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Abstract

We introduce an abstract model of exact learn-
ing via queries that can be instantiated to all the
query learning models currently in use, while be-
ing closer to them than previous unifying attempts.
We present a characterization of those Boolean
function classes learnable in this abstract model,
in terms of a new combinatorial notion that we
introduce, the abstract identification dimension.
Then we prove that the particularization of our no-
tion to specific known protocols such as equiva-
lence, membership, and membership and equiv-
alence queries results in exactly the same com-
binatorial notions currently known to character-
ize learning in these models, such as strong con-
sistency dimension, extended teaching dimension,
and certificate size. Our theory thus fully unifies
all these characterizations. For models enjoying a
specific property that we identify, the notion can
be simplified while keeping the same characteri-
zations. From our results we can derive combina-
torial characterizations of all those other models
for query learning proposed in the literature. We
can also obtain the first polynomial-query learning
algorithms for specific interesting problems such
as learning DNF with proper subset and superset
queries.

Introduction

and the next. If this is not the case, then we do not need
to dedicate any extra effort to obtain a polynomial time al-
gorithm. There have been various ways of addressing this
problem for different types of queries [15, 16, 2, 8,9, 12, 14
3,4, 11, 5]. However, none of them obtained a uniform com-
binatorial characterization, applicable to all query ieag
protocols, of the number of queries needed to learn, in a sim-
ilar way to the Vapnik-Chervonenkis dimension in the PAC
learning model. This paper presents a dimension that can be
seen as the VCdim brother for the exact learning setting.

We now explain the chain of results that led to the present
paper. A combinatorial notion, called approximate finger-
prints, turned out to characterize precisely those concept
classes that can be learned from polynomially many equiv-
alence queries of polynomial size [2, 8]. The essential in-
tuition behind that fact is that the existence of queries tha
shrink the number of possibilities for the target concept by
an inverse polynomial factor is not only clearly sufficient,
but also necessary to learn: if no such queries are available
then adversaries can be designed that force any learner to
spend too many queries in order to identify the target. This
intuition can be fully formalized along the lines of the cite
works; the formalization can be found in [11].

Hellerstein et al. [14] (see also Hegedis [12]) gave
a beautiful characterization of the learnability of a repre
sentation class from membership and equivalence queries.
They introduced the notion of polynomial certificates for a
representation clask and proved thaRR is polynomially
learnable from equivalence and membership queries iff it
has polynomial size certificates. They also prove that, for
projection-closed classes, the teaching dimension inted
previously by Goldman and Kearns [9] characterizes learn-

The main models of exact learning via queries were intro- ability from membership queries. By broadening the notion
duced by Angluin [1]. In these models, the learning algo- into the extended teaching dimension, sort of a maximum be-
rithm obtains information about the target concept asking tween teaching dimension and certificate size, Hegedis [12
queries to a teacher or expert. The algorithm has to outputcharacterizes learnability from membership queries witho
an exact representation of the target concept in polynomialthe projection-closed condition.
time. In [5], a quantitative analysis of certificates is presented
A main issue in exact learning is to decide whether a yielding the consistency dimension (or certificate size)j a
class is learnable with a polynomial number of queries re- gbtaining a precise characterization in such terms of the
gardless of the computation time needed between one queryumber of queries needed to learn. A related notion, the

" *Work supported in part by the EC through the Esprit Program strong consistency dimension, is introduced and proved to

EU BRA program under project 20244 (ALCOM-IT), the EC characterlz_e Ie_arnlng from just e_quwalence queries, in a
Working Group EP27150 (NeuroColt Il) and the spanish PB98- manner quite different (and also simpler to handle) than the
0937-C04-04. Part of this work was done while the first author approximate fingerprints.

visited CRM. Here we move into a somewhat more abstract frame-
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work, and prove that all three concepts, strong consistencyqueries that give this kind of answers are sometimes called
dimension from [5], certificates from [14], and extended tea example-based queries (see [9], for example).
ching dimension from [12], are just three incarnations ef th Thus, starring any abstract learning protocol we have
same abstract phenomenon. Indeed, we characterize rathahree participants: the s€tof queries, the set of all Boolean
tightly in our abstract framework the number of queries functions B, of some arityn, and the set of all possible
needed to learn by means of our new combinatorial conceptanswers, namely all thgarrial Boolean functions of the
of abstract identification dimension (Aldim), and prove that ~ same fixed arityn. Since the set of all Boolean functions
its instantiation to each of the three models mentioned-coin and the arityn will be constants in our discourse, and the
cides with the known combinatorial dimension for the corre- set of answers will be specifically defined by each learning
sponding model; but, likewise, it yields combinatorial cha  protocol, we only write explicitly the dependence of the
acterizations of learning from, e.g., subset queries, dr e& protocol in@. A protocolProtocol () is a subset of
the models proposed in [1], or projective equivalence eseri
from [13]. We also study some cases in which a natural but {(¢,f,a) | g€ Q,f € Ba,aC f}

For instance, if we want to talk about learning with the

nontrivial property of the learning protocol allows us tmsi
usual equivalence queries with hypothesis coming from a

plify the characterization.
As a bonus, the understanding of how a learning algo- subsett C B, we defineProtocol=(H) as the set

rithm may work for these protocols yields the first algorithm
for learning DNF from proper subset and superset queries, or {(h, F, h) | heH,feByh=f}
from proper projective equivalence queries, that we descri T ’ ’

in Section 5. A previous work [6], showed the existence of an U

algorithm that learns DNF with subset and superset queries;{<h f,a) | heH,feByac(f~ —h)U(f* —ht))

but the queries argnproper.
where the first set corresponds to YES answers and the
second to counterexamples. In a similar way we can define

2 Notation and the abstract setting for exact _ [ WE (
the protocol for some of the other queries defined in [1]:

learning

We assume familiarity with the exact learning model via
gueries. We focus on exact learning of Boolean functions,
as an extremely basic form of knowledge. We fix all along
the papem as the number of variables. A Boolean function
of arity » is a function from{0, 1} — {0, 1}. The set of all
Boolean functions is denoted 3, .

An elementz of {0,1}" is called anassignment. A
pair (z,b), whereb € {0,1} is a binary label, is called
example for function f € By if f(x) = b. A sample,
also called gartial function or partially defined concept,
is a collection of examples for some functigh € B,,
and can be seen equivalently as a function frfim1}"”
to {0, 1, x}, where %” stands for “undefined”. The set of
all samples om: variables is denoted b§ample,. Note
that B, C Sample,. A samplea is said to beconsistent
with sample b, denoteda C b, if a(x) = b(x) whenever
a(z) # *. This notation is extended & C H, for sets of
samplesS, H C Sample,, if (Ya € 5)(3b € H)(a C b).
Observe that forn € Sample, andF C B,,, a [ F (with
strict notation{a} [Z F) means that no function frorf is
consistent withu. For a sample: € Sample,,, at denotes
the set{(z,1) | € {0,1}",a(z) = 1} anda~ is the set
{(2,0) | = € {0,1}",a(x) = 0}. We denote by|X|| the
cardinality of setX and byA ¢ B the join between setd
andB (A® B ={(0,a):a€ A}U{(1,b): b€ B}).

2.1 An abstract setting for queries and answers

e For membership queries o C {0,1}" the set
Protocolc (M) is {{z, f, (z, f(2))} | €M, feB,}

e For membership queries on a set C {0,1}" and
equivalence queries on a séf C B, the set
Protocole =(M & H) is Protocol=(H)@Protocolc (M)

e For subset queries on a clagé C B, the set
Protocolc (H) is
{(h, f,h*Y | h € H, f € By, T C f+}
U
{(h,f.a) |h€ H,f € By,a€ f~ —h7}
e For superset queries on a class C B, the set
Protocol5 (H) is
{(h,f.h™) |h€ H,f €B,,h~ C f7}
U
{(h,f.a) |h € H,f € By,a € ft—hT}

e For both subset ol C B, and superset queries on
B C B,, the set Protocolc 5(A® B) is
Protocolc (A) & Protocols (B).

We need to impose some conditions on the protocol to

In our abstract setting, queries are atomic objects. Answer capture the notion of exact learning. First, we will force
provide some partial knowledge of the target. Since our that the protocol has legitimate answers for every allowed
target concepts are always Boolean functions, we assumeguery under every Boolean function. Second, we will
that such partial knowledge is always modeled as the valuesinclude a “fair play” condition, namely, answers give no
of the target function on a subdomain; thus, each answerextra information beyond what we intend to give with them.
is just a partial Boolean function (or: a sample) that is a Thus, anabstract learning protocol P = Protocol(Q),
subfunction of the target (or: that is consistent with itheT ~ from now on grotocol, must fulfill the following conditions:
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1. Completeness For eachy € Q andf € B,, there is at Theorem 1 For any class C' C B, and any protocol P =
least one: C f such thatq, f,a) € P. In words, all Protocol(Q)

queries must have at least one answer. Udim(C, P) < LC(C, P) < Udim(C, P)[log ||
2. Fair-play If (¢, f,a) € P anda C h for some other  Proof If Udim(C, P) > k then there exist§ € B, such that
h € By, then{q, h,a) € P.
The fair play condition will be central to all of our work. (Vo1 € Q)(3a1 € P! (q1)) ... (Vax € Q)(Bar € P (g1))
We will find the proofs repeatedly resorting to that conditio (|[He e C | ({at,.- - ax} Ce)}|| > 1)

gzsgavsev\}g?t g)'t dl?eers no\}\,ga:?j fo{j\ﬁg‘f sj;a? ﬁ]r}g?rh?[ie(?n which describes an adversary that can force any learner to
a 10 queryq P ' make more thak queries.

allowing the learner to discard a targeteven though it is On the other side, assume Udim P) < k and lety

conIS|stent W'tg tpe_tz_inswerrece_ll\lleg. locallv interested | be the version space in an intermediate step of the learning
N some detinitions we Wil be locally Interesied in algorithm that we are now describing (initially = ).
consideringanswering schemes. \We say thatl' C P is Let f be the majority function oV, i.e. fy(z) = 1
an answering scheme for a protoddlwhen 7" fulfills the if more than of the functions iny 'classifyx as 1. or
completeness condition. Note that the protoEadk also an folz) =0 otr12er\Nise The bound on Uditey, P) promfses
; . = ) \
answering scheme. For an answering schiiyere denote that there exists a query; such that for all answers;

g s .
by 7/(¢) = fa | (¢ f,a) € T}, the set of potential |0y according tgfy, and so on and so forth, there is

answers to query under functionf, and by7/ = {a | at most one function ir' that is consistent with all those
Jg € Q{q, f,a) € T'}, the set of all potential answers under answers. Therefore we run the process of asking . ¢x
function f, which coincides with J ., 7/ (¢). The setofall (4., depends on the previous answers). If all answers are
answering schemes of a protodis denoted by/ (P). consistent withfy, then, by the fair play property, they all

. belong toP/v and there is only one function ifi consistent
2.2 Exact learning with them, the target. Otherwise, at legsbf the functions

We use a generalization of the exact learning model via in V are discarded and we start again witlhalf the size as
queries of Angluin [1]. A teacher answers with respect to before. This process is repeated at njosg ||C||] times. D
f € B, and usingP = Protocol(Q) if for each query
¢ € @, it outputs somex € P¥(g). A function class
C C B, is learnable with! queries undeP = Protocol(())

if there exists an algorithm such that for anyf € ¢ and
for any teacherB3 that answers with respect {b using P,
the only remaining function i€’ that is consistent with the . . . . .
answers received after at mekinteractions isf. For a class 3 The abstract identification dimension

C' C B, and a protocolP’ = Protocol()) we define the  Givenatarget class C B, and a protocoP = Protocol(Q),
learning complexity, LC(C', P), as the smallest such that e define thewbstract identification dimension, Aldim(C, P),

In the next section we present a nicer dimension that
does not need alternating quantifiers and also gives an
approximation (in the same sense as Theorem 1) to the
number of queries needed to learn.

C'is learnable withi queries undepP. as the minimum integet such that
We define the notion of a version space that will be
useful for the learning algorithms that we use in all the pape (Vf € B,) (VT € T(P))(3S CTY)

At any intermediate stage of a query-learning process, the
learner knows (from the teacher’s answers received so far) a (ISl <dnf{ihec | SChI<T)
set of samples for the target concept. Lef' be the target If no such integer exists then Aldii@, P) =

class. Theversion space V is the set of all concepts from That is, no matter what Boolean function and answering

C which are consistent with all samples$h These are all  scheme are chosen there exists some set of atdaostwers

concepts being still conceivable as target concepts. such that at most one function in the target class is comsiste
A fully general, rather simple way of extracting a com- with those answers.

binatorial parameter from an abstract learning protocts is The following lemma will be central in the proof of our

use a chain of alternating quantifiers of queries and answers main result in this section and is interesting in its own tigh
We describe it here, as a way of introducing the idea, and

also for the sake of comparison with the much nicer “flat” Lemma2 Let C' C B,, D C C such that ||D|| > 1,
version we will describe in the next section; it will be also P = Protocol(Q), Aldim(C, P) = d and f be any function

useful for technical purposes in a later proof. in By,. There exists ¢ € Q such that for any a € P/(q),
Given a class’ C B, and a protocoP = Protocol(Q), at least % functions from D are inconsistent with some
the ugly dimension, Udim(C, P), is the minimum integetl assignment in a.

I
such that for any’ € B, (notjustinc1) Proof For the sake of contradiction suppose that for each

(341 € Q)(Var € P/ (q1)) .- (394 € Q)(Vaq € P! (ga)) () there exists some, € P/ (q) such that less thah?!lI=*
(He e C | {ay,...,aq} C e}l < 1) functions are inconsistent with some assignme,inThen
if no suchd exists then Udirft”, P) o we define an answering schefiesuch thatl’ (¢) = {a,}.
Now, using fully standard techniques, we can easily Now for anyS C T such thaf|$|| < d there are less than
prove the following theorem. J“%“—ll functions inconsistent with some assignmeng'in
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which implies that there must be at least two function®in
that are consistent with. This contradicts AldiriC, P) =
d. a

Our main contribution of this section is the following
characterization:

Theorem 3 For any concept class C C B,, and any proto-
col P = Protocol(()),

Aldim(C,, P) < LC(C, P) < Aldim(C, P)[In ||C||]

Proof We will start showing that if AldingC, P) > k then
any learning algorithm must ask more thamueries. For

the sake of contradiction suppose that there is an algorithm

A that learng” asking at mosk queries. Letf and7" be the
Boolean function and the answering scheme such that

VST (IS <k=|{heC|SThY>1)

obtained by negation of the definition of Aldim.

Now we answer all queries from using7'. After k
interactions, A knows a set of given answeérs C 7/, and
by the choice ofl" and f, there exist two different functions
in C that are consistent with all assignmentsSip. This
contradicts the assumption ch Observe that even though
f is not necessarily il it can be claimed that the answers
were given according to one of the two surviving functions
from C' because of the fair play property.

Now we show the upper bound. Assume Aldith P) =
k > 1 (ifAldim (C, P) = 1 the Theorem follows easily). Let
V be the version space consisting of functiongithat are
consistent with the answers received so far (initigll: C).
Let fy be the majority function o. Now we make the
guery whose existence is guaranteed by Lemma 2.
answer is inconsistent witfy, then at Ieas§ of the functions

in V are removed, otherwise the answer isAf (because

Proof Suppose that for alf,g € C, f # g, there exists
someg € @ such thatP/ (¢) N P?(q) = 0. Then it is easy
to design an algorithm that makes at mpsY| — 1 queries:
it takes a pair of functions fror/, asks the separating query
and for any answer of the teacher at least one of the two
functions is discarded (again by the fair play). This imglie
that Aldim(C, P) < ||C|| — 1 because of Theorem 3.
Conversely, assume that there exfsy € C, f £ ¢
such that for aly € @, P/ (q) N P9(q) # # and call those
witnesses of the nonempty intersectioy), ,. Let7" be an
answering scheme such that(q) = {ay 4 ,}. Observe that
for all S C T/ both f andg are consistent witt$ which
implies that Aldim{C, P) = . ]

We prove now that AldiriC', P) corresponds with the
dimension introduced in [5] for the case of equivalence
gueries: the strong consistency dimension. For a targss cla
C C B, and aclas) (C C @ C B,) of hypothesis for
the equivalence queries, tReong consistency dimension,
scdim(C, @), can be written as the minimum integésuch
that

(Vg € Sample,)(g L Q@ = 3S T g)(||S]| <dASEZC))
The following result relates, rather tightly, both dimen-
sions.

Theorem 5 Forany C' C By, and protocol P = Protocol=(Q)
such C' C @,

Aldim(C', P) < scdim(C, @) < Aldim(C, P) + 1
Proof Let d, = scdimC, @) and AldimC, P) = d,.
Observe that any sample Z @ provides with all the
information needed to build an answering scheme in the case

If the of equivalence queries.

For the first inequality, leff be any function fromB,, .
There are two cases: (#)e @ and (b)f € B, — Q. In case

of the fair play property) and therefore Lemma 2 ensures that (a) one single answer suffices to rule out all but one funstion

at least Vk_l functions fromYV are inconsistent with some
assignment in the answer received.

Next we compute the number of rounds that we need to

reduce the number of surviving candidates to 1. £ét)
be the number of surviving functions (the cardinality)$f
after r querles Clearly,5(0) = ||C|| and S(r + 1) <
S(r)(1— ¢)+ +. This recurrence has the following solution

Observe that for any the second term is always smaller than
1, so it is enough to find the smallesthat makes the first

| —

()<|ICII1——

term smaller or equal than 1. An easy counting argument

shows that for = d[In||C|], S(r) < 2, which concludes
the proof. |

Next we show a necessary and sufficient condition for

Aldim(C, P) beingoo.

Theorem 4 Forany C' C B,, and for any P = Protocol(Q),
Aldim(C, P) # oo if and only if for all f,g € C, such that
f # g there exists ¢ € Q, P/ (q) N P9(q) = 0. Furthermore,
if Aldim(C', P) # oo then Aldim(C', P) < ||C|| — 1.
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in C', namely the unique answer foitself provides allf as
answer and only one function can be consistent with that. For
case (b) consider any answering scheéméor f. Observe
that7”/ can be seen as a sampl& f such thay Z Q. We
use the scdirfy) machinery:(35 C ¢)(||S|| < d; ASEZ C)
which implies that/; > d,,.

For the second inequality lgt € Sample, be such that
g Z @ (and thereforgy IZ ). Now consider any total
functionf in B,, such thay C f and an answering scheme
T such thatl'/ T g. Now we know that there exists some
S C ¢, of size at mostl, such that at most one functiondn
is consistent with it. If there is one suehe C' we add one
more example fronfgt — ¢*) U (9= — ¢7) to S and then
rule out all possible functions froi. |

The next section will prove that, under an additional con-
ditionon P, the definition of Aldim{C, P) can be simplified,
and will show how it corresponds to known characterizations
of other learning protocols.

4 Enforcing answers

Many learning protocols (but not all, the most notable ex-
ception being equivalence queries) have the following prop
erty: for each potential answer (in our abstract sensejethe



is some query that enforces exactly that answer. A simple

in the same way as we proved in the previous section that it

example is related to membership queries: an answer con-generalizes the strong consistency dimension for equicale

sisting of a labeled example (or: sample of size 1) can be

queries.

taken as counterexample as one among many answers to an The certificate size in [14] (otonsistency dimension

equivalence query, but is the only possible answer to a mem-
bership query. The purpose of this section is to show that
it is exactly this property the key to the differences betwee
known characterizations of query learning protocols.

We say that the abstract learning protodolhas the
enforcing answers property if, for each{q, f,a) € P, there
is a queryq’ such thatP/(¢’) = {a}. Thatis, for each
potential answer, some possibly different query forces it a
the only authorized answer.

Our main result of this section says that, under this ex-
tra condition, one can dispose of considering all answering
schemes in the definition of abstract identification dimen-
sion. We define thenforcing abstract identification dimen-
sion, EAldim(C, P), as the smallest integérsuch that

(Vf € Ba)(3S C PI)([ISI| < dAli{h € C | ST R} < 1)
If there is no suchl then EAIdIMC, P) = .

Theorem 6 Let C' C B,, and P = Protocol(Q). If P has
the enforcing answer property then,

EAldim(C, P) = Aldim(C, P) = Udim(C, P)
Proof Clearly EAIdim(C, P) < Aldim(C, P) becauseP

in [5]) of a target class” C B, and a hypothesis class
H C B,, cdimC, H), is the smallest integef such that

(V/eB)(fLH= @sT sl <dAsZC))
or oo if no suchd exists.
Theorem 8 For any C,H C B,, C' C H, and P
Protocole =({0,1}" & H),
Aldim(C, P) < cdim(C, H) < Aldim(C, P)+ 1
Proof The proof follows similar steps to the proof of Theo-
rem 5. |

Theextended teaching dimension [12] (see also [14]) of
some clasg’ C B, etdim ('), is the smallest integet such
that

(Vf €Ba)3s Ef)(lsll <dA[{ceC[sCc}l <)
or ~c if no suchd exists.
The following theorem is immediate.

Theorem 9 For any C' C B,, and P = Protocolc ({0, 1}"),

Aldim(C, P) = etdim(C)

We end this section with an example showing that
EAIdim(C, P) is not valid in general as an approximation
of the number of queries needed for exact learning when the

is itself an answering scheme. It is also easy to see thatenforcing answers property does not hold. Cebe the class

Aldim(C, P) < Udim(C, P). Observe that the two previous
facts are independent of the enforcing answers property.

To prove Udin{C, P) < EAIdim(C, P) we need the
enforcing answers property. Note that EAIdith P) = d
can be interpreted as follows: for arfyc B,,, d answers,
{ay,...,aq} C P/, suffice to eliminate all but one functions
from C. Since any answet; has a query; such that
P! (¢;) = {a;}, then for anyf € B,

(301 € Q) ... (304 € Q)(Yar € P! (q1)) ... (Vaa € P! (qa))

(IHe e C | {a1,...,as} C e} < 1)
and therefore, UdifC, P) < d.

One may wonder whether the gap[dbg ||C|] in The-
orem 3 could be improved. The next easy to prove theorem
shows that this is not so easy for general classes and proto
cols, since there are examples of having the equality on both
ends of the gap. LeSING,, be the class of singleton func-
tions onn variables.

O

Theorem 7 Let n be any  positive  integer
P = Protocolc ({0, 1}") and Q) = Protocol=(By,). Then

Aldim(SING,,, P) = LC(SING,,, P)

and

LC(B,, Q) = Aldim(B,,, Q) log || B, |-

The simplification introduced by Theorem 6 allows us to
prove that the abstract identification dimension genezaliz
two more characterizations of learning protocols: theftert
cate size for membership and equivalence queries, and th
extended teaching dimension for just membership queries,
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of k-term monotone DNF, for some constdnt> 1, and P
be Protocol=(C). It is easy to see that EAldift, P) <
(k+1)(n+1) but Aldim(C, P) is not bounded by any poly-
nomial inn (see [7], for example).

5 Applications

Our setting immediately provides with new combinatorial
characterizations of all other popular learning protoewoid

with the first exact learning algorithm for DNFs that uses
polynomially many queries that are DNFs of polynomial
size. We start, as an example, with subset queries and then
move to the algorithms for learning DNF formulas.

5.1 Subset queries

We need some definitions specific for subset queries. For a
sampleg € Sample,,, we say thay is valid for H C B,

if and only if VA € H eitherh™ C g or h™ — gt # 0.

The covering cost of a sampley with H is covcost (g) =

llg=|| + min{j | (3h1...h;)(URT = ¢%)}. If such

J does not exist then covcasty) oo. We denote by
covdim(C, H) the smallest integef such that

(Vg € Sample,,)(g is valid for H = (3s C g)
(covcosi(s) < d A [l{e € C | s C e} < 1))
or oo if no suchd exists.

Theorem 10 For any pair of classes C,H C B, and P =

Protocolc (H), Aldim(C, P) = covdim(C, H).

Proof It is enough to observe that a sample being valid for

H corresponds to the notion of answering scheme and that

the covcost) function measures the minimum number of
nswers to subset queries contained in a sample. O



5.2 Learnability of DNF formulas and related classes

All the intuitions gleaned through this work have more spe-
cific applications, in particular by illuminating how query
learning algorithms might proceed using the powerful subse

Now we prove a similar result using the less known
projective equivalence queries from [13]. A projective
equivalence query receives as input a partial assignment
and a hypothesis € B, and the answer is the hypercube

and superset queries, or the less known projective equiva—that satisfies if h and the target are consistent there or some

lence queries of [13].

We need some more definitions. A partial assignment
« is a word from{0, 1, x}"”. A complete assignment €
{0, 1}" satisfies a partial assignmemtif they coincide in
the positions where is notx. The hypercube of a partial
assignmenty is the set of all complete assignments that
satisfy«. We denote by («) the term that, when applied to
a complete assignmenmt evaluates to 1 it satisfies and
to 0 otherwise and by(«) the clause such thata) = t(«).
A function f € B,, projected with respect i@ is denoted b
fa. The functionf, is equal tot(«) A f. Observe that our
definition is not the projection of [14] because the number of
variables is not reduced.

The following theorem states the first known exact learn-
ing result for DNF formulas that uses a polynomial number
of queries of polynomial size that are also DNF formulas.

Theorem 11 The class of DNF formulas with at most m
terms and over n variables is learnable with 2nm|[log 3]
subset and superset queries that are DNF formulas with at
most 2m + n terms.

Proof Assume, w.l.0.g, thatn > 1. Let G be the class
of DNF formulas with at mosfm terms, H be the class
of DNF formulas with at mosem + n terms, C' be the
class of DNF formulas with at most: terms andP =

Protocolc ~(H & H). Observe that’ C ¢ C H. Since

the enforcing answers property applies, it is enough to show

that EAIdim(C, P) = 2 (which coincides with AldiniC, P)

example in that hypercube witnessing the fact that they do
not coincide.

Using similar arguments to the proof of Theorem 11 we
can prove the following result.

Theorem 12 The class of DNF formulas with at most m
terms and over n variables is learnable with nm[log 3]

projective equivalence queries that are DNF formulas with

at most 2m terms.
Proof In this case it can be shown that Aldi@i, P) = 1. O

In fact, the only properties of DNFs employed in the
previous results are:

1. If the number of terms needed to represgrg B,, in
DNF form is more tha2m then for any variable there
exists a Boolean valug such thatf,._, needs more
thanm terms.

. Given a Boolean functiorf representable as a DNF
with at mostn terms and a clauseonn variables, the
function f V ¢ can be represented with at mest+ n
terms.

3. The class ofING,, is representable as DNF with at
most 1 term and DNF formulas with at most > 1

terms are projection closed.

Since those properties are also satisfied by Decision

because of Theorem 6) and the theorem follows because oflfees, Branching Programs, Decision Lists and Boolean

Theorem 3 and the fact thhig ||C|| < nm[log 3].

Consider any functiorf € B,. There are two cases:
(@) f € G and (b)f ¢ G. In case (a) the answers iV
to two queries suffice to discard all but one function#sin
namely the answers to subset pand superset ofi. In case
(b) we use a projection trick: we projefiaccording to some
partial assignment (initially « = ™) while for any variable
v not yet projected there exists a Boolean valsich that
fauves € G, we choose any such variable and value and
continue projecting. Since bodiNG,, and the constant O are
in G we have to reach some point where we have projected
according to some partial assignmensuch thatf, ¢ G
and there exists some variabiesuch that bottf,,, o and
Jauv«1 are inG;. Now, becaus¢y, = fauveoV fauve1, at
least one of the two projections must be outgij@therwise
fo would be inGG. Therefore there existse {0, 1} such that
fauves € C. Let 3 bea U v « b. Now, the unique answers
according toP/, on subset of'; and superset ofs V ¢(3)
(that both belong td7) give all the hypercube that satisfies
3 labelled according t¢f. Sincef; ¢ C' those examples
discard all functions frond’ becausé’' is projection closed.
O

There is an algorithm in [6] that learns DNF with

Formulas (with some minor variations in the numbers that
are still within a polynomial), the same result holds fonthe

Corollary 13 Decision Trees, Decision Lists, Branching
Programs and Boolean Formulas are learnable with a poly-
nomial number of queries of polynomial size both with subset
and superset queries or with projective equivalence queries.
Furthermore, the input of the queries are representations
taken from the same class as the target class (properlearn-

ing).

Observe that subset and superset queries together and
also projective equivalence queries can simulate the mem-
bership and equivalence queries protocol for the classes co
sidered above. Since for DNF formulas and Decision Trees
it is known that membership queries or proper equivalence
gueries do not suffice (see [2, 10]), the case of using both
membership queries and proper equivalence queries (an im-
portant open problem) falls now between the positive result
in this paper with more powerful queries and the negative
results for weaker protocols.

6 Acknowledgments

improper subset and superset queries in expected polynomialWe would like to thank an anonymous referee for pointing

time, and therefore using an expected polynomial number of
queries.
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