;x

t

2 R

n, �
t

> 0 and set wm

t

=

f

�1

(f(w

t

) + �

t

y

t

x

t

). Then the following equality holds:

y

t

(u � x

t

�w

t

� x

t

)

=

1

�

t

(d

f

(u;w

t

)� d

f

(u;w

m

t

) + d

f

(w

t

;w

m

t

)) : 2

4In the degenerate case thatX

t

= 0we havewm

t

= w

t

. In such
a case�

t

is not defined, but the inequality of the lemma trivially
holds true for any


t

� 0.



113

Lemma 7 Let l
1

, l
2

, : : : , l
T

and Æ be nonnegative real num-
bers. Then

T

X

t=1

l

t

q

Æ +

P

t

i=1

l

i

� 2

0

�

v

u

u

t

Æ +

T

X

i=1

l

t

�

p

Æ

1

A

;

where 0

p

0

= 0. 2

The bounds of Theorems 8 and 9 below have the same
form of those proven for algorithms whose constant learn-
ing rate has been optimized in terms of the total loss of the
comparison class (e.g., [KW97, KW98b, AW98]). We did
not optimize the constants in our proofs. Notice that the
bound for the absolute loss algorithm is in terms of thede-
viation D(u; (x

t

; y

t

)) of a linear threshold classifieru with
threshold 0 on example(x

t

; y

t

), defined asD(u; (x

t

; y

t

)) =

maxf0; 1 � y

t

u � x

t

g: The quantity1
2

D(u; (x

t

; y

t

)) is re-
lated to a “loss” ofu on example(x

t

; y

t

). For instance,
if u is thei-th unit vector andx

t

2 [�1;+1℄

n, we obtain
the finite expert framework considered in [CBFH+97]. Here
the t-th prediction of thei-th expert isx

t;i

= u � x

t

, and
1

2

D(u; (x

t

; y

t

)) =

1

2

jy

t

� x

t;i

j 2 [0; 1℄ is exactly the abso-
lute loss suffered by thei-th expert in thet-th trial. As an-
other example, ifu andx

t

aren-dimensionalf0; 1g-vectors
then 1

2

D(u; (x

t

; y

t

)) corresponds to the so-called attribute
error [Lit91] ofu on (x

t

; y

t

). This quantity counts the min-
imal number of components ofx

t

that need to be flipped to
makeu classify(x

t

; y

t

) correctly.

Theorem 8 Let W
U

= fw 2 R

n

: jjwjj

q

� Ug and S =

(x

1

; y

1

); (x

2

; y

2

); : : : , where (x

t

; y

t

) 2 R

n

�R. Then for
any u 2 W

U

the regression algorithm in Figure 2, run on
a prefix of S of arbitrary length T , achieves the following
cumulative square loss bound:

L

T

� L

u;T

+ 4 k

T

+ 4

q

k

T

L

u;T

+ k

2

T

;

where

L

u;T

=

T

X

t=1

l

u;t

and l

u;t

=

1

2

(y

t

� u � x

t

)

2.

Proof. We notice that Lemma 5 applies. We can write



t

1 + 


t

l

t

� 


t

l

u;t

� (p� 1)X

2

t

(d

f

(u;w

t

)� d

f

(u;w

m

t

)):

We divide by

t

and apply Lemma 3. This lemma allows us
to lower boundd

f

(u;w

m

t

) by d
f

(u;w

t+1

). We obtain

1

1 + 


t

l

t

� l

u;t

�

(p� 1)X

2

t




t

(d

f

(u;w

t

)� d

f

(u;w

t+1

)) :

(5)

We need to upper bound the RHS of (5). For this purpose,
we first claim that the following inequalities hold:

X

2

t+1




t+1

�

X

2

t




t

; t = 1; : : : ; T: (6)

To prove this claim, we define the functiong(x; L) =

x

�

p

x

2

+ L� x

�

. Computing its first derivatives, it is easy

to see thatg(x; L) is nondecreasing inx � 0 for anyL � 0

and nondecreasing inL � 0 for anyx � 0. Now simple
algebra gives

X

2

t+1




t+1

= g

�

X

t+1

;

L

t+1

(p� 1)U

2

�

� g

�

X

t

;

L

t

(p� 1)U

2

�

=

X

2

t




t

;

thereby proving (6).
Therefore the RHS of (5) can be bounded as follows.

X

2

t




t

(d

f

(u;w

t

)� d

f

(u;w

t+1

))

=

X

2

t




t

d

f

(u;w

t

)�

X

2

t+1




t+1

d

f

(u;w

t+1

)

+ d

f

(u;w

t+1

)

�

X

2

t+1




t+1

�

X

2

t




t

�

�

X

2

t




t

d

f

(u;w

t

)�

X

2

t+1




t+1

d

f

(u;w

t+1

)

+ 2U

2

�

X

2

t+1




t+1

�

X

2

t




t

�

;

where in the inequality we applied (6) and Lemma 4.
Plugging back into (5) and summing overt = 1; : : : ; T

gives
T

X

t=1

�

1�




t

1 + 


t

�

l

t

� L

u;T

�

(p� 1)X

2

1




1

d

f

(u;w

1

)�

(p� 1)X

2

T+1




T+1

d

f

(u;w

T+1

)

+ 2

�

k

T+1




T+1

�

k

1




1

�

:

Sinced
f

(u;w

T+1

) � 0 andd
f

(u;w

1

) � 2U

2 this implies

L

T

�

T

X

t=1




t

1 + 


t

l

t

� L

u;T

+

2 k

T




T

; (7)

where we set

T+1

= 


T

andX
T+1

= X

T

(so that (6) is not
violated andk

T+1

= k

T

).
Since




t

1 + 


t

=

r

k

t

k

t

+ L

t

�

r

k

T

k

T

+ L

t

;

we can apply Lemma 7 to the second term of the LHS of (7),
along with the bound on


t

1+


t

just given. We also substitute

the value

T

=

p

k

T

p

k

T

+L

T

�

p

k

T

into the RHS. This results in

L

T

� 2

p

k

T

�

p

k

T

+ L

T

�

p

k

T

�

� L

u;T

+ 2

p

k

T

�

p

k

T

+ L

T

�

p

k

T

�

:

Simplifying and rearranging gets

k

T

+ L

T

� 4

p

k

T

p

k

T

+ L

T

+ L

u;T

� 3 k

T

:

We solve forL
T

+ k

T

and simplify. The larger of the roots
of the equation obtained by using “=” instead of “�” gives
the desired bound.2



114

Theorem 9 Let W
U

= fw 2 R

n

: jjwjj

q

� Ug and S =

(x

1

; y

1

); (x

2

; y

2

); : : : , where (x

t

; y

t

) 2 R

n

� f�1;+1g.
Then for any u 2 W

U

the algorithm in Figure 3, run on
a prefix of S of arbitrary length T , achieves the following
cumulative absolute loss bound:

L

T

�

1

2

D

u;T

+O

�

k

T

+

p

k

T

D

u;T

�

;

where

D

u;T

=

T

X

t=1; l

t

>0

D

u;t

and D
u;t

= D(u; (x

t

; y

t

)).

Proof. We denote byM the set of trials where the algorithm
incurs a nonzero loss. Let us focus on a single trialt 2 M

and letwm

t

be as in Figure 3. We apply Lemma 6 and up-
per bound the last termd

f

(w

t

;w

m

t

) as in [GLS97, GL99]:

d

f

(w

t

;w

m

t

) �

�

2

t

2

(p� 1)X

2

t

. This yields

y

t

(u � x

t

�w

t

� x

t

)

�

1

�

t

(d

f

(u;w

t

)� d

f

(u;w

m

t

) +

�

2

t

2

(p� 1)X

2

t

):

Next, we exploit the definition ofD(u; (x

t

; y

t

)), from which
it follows that y

t

u � x

t

� 1 � D(u; (x

t

; y

t

)). Then, by
Lemma 3, we lower boundd

f

(u;w

m

t

) throughd
f

(u;w

t+1

)

and rearrange:

1� y

t

w

t

� x

t

�

�

t

2

(p� 1)X

2

t

� D

u;t

+

1

�

t

(d

f

(u;w

t

)� d

f

(u;w

t+1

)) :

Next, we claim that for any trialt such thatl
t

> 0 the LHS
of the last inequality is at least2


t

l

t

, where

t

= 1 � �

t

.
This would give us the one-trial loss bound

2


t

l

t

� D

u;t

+

1

�

t

(d

f

(u;w

t

)� d

f

(u;w

t+1

)) ; (8)

holding for anyt such thatl
t

> 0 and anyu 2 W

U

. We
prove this claim by a case analysis overy

t

= �1; +1. We
work out the details only fory

t

= �1, the other case being
similar. If y

t

= �1 thenl
t

=

1

2

(1 + ŷ

t

). Hence it suffices to
prove that for anyr > �


t

we have

1 + r �

�

t

2

(p� 1)X

2

t

� 


t

(1 + �




t

(r)): (9)

(The caser � �

t

is not our concern, as this would getl

t

=

0.) We split into two subcases:r � 


t

and�

t

< r < 


t

.
If r � 


t

then the RHS of (9) is2

t

, since�



t

(r) = 1. On
the other hand, recalling the value of�

t

in Figure 3, the LHS
of (9) is at least1 + 


t

� �

t

= 2


t

. If �

t

< r < 


t

then
�




t

(r) = r=


t

. It is easy to see that in this case both sides of
(9) are equal to


t

+ r. This concludes the proof of (8).

The RHS of (8) is upper bounded as follows.
1

�

t

(d

f

(u;w

t

)� d

f

(u;w

t+1

))

=

(p� 1)X

2

t

2�

t

(d

f

(u;w

t

)� d

f

(u;w

t+1

))

=

p� 1

2

 

X

2

t

�

t

d

f

(u;w

t

)�

X

2

t+1

�

t+1

d

f

(u;w

t+1

)

+ d

f

(u;w

t+1

)

�

X

2

t+1

�

t+1

�

X

2

t

�

t

�

!

�

p� 1

2

 

X

2

t

�

t

d

f

(u;w

t

)�

X

2

t+1

�

t+1

d

f

(u;w

t+1

)

+ 2U

2

�

X

2

t+1

�

t+1

�

X

2

t

�

t

�

!

;

where the last inequality follows from Lemma 4 and the fact
(straightforward to check) that

X

2

t+1

�

t+1

�

X

2

t

�

t

; t = 1; : : : ; T: (10)

We plug this back into (8), sum over allt 2 M, drop the
nonnegative term involvingd

f

(u;w

T+1

), divide by 2 and
rearrange. We obtain

L

T

�

T

X

t=1

�

t

l

t

�

D

u;T

2

+

p� 1

4

 

X

2

1

�

1

d

f

(u;w

1

)

+ 2U

2

�

X

2

T+1

�

T+1

�

X

2

1

�

1

�

!

=

D

u;T

2

+

k

T+1

2�

T+1

�

A

�

1

; (11)

where we have set

A =

1

2

k

1

�

(p� 1)X

2

1

d

f

(u;w

1

)

4

:

We now handle (11) as follows. We setX

T+1

= X

T

, so that

(10) is not violated and�
T+1

=

q

k

T

=4

k

T

=4+L

t

+1

. Next, since

A � 0 (Lemma 4) and�
1

� 1, we upper boundA
�

1

by A.
Finally, we upper bound�

t

in the left-most side of (11) by
q

k

T

=4

k

T

=4+L

t

and then apply Lemma 7 with the bound on�
t

just given. This leads to

L

T

�

p

k

T

�

p

k

T

=4 + L

T

�

1

2

p

k

T

�

�

D

u;T

2

+

p

k

T

p

k

T

=4 + L

T

+ 1�A:

By virtue of the inequality
p

1 + x �

p

x+

1

2

p

x

, x � 0, the
second term of the RHS is bounded from above by

p

k

T

 

p

k

T

=4 + L

T

+

1

2

p

k

T

=4 + L

T

!

�

p

k

T

p

k

T

=4 + L

T

+ 1:



115

Simple algebra then gives

k

T

=4+L

T

�

D

u;T

2

+2

p

k

T

p

k

T

=4 + L

T

�k

T

=4+1�A:

We solve forL
T

+ k

T

=4 and simplify. Again, we compute
the larger of the roots of the equation obtained by using “=”
instead of “�”. This gives the bound of the theorem.2

These two results have some interesting properties. The
dual norms quantityk

T

is a function of the normp. This
affects the dependence of thep-norm algorithm on the di-
mensionn of the input space. Recall thatjjx

t

jj

p

� X for
all t implies thatk

T

� (p � 1)X

2

U

2. For instance, if
p = 2 lnn [GL99] then5

k

T

< 2 e lnnU

2

1

X

2

1

, whereU
1

is an upper bound on the 1-norm ofu andX
1

is an upper
bound on the1-norm of the instances. In the expert case we
haveU

1

= X

1

= 1. Thusp = 2 lnn yieldsk
T

< 2e lnn.
This gives rise to a loss bound which is similar to the one we
have proven in Section 2 for the adaptive Weighted Majority
algorithm. (The constants hidden in the bound of Theorem 9
are actually slightly larger.)

3.2 Self-confident Winnow-EG-like algorithms

From the proofs of Theorems 8 and 9 the reader can see that
our technique applies to a generic quasi-additive algorithm
with mappingf , as long as we can both: find a constant upper
bound6 on the divergence termsd

f

(u;w

t+1

), and show a
one-trial loss bound of the form

(1� �) l

t

� l

u;t

�




�

(d

f

(u;w

t

)� d

f

(u;w

t+1

));

wherel
t

is the loss of the algorithm in trialt, l
u;t

is the loss
of the generic off-line predictoru in trial t, � 2 (0; 1) is a
constant proportional to� and
 > 0.

Consider applying this proof technique to algorithms
in the Winnow-EG family [Lit88, Lit89, KW97], such as
Weighted Majority. The measure of progress typically as-
sociated with these algorithms is a relative entropy-like di-
vergence. Proving the required one-trial loss bound is quite
standard. Rather, the difficulty here stems from the fact that
the relative entropy is hardly upper bounded, unless we in-
troduce a lower bound constraint on the weights of the al-
gorithm. Via this proof technique, it is nevertheless possible
to prove self-confident bounds for these algorithms. These
bounds, however, have larger lower-order terms then those
of the corresponding self-confidentp-norm bounds in Theo-
rems 8 and 9.

On the other hand, algorithms like Weighted Majority
can be used in frameworks where thep-norm algorithms are
harder to apply. As a relevant example, both the standard
analysis [LW94, Vov98] and our self-confident analysis for
Weighted Majority still hold when the dimension of the input
space (the number of experts) is countably infinite. This is
an interesting setting, since it can clearly formalize an on-
line model selection problem with countably many models.
(For instance, this can be used back in Section 3.1 to find a
good value for the parameterU when we ignore a bound on
the norm of the comparison vector.)

5Heree is the base of natural logarithms.
6In the case of thep-norm algorithms this is achieved through

Lemma 4.

4 Conclusions and ongoing research

We have studied on-line learning algorithms with an incre-
mentally adaptive learning rate. We have provided the first
analysis of an adaptive Weighted Majority in the finite expert
framework to date. This result compares favourably with
previous bounds for Weighted Majority based on doubling
strategies. For more general regression tasks we sketched a
versatile and general technique to turn a constant learning
rate algorithm into a variable learning rate algorithm, called
self-confident algorithm. We focused on the analysis of self-
confidentp-norm algorithms proving regret bounds that are
easily generalizable to a wide range of convex losses.

As pointed out before, our analysis yields suboptimal re-
sults when applied to Winnow-EG-like algorithms, and we
are currently investigating the extent to which this problem
could be fixed. Further ongoing research concerns the ap-
plication of our techniques to settings more general than
the one studied here, e.g., the so-called shifting target set-
ting [HW98, AW98, HW98].

Finally, we are performing experiments applying our
variable learning rate algorithms to the problem of hand-
written digit recognition. The preliminary results we have
obtained so far are very encouraging. We are reporting on
them in [G00].

Acknowledgments
Claudio Gentile is supported by a post-doctoral fellowship
from Università degli Studi di Milano and by MURST,
Cofin99 (Project: Stochastic Processes with Spatial Struc-
ture). Both authors acknowledge partial support of ESPRIT
Working Group EP 27150, Neural and Computational Learn-
ing II (NeuroCOLT II).

References

[Ang88] Angluin, D. Queries and concept learning,Ma-
chine Learning, 2(4): 319-342, 1988.

[AW98] P. Auer and M. K. Warmuth. Tracking the best
disjunction. Machine Learning, 32(2): 127–
150, August 1998. Special issue on concept
drift.

[AW99] K. Azoury and M. K. Warmuth. Relative loss
bounds for on-line density estimation with the
exponential family of distributions”. InProc.
Uncertainty in Artificial Intelligence, 1999.

[Blo62] H. D. Block. The perceptron: A model for
brain functioning.Reviews of Modern Physics,
34:123–135, 1962. Reprinted in Neurocomput-
ing by Anderson and Rosenfeld.

[Bre67] L.M. Bregman. The relaxation method of find-
ing the common point of convex sets and its ap-
plication to the solution of problems in convex
programming. USSR Computational Mathe-
matics and Physics, 7:200–217, 1967.

[Byl97] T. Bylander. The binary exponentiated gradi-
ent algorithm for learning linear functions. In
Proc. 8th Annu. Conf. on Comput. Learning
Theory, pages 184–192. ACM, 1997.

[CBFH+97] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P.
Helmbold, R. E. Schapire, and M. K. Warmuth.



116

How to use expert advice.Journal of the ACM,
44(3):427–485, 1997.

[CBLW96] N. Cesa-Bianchi and P. Long and M. K. War-
muth, Worst-case quadratic loss bounds for on-
line prediction of linear functions by gradi-
ent descent,IEEE Transactions on Neural Net-
works, 7:604–619, 1996.

[CB99] N. Cesa-Bianchi. Analysis of two gradient-
based algorithms for on-line regression,Jour-
nal of Computer and System Sciences, 59 (3):
392–411, 1999.

[CL81] Y. Censor and A. Lent. An iterative row-
action method for interval convex program-
ming. Journal of Optimization Theory and Ap-
plications, 34(3):321–353, July 1981.

[GW98] C. Gentile, and M. K. Warmuth. Linear hinge
loss and average margin. InM. S. Kearns, S.
A. Solla, and D. A. Cohn, editors, Advances
in Neural Information Processing Systems 11,
MIT Press, Cambridge, MA, 1999, pages 225–
231.

[GL99] C. Gentile, and N. Littlestone. The robustness
of thep-norm algorithms. InProc. 12th Annu.
Conf. on Comput. Learning Theory, pages 1–
11.

[G00] C. Gentile. Approximate maximal margin clas-
sification with respect to an arbitrary norm.
Manuscript, May, 2000.

[Go99] G. J. Gordon. Regret bounds for prediction
problems. InProc. 12th Annu. Conf. on Com-
put. Learning Theory, pages 29–40. ACM,
1999.

[GLS97] A. J. Grove, N. Littlestone, and D. Schuur-
mans. General convergence results for lin-
ear discriminant updates. InProc. 10th Annu.
Conf. on Comput. Learning Theory, pages
171–183. ACM, 1997.

[HKW95] D. P. Helmbold, J. Kivinen, and M. K. War-
muth. Worst-case loss bounds for sigmoided
linear neurons.IEEE Transactions on Neural
Networks, 10(6): 1291–1304, November 1999.

[HW98] M. Herbster, and M. K. Warmuth. Tracking the
best expert. Machine Learning, 32(2): 151–
178, August 1998. Special issue on concept
drift.

[HW98] M. Herbster and M. K. Warmuth. Tracking the
best regressor. InProc. 11th Annu. Conf. on
Comput. Learning Theory, pages 24–31. ACM,
1998.

[JW98] A. Jagota and M. K. Warmuth. Continu-
ous and discrete time nonlinear gradient de-
scent: relative loss bounds and convergence.
In R. Greiner E. Boros, editor,Electronic
Proceedings of Fifth International Sympo-
sium on Artificial Intelligence and Mathemat-
ics. Electronic,http://rutcor.rutgers.edu/~amai,
1998.

[KW97] J. Kivinen and M. K. Warmuth. Additive
versus exponentiated gradient updates for lin-
ear prediction.Information and Computation,

132(1):1–64, January 1997.
[KW98b] J. Kivinen and M. K. Warmuth. Relative loss

bounds for multidimensional regression prob-
lems. InM. I. Jordan, M. J. Kearns, and S. A.
Solla, editors, Advances in Neural Information
Processing Systems 10 (NIPS*97), pages 287–
293. MIT Press, Cambridge, MA, 1998. To
appear inMachine Learning.

[Lit88] N. Littlestone. Learning quickly when irrele-
vant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2:285–318,
1988.

[Lit89] N. Littlestone. Mistake Bounds and Loga-
rithmic Linear-threshold Learning Algorithms.
PhD thesis, TR UCSC-CRL-89-11, University
of California Santa Cruz, 1989.

[Lit91] N. Littlestone. Redundant noisy attributes, at-
tribute errors, and linear threshold learning us-
ing Winnow. In Proc. 4th Annu. Workshop
on Comput. Learning Theory, pages 147–156,
San Mateo, CA, 1991. Morgan Kaufmann.

[LW94] N. Littlestone and M. K. Warmuth. The
weighted majority algorithm.Information and
Computation, 108(2):212–261, 1994.

[Nov62] A. B. J. Novikov. On convergence proofs on
perceptrons. InProc. of the Symposium on
the Mathematical Theory of Automata, vol. XII,
pages 615–622, 1962.

[Ros62] F. Rosenblatt.Principles of neurodynamics:
Perceptrons and the theory of brain mech-
anisms. Spartan Books, Washington, D.C.,
1962.

[Vov90] V. Vovk. Aggregating strategies. InProc. 3rd
Annu. Workshop on Comput. Learning Theory,
pages 371–383. Morgan Kaufmann, 1990.

[Vov97] V. Vovk, Competitive on-line linear re-
gression, TR, Royal Holloway, Univer-
sity of London, CSD-TR-97-13, 1997,
http://www.cs.rhbnc.ac.uk/research/compint
/areas/complearn/aa/nips.ps. Preliminary
version inM. I. Jordan, M. J. Kearns, and S. A.
Solla, editors, Advances in Neural Information
Processing Systems 10 (NIPS*97), pages
364–370. MIT Press, Cambridge, MA, 1998.

[Vov98] V. Vovk. A game of prediction with expert ad-
vice. Journal of Computer and System Sci-
ences, 56(2):153–173, 1998.

[Vov99] V. Vovk, Derandomizing stochastic prediction
strategies.Machine Learning, 35(3): 247-282,
June 1999.

[WH60] B. Widrow and M. E. Hoff, Adaptive switching
circuits. In1960 IRE WESCON Conv. Record,
Part 4, pages 96–104, 1960.

[Yam98] K. Yamanishi, A decision-theoretic exten-
sion of stochastic complexity and its applica-
tions to learning. IEEE Information Theory,
44(4):1424–1439, 1998.



117

A Appendix

This appendix contains the proofs of Lemmas 2, 4 and 7.

Proof of Lemma 2
First we show by induction that

1 +

P

n�1

i=1

�

�`

i

1 +

P

n�1

i=1

�

�`

i

=

1 + (n� 1)�

�`

1 + (n� 1)�

�`

(12)

for somè � 0. Assume that we have

1 +

P

n�1

i=1

�

�`

i

1 +

P

n�1

i=1

�

�`

i

=

1 + (k � 1)�

�`

+

P

n�1

i=k

�

�`

i

1 + (k � 1)�

�`

+

P

n�1

i=k

�

�`

i

for somek � 1 and` � 0. Now we prove that there is an
`

0

� 0 such that

1 + (k � 1)�

�`

+

P

n�1

i=k

�

�`

i

1 + (k � 1)�

�`

+

P

n�1

i=k

�

�`

i

=

1 + k�

�`

0

+

P

n�1

i=k+1

�

�`

i

1 + k�

�`

0

+

P

n�1

i=k+1

�

�`

i

: (13)

We set

f(�

1

; �

2

) =

1 + (k � 1)�

��

1

+ �

��

2

+

P

n�1

i=k+1

�

�`

i

1 + (k � 1)�

��

1

+ �

��

2

+

P

n�1

i=k+1

�

�`

i

and find by a simple calculation that

f(`; `

k

)� f(`

k

; `

k

)

f(`; `

k

)� f(`; `)

= �(k � 1)

1 + k�

�`

+

P

n�1

i=k+1

�

�`

i

1 + k�

�`

k

+

P

n�1

i=k+1

�

�`

i

:

Thusf(`; `
k

)�f(`

k

; `

k

) andf(`; `
k

)�f(`; `) have different
sign. Then, sincef is a continuous function, there is an`0

betweeǹ and`
k

such thatf(`; `
k

) � f(`

0

; `

0

) = 0. This
gives (13) and by induction (12).

We proceed with the proof of Lemma 2 by upper bound-

ing ln

�

1+(n�1)�

�`

1+(n�1)�

�`

�

. Since this term is increasing in� and

ln(�) is a monotone and concave function we get

ln

�

1 + (n� 1)�

�`

1 + (n� 1)�

�`

�

� (� � �)

�

��

ln

�

1 + (n� 1)�

�`

1 + (n� 1)�

�`

�

�

�

�

�

�=�

= (� � �)

(n� 1)`�

�`�1

1 + (n� 1)�

�`

� (� � �)

(n� 1)`�

�`

1 + (n� 1)�

�`

:

In the following we use the fact that`��` is maximal when
` = 1= ln�, is increasing iǹ for smaller̀ , and is decreasing
in ` for larger`. Assume that̀ � lnn

ln�

. Then forn > 2 we
have` � 1= ln� and

(n� 1)`�

�`

1 + (n� 1)�

�`

�

lnn

ln�

:

Forn = 2 we get

(n� 1)`�

�`

1 + (n� 1)�

�`

�

1

(e+ 1) ln�

�

ln 2

ln�

:

Now assumè � lnn

ln�

. Then

(n� 1)`�

�`

1 + (n� 1)�

�`

� ` �

lnn

ln�

:

This completes the proof of the lemma.2

Proof of Lemma 4
The assertion follows from (4) and Holder’s inequality
on the termu � f(w), for u � f(w) � jjujj

q

jjf(w)jj

p

=

jjujj

q

jjwjj

q

� U

2, where the equality uses the fact that
jjf(w)jj

p

= jjwjj

q

(see Lemma 1, part 3 in [GL99]).2

Proof of Lemma 7
Let l

0

= Æ andL
t

=

P

t

i=0

l

i

, t = 0; : : : ; T . In the inequal-
ity 1

2

x � 1�

p

1� x; x � 1, setx =

l

t

L

t

and then multiply
both terms of the resulting inequality by

p

L

t

. This yields

1

2

l

t

p

L

t

�

p

L

t

�

p

L

t�1

:

The claim is then obtained by summing overt = 1; : : : ; T .
2


