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Abstract

We model reinforcement learning as the problem
of learning to control a Partially Observable Mar-
kov Decision Process (POMDP), and focus on gra-
dient ascent approaches to this problem. In [3] we
introducedGPOMDP, an algorithm for estimating
the performance gradient of aPOMDP from a sin-
gle sample path, and we proved that this algorithm
almost surely converges to an approximation to the
gradient. In this paper, we provide a convergence
rate for the estimates produced byGPOMDP, and
give an improved bound on the approximation er-
ror of these estimates. Both of these bounds are in
terms of mixing times of thePOMDP.

1 INTRODUCTION

Many control, scheduling, planning and game-playing tasks
can be formulated as reinforcement learning problems, in
which an agent chooses actions to take in some environment,
aiming to maximize a reward function. We can model the
environment as apartially observable Markov decision pro-
cess (POMDP) and formulate these reinforcement learning
problems as the problem of controlling thePOMDP.

Figure 1 illustrates aPOMDP, controlled by a policy�.
We assume that there is a finite state spaceS = f1; : : : ; Ng,
representing the distinct states that the environment can take,
a finite control setU , representing all actions that the agent
can choose at each time step, and a finite observation setY,
representing all observations that might be presented to the
agent.

The evolution of the states depends on the actions. Each
u 2 U determines the state transition probabilityp

ij

(u), that
is, the probability of transition from statei to statej, given
control actionu. Thus, the matrix

P (u) = [p

ij

(u)℄

is a stochastic matrix;
P

j

p

ij

= 1 for i 2 f1; : : : ; Ng.
For each statei 2 S, an observationy 2 Y is gen-

erated independently according to a probability distribution
�(i) over observations inY. We denote the probability of
observationy by �

y

(i). In the special case�
y

(i) = Æ(i), the
observationy is the same as the state, and thePOMDP is
completely observable.
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Figure 1: A partially observable Markov decision process
(POMDP) controlled by the policy�. The actionsU

t

deter-
mine the probabilities of transitions between different states
X

t

. The MDP ispartially observable because the stateX
t

is not observed; the observationY
t

is conditionally indepen-
dent, givenX

t

. The stochastic policy� maps from observa-
tionsY

t

to distributions over actionsU
t

. Associated with the
stateX

t

is a reward value,r(X
t

). The aim is to choose a
policy to maximize the long term average of the reward.

The relationship between the observations seen by the
agent and the actions it chooses is defined by the policy�.
We consider randomized policies, and we assume that the
policy is defined by a vector of parameters. Formally, apa-
rameterized randomized policy is a function� mapping pa-
rameters� 2 � � R

d and observationsy 2 Y into proba-
bility distributions over the controlsU . That is, for each ob-
servationy and parameter vector�, �(�; y) is a distribution
over the controls inU . We denote the probability of control
u under this distribution by�

u

(�; y).

Each statei has an associated rewardr(i). The aim is to
choose the parameters� of the policy so as to maximize the
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long-term average reward,

� = lim

T!1

1

T

E

T�1

X

t=0

R

t

; (1)

whereR
t

= r(X

t

) is the reward associated with the state
X

t

at time t. For simplicity of exposition, we will focus
on policies that depend only upon the current observation
Y

t

. However, the results of this paper can easily be ex-
tended to policies that depend on finite histories of obser-
vations(Y

t

; Y

t�1

; : : : ; Y

t�k

).
For each parameter vector�, we have a fixed stochastic

policy, so the underlying state of the POMDP evolves as a
Markov chain with transition probability matrix

P (�) = [p

ij

(�)℄

i;j=1:::n

;

where
p

ij

(�) = E

Y��(i)

E

U��(�;Y )

p

ij

(U ):

We write the parameterized class of stochastic matrices as
P := fP (�) : � 2 �g. Denote the Markov chain corre-
sponding toP (�) by M (�). We will usefX

t

; Y

t

; U

t

; R

t

g to
denote the joint stochastic process where the statesX

t

are
generated according toP (�), observationsY

t

are generated
according to�(X

t

), controlsU
t

are generated according to
�(�; Y

t

) and rewardsR
t

are generated according tor(X
t

).
We can view the average reward (1) as a function�(�) of

� 2 R

d, where� are the parameters of the policy. Provided
the dependence of� on � is differentiable, we can compute
r�(�) and use a gradient ascent method in order to increase
the average reward.

This approach was pioneered by Williams [11], who in-
troduced theREINFORCE algorithm for estimating the gra-
dient inepisodic tasks, for which there is an identified recur-
rent statei�, and the agent is told when this state is entered.
REINFORCE returns a gradient estimate each timei

� is en-
tered. Williams showed that the expected value of this esti-
mate is the gradient direction, in the case that the number of
steps between visits toi� is a constant. It is easy to prove the
stronger result that the expected value of the estimate is the
gradient, even when the number of steps is a random variable
(see Section 3).

Other researchers have investigated algorithms that esti-
mate the gradient of the expected reward [6, 4, 9, 8, 2, 10, 7].
With the exception of [6], these algorithms are all restricted
to episodic tasks, or for tasks where the long term average re-
ward is accurately known. The weakness of approaches that
are restricted to episodic tasks arises from the reliance on
the identifiable recurrent statei�. Although the assumptions
we make in this paper about thePOMDP ensure that ev-
ery state is recurrent, as the size of the state space increases,
we can expect that the expected time between visits will in-
crease. Furthermore, the time between visits depends on the
parameters, and states that are frequently visited for the ini-
tial value of the parameters may become very rare as perfor-
mance improves. In addition, in an arbitraryPOMDP it may
be difficult to estimate the underlying states, and therefore to
determine when the gradient estimate should be updated.

In [3], we extended Williams’ algorithm to avoid the
need for an identifiable, frequently visited recurrent state.

We introducedGPOMDP, an algorithm for estimating an ap-
proximation to the gradient (this algorithm is described inde-
tail in Section 4). The estimates produced byREINFORCE
involve products of the average reward over a sample path
between visits to a recurrent state and the sum of certain
gradient contributions over that sample path. In contrast,
GPOMDP uses products of the instantaneous reward at each
state, and a sum over the past of exponentially discounted
gradient contributions. The discount factor,�, is a parameter
of the algorithm. The role of this parameter depends on the
mixing time of thePOMDP. (The mixing time is the time
constant in the exponential convergence of a stochastic pro-
cess to its stationary distribution—see Section 2 for the defi-
nition.) We showed in [3] that, under certain assumptions on
thePOMDP, the estimates produced byGPOMDP converge
almost surely tor

�

�, an approximation to the gradient that
depends on the discount factor� used by the algorithm. The
approximation error of the algorithm is the size of the differ-
ence between the true gradientr� and the estimater

�

� to
which the algorithm converges. In [3], we showed that this
approximation error is small provided that the time constant
�alg = 1=(1 � �) is large compared with the mixing time

of the derived Markov chainM (�) (under the assumption
that the eigenvalues of the transition probability matrix are
all distinct).

In this paper, we give bounds on theestimation error of
theGPOMDP algorithm. The estimation error, which is the
size of the difference between the output of the algorithm
and its asymptotic output, arises because the algorithm sees
only a finite data sequence. Our estimation error bounds are
in terms of the algorithm’s time constant�alg = 1=(1� �)

and the mixing time of a certain stochastic process associated
with thePOMDP. In particular, if this mixing time is� , the
estimation error is of the order

s

�alg
2

�

n

;

ignoring log factors, wheren is the running time of the algo-
rithm. We also give an approximation error bound in terms
of a certain mixing time�� of M (�), without the restrictive
assumption of [3] that the eigenvalues are distinct. We show
that the approximation error of the algorithm’s estimate isof
the order

�

R

�

�

�alg
;

where�2
R

is the variance of the rewardR
t

under the station-
ary distribution. These results show that mixing times of the
controlledPOMDP provide estimates for both the approxi-
mation error and the estimation error, and suggest that mix-
ing time is crucial to the performance of the algorithm. The
results also formalize a natural tradeoff: as the time constant
of the algorithmgets large (when the parameter� approaches
one), the approximation error decreases but the estimation
error increases. This provides insight into the appropriate
choice of the algorithm’s parameter�.

In Section 2, we describe the assumptions we make about
the controlledPOMDP, and present some definitions and
preliminary results. Section 3 reviews theREINFORCE al-
gorithm, and shows that the expected value of its estimates
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is correct. Section 4 presentsGPOMDP, and reviews the
results from [3]. Sections 5 and 6 give bounds on the conver-
gence rate and approximation error.

2 ASSUMPTIONS, DEFINITIONS AND

PRELIMINARY RESULTS

We assume that the Markov chainsM (�) satisfy several as-
sumptions.

Assumption 1. For each � 2 �, the Markov chain M (�) is
ergodic.

A stationary distribution of a Markov chain with transi-
tion probability matrixP is a probability distribution� =

[�(1); : : : ; �(N )℄

0 over states that satisfies

�

0

P = �

0

:

Assumption 1 implies that eachP (�) has a unique positive
stationary distribution

�(�) := [�(�; 1); : : : ; �(�;N )℄

0

;

and that the sequence of states exhibits exponential conver-
gence to this stationary distribution. We could also allow
aperiodic Markov chains which have a single recurrent class,
plus some transient states.

If a gradient method is to be applicable, suitable deriva-
tives must exist. The following assumption about the param-
eterization of the stochastic policies suffices.

Assumption 2. The derivatives, ��
u

(�; y)=��

k

exist for all
u 2 U , y 2 Y , k = 1 : : :d and � 2 �.

This assumption implies that the derivatives�p

ij

(�)=��

k

exist for all� 2 �, i; j = 1; : : : ; N andk = 1; : : : ; d.

Assumption 3. There is a C <1 such that, for all states i,
the magnitude of the reward satisfies jr(i)j � C.

Assumption 4. There is a B <1 such that, for all controls
u 2 U , parameter vectors � 2 �, observations y 2 Y, and
k 2 f1; : : : ; dg,

j��

u

(�; y)=��

k

j

�

u

(�; y)

� B:

The assumption that the magnitudes of the rewards are
uniformly bounded is quite natural: the agent’s actions can
have only limited consequences. The ratios between deriva-
tives and action probabilities are features of the class of poli-
cies that can be bounded by design.

To measure the progress of the state distribution toward
the stationary distribution�, we use thetotal variation dis-
tance.

Definition 5. The total variation distance between two prob-
ability distributionsP;Q on a set X is

d

TV

(P;Q) = jP � Qj(X );

where the finite measure jP � Qj is the absolute difference
between the measures P and Q. (If P and Q are discrete,
jP�Qj(X ) =

P

x2X

jP (x)�Q(x)j. If they are continuous,

jP � Qj(X) =

R

X

jp(x) � q(x)j dx.)

The following lemma is folklore. (It follows, for exam-
ple, from the Jordan decomposition theorem—see [5].)

Lemma 6. For distributionsP;Q on X ,

d

TV

(P;Q) = 2 sup

S

(P (S) �Q(S));

where the supremum is over all measurable subsets S � X .

For a stochastic processfX
t

g andj � k, we useXk

j

to

denote(X
j

; X

j+1

; : : : ; X

k

), andXj

�1

to denote the infinite
sequence(: : : ; X

j�1

; X

j

).

Definition 7. A causal stochastic process fX
t

g taking val-
ues in X is mixing if, for all sequence lengths k, there is a
stationary distribution � on X k such that almost surely the

distribution of Xt+k�1

t

conditioned on X0

�1

converges to �
as t!1.

Definition 8. We say that a stochastic process fX
t

g is expo-
nentially mixing with time constant� (� -mixing for short) if
it is mixing and, for all t

0

, t � 0 and X
t

0

�1

, the distribution

p

t of X
t

0

+t

conditioned on Xt

0

�1

satisfies

d

TV

(p

t

; �) � exp (�bt=�) ;

where � is the stationary distribution of X
t

.

When we talk of the mixing time of a Markov chain, we
mean the smallest� such that the state sequence is� -mixing.

Lemma 9. If fX
i

g is � -mixing, then for any predicate � on
X

n,

Pr

�

� (X

n

1

; X

n

1

+t

; : : : ; X

n

1

+nt

)

�

�

X

0

�1

�

�

1

2

e

�bn

1

=�

+

n� 1

2

e

�bt=�

+ �

n

f(X

n

1

; : : : ; X

n

1

+nt

) : � (X

n

1

; : : : ; X

n

1

+nt

)g ;

where �n is the productdistribution on Xn generated by the
stationary distribution � on X .

Proof. Consider distributionsP
1

; Q

1

on a setX
1

andP
2

; Q

2

on a setX
2

.

d

TV

(P

1

� P

2

; Q

1

�Q

2

)

=

Z

X

1

�X

2

djP

1

� P

2

� Q

1

� Q

2

j

=

Z

X

1

�X

2

d

�

�

(P

1

� P

2

�Q

1

� P

2

)

� (Q

1

�Q

2

�Q

1

� P

2

)

�

�

�

Z

X

1

�X

2

d (jP

1

� Q

1

j � P

2

+ Q

1

� jP

2

�Q

2

j)

=

Z

X

1

djP

1

� Q

1

j+

Z

X

2

djP

2

� Q

2

j

= d

TV

(P

1

; Q

1

) + d

TV

(P

2

; Q

2

):

Lemma 6 implies that, for any[0; 1℄-valued functionf ,
�

�

�

�

Z

f(x)dP (x)�

Z

f(x)dQ(x)

�

�

�

�

�

d

TV

(P;Q)

2

:

An easy inductive argument implies the result.
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Algorithm 1 The REINFORCE algorithm.
1: Given:

� Parameterized class of randomized policies
f�(�; �)g satisfying Assumptions 2 and 4.

� POMDP which, when controlled by the random-
ized policies�(�; �), corresponds to a parameter-
ized class of Markov chains satisfying Assump-
tion 1.

� Start stateX
0

= i

�.
� Observation sequenceY

0

; Y

1

; : : : and reward se-
quenceR

0

; R

1

; : : : generated by thePOMDP with
controlsU

0

; U

1

; : : : generated randomly according
to �(�; Y

t

), with rewardsR
t

satisfying Assump-
tions 3.

2: Setj = 0, z
0

= 0, t
0

= 0, and�
0

= 0 (z
0

;�

0

2 R

d).
3: for each observationY

t

, controlU
t

do
4: if X

t

= i

� then
5: t

j+1

= t

6: �

j+1

= �

j

+

1

j+1

h

1

t

j+1

�t

j

P

t

j+1

s=t

j

+1

R

s

z

t

��

j

i

7: j = j + 1

8: z

t+1

= 0

9: else
10: z

t+1

= z

t

+

r�

U

t

(�;Y

t

)

�

U

t

(�;Y

t

)

11: end if
12: end for

We shall make use of Hoeffding’s inequality:

Theorem 10 (Hoeffding’s Inequality). If the random vari-
ables X

1

; : : : ; X

n

are independent and satisfy X
i

2 [a

i

; b

i

℄,
we have

Pr

 

�

�

�

�

�

1

n

n

X

i=1

(X

i

� EX

i

)

�

�

�

�

�

� �

!

� 2 exp

�

�2�

2

n

1

n

P

n

i=1

(b

i

� a

i

)

2

�

:

3 WILLIAMS’ REINFORCE ALGORITHM

The gradient ascent approach to reinforcement learning was
pioneered by Williams [11], who introducedREINFORCE
(Algorithm 1). Williams showed that the expected value of
the estimates�

j

returned by this algorithm is the gradient
direction, in the case that the number of steps between visits
to the identified recurrent statei� is a constant. It is easy to
prove the following stronger result.

Theorem 11. Under Assumptions 1, 2, 3, and 4, for each j,

E�

j

= rE

 

1

T

T

X

t=1

R

t

�

�

�

�

�

X

0

= i

�

!

;

where T is the time of the first return to state i�.

Proof. It is easy to see that the expression for�

j+1

is a re-
cursive computation of the average of thej+1 random vari-
ables�

1

; : : : ; �

j+1

, where

�

j+1

=

1

t

j+1

� t

j

t

j+1

X

s=t

j

+1

R

s

z

t

;

so we need only compute the expectation of�

1

= �

1

. (In
fact, because of the Markov property, the random variables
�

j

are i.i.d.) Now,

�

1

=

 

1

T

T

X

s=1

R

s

!

T�1

X

t=0

r�

U

t

(Y

t

)

�

U

t

(Y

t

)

;

whereT is the time of the first return to statei�. Define

�

R =

1

T

T

X

s=0

R

s

:

We shall show by induction that

E�

1

�rE

�

�

R

�

�

X

0

= i

�

�

= E

 

E

 

�

R

T�1

X

t=s

r�

U

t

(Y

t

)

�

U

t

(Y

t

)

�

�

�

�

�

S

s

0

!

�rE

�

�

R

�

�

S

s

0

�

�

�

�

�

�

T > s

!

Pr(T > s); (2)

where

S

s

0

= (X

0

; Y

0

; U

0

; : : : ; X

s�1

; Y

s�1

; U

s�1

; X

s

):

Clearly, (2) is true fors = 0. Suppose it is true fors � 0.
Fix any suitableSs

0

(which must have positive probability
and contain noi�s.) Then we can write

E

 

�

R

T�1

X

t=s

r�

t

�

t

�

�

�

�

�

S

s

0

!

=

X

Y

s

�

s

X

U

s

�

s

(p

X

s

;i

�

(U

s

)

� E

 

1

s+ 1

s+1

X

t=1

R

t

r�

s

�

s

�

�

�

�

�

S

s+1

0

!

+

X

X

s+1

6=i

�

p

X

s

;X

s+1

(U

s

)E

 

�

R

T�1

X

t=s+1

r�

t

�

t

�

�

�

�

�

S

s+1

0

!

1

A

;

where we have used the abbreviated notation�

t

= �

U

t

(Y

t

),
�

s

= �

Y

s

(X

s

), and we have relied on Assumption 2. Tak-
ing ther�

s

=�

s

outside the expectations in both terms, and
rearranging shows that this is equal to

E

�

r�

s

�

s

E

�

�

R

�

�

S

s+1

0

�

�

�

�

�

S

s

0

�

+E

 

E

 

�

R

T�1

X

t=s+1

r�

t

�

t

�

�

�

�

�

S

s+1

0

!

�

�

�

�

�

T > s + 1

!

� Pr (T > s + 1jS

s

0

) :
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Using a similar expansion, we have

rE

�

�

RjS

s

0

�

=

X

Y

s

�

s

X

U

s

r�

s

0

�

p

X

s

;i

�

(U

s

)E

 

1

s + 1

s+1

X

t=1

R

t

�

�

�

�

�

S

s+1

0

!

+

X

X

s+1

6=i

�

p

X

s

;X

s+1

(U

s

)E

�

�

RjS

s+1

0

�

1

A

+

X

Y

s

�

s

X

U

s

�

s

0

�

X

X

s+1

6=i

�

p

X

s

;X

s+1

(U

s

)rE

�

�

RjS

s+1

0

�

1

A

=E

�

r�

s

�

s

E

�

�

R

�

�

S

s+1

0

�

�

�

�

�

S

s

0

�

+ E

�

rE

�

�

RjS

s+1

0

�
�

�

T > s + 1

�

Pr (T > s + 1jS

s

0

) :

Subtracting these equations and taking the expectation over
S

s

0

shows that (2) is true fors+1. By induction, it is true for
all s � 0.

It remains to show that the quantity on the right hand side
of (2) goes to zero ass gets large. Using Assumptions 1, 3
and 4, it is easy to verify thatkrE �

Rk <  for some constant
 that depends only on�. It follows that

kE�

j

�rE

�

Rk � (BRE(T � sjT > s) + ) Pr(T > s);

which (under Assumption 1), is no more than a constant
timesPr(T > s). Since this probability approaches zero
ass gets large, the result is proved.

Notice that the proof did not rely on the fact thatR

t

is a
function of the stateX

t

. Indeed, the same proof gives a simi-
lar result when(1=T )

P

T

t=1

R

t

is replaced by a bounded ran-
dom variable�R that depends only on the sequence of states
X

t

0 and actionsU
t

0 between visits to the statei�.

4 THE GPOMDP ALGORITHM

In [3], we extended Williams’ algorithm to avoid the
need for an identifiable, frequently visited recurrent state.
Algorithm 2 showsGPOMDP, an algorithm for estimating
an approximation to the gradient. In fact, Algorithm 2 is a
slightly modified version of the algorithm presented in [3].
This algorithm has three distinct phases, which extend for
n

1

; n

2

; n

3

time steps. The first phase involves waiting for
the controlledPOMDP to mix. The second involves gath-
ering gradient information about actions that are taken. The
third involves waiting for the long term outcomes of the ac-
tions for which the gradient information was gathered. (The
algorithm in [3] did not include the first and third phase.) In-
troducing the first and third phases simplifies the analysis,
but it is easy to extend the results to the algorithm presented
in [3].

It is easy to see that the algorithm returns

�

n

1

+n

2

+n

3

=

1

n

2

n

1

+n

2

+n

3

X

t=n

1

+1

z

t

R

t

:

Call this value�. The convergence result in [3] implies that,
under Assumptions 1, 2, 3 and 4, starting from any initial

Algorithm 2 TheGPOMDP algorithm.
1: Given:

� Parameterized class of randomized policies
f�(�; �)g satisfying Assumptions 2 and 4.

� POMDP which, when controlled by the random-
ized policies�(�; �), corresponds to a parameter-
ized class of Markov chains satisfying Assump-
tion 1.

� � 2 [0; 1).
� Arbitrary (unknown) starting statei

0

.
� Observation sequenceY

0

; Y

1

; : : : and reward se-
quenceR

0

; R

1

; : : : generated by thePOMDP with
controlsU

0

; U

1

; : : : generated randomly according
to�(�; Y

t

), with the rewardsR
t

satisfying Assump-
tion 3.

2: Setz
0

= 0 and�
0

= 0 (z
0

;�

0

2 R

d).
3: for t = 0; : : : ; n

1

� 1 do
4: z

t+1

= z

t

.
5: �

t+1

= �

t

.
6: end for
7: for t = n

1

; : : : ; n

1

+ n

2

� 1 do

8: z

t+1

= �z

t

+

r�

U

t

(�; Y

t

)

�

U

t

(�; Y

t

)

9: �

t+1

= �

t

+

1

t� n

1

+ 1

[R

t+1

z

t+1

��

t

℄

10: end for
11: for t = n

1

+ n

2

; : : : ; n

1

+ n

2

+ n

3

� 1 do
12: z

t+1

= �z

t

.
13: �

t+1

= �

t

+R

t+1

z

t+1

.
14: end for

state, for anyn
1

; n

3

, the limit asn
2

!1 of the estimate�
produced by this algorithm is almost surely

r

�

� = �

0

rPJ

�

;

whereJ
�

= [J

�

(1); : : : ; J

�

(n)℄ is the vector of expected
discounted future rewards,

J

�

(i) = E

"

1

X

t=0

�

t

R

t

jX

0

= i

#

The vectorr
�

� is an approximation to the gradient that de-
pends on the parameter� of the algorithm. In the next sec-
tion, we prove a (non-asymptotic) bound on the estimation
errork��r

�

�k

1

of theGPOMDP algorithm, as a function
of n

1

; n

2

; n

3

.

5 CONVERGENCE RATE

We can rewrite�, the estimate produced by theGPOMDP
algorithm, progressively expanding terms involvingz

n

1

+n

2

,
thenz

n

1

+n

2

�1

, and so on up toz
n

1

+1

, and separating terms
involving distinct gradientsr

n

1

+t

. This gives

� =

1

n

2

n

2

�1

X

t=0

r

n

1

+t

 

n

2

+n

3

�1�t

X

s=0

�

s

R

n

1

+t+1+s

!

; (3)

where

r

t

=

r�

U

t

(�; Y

t

)

�

U

t

(�; Y

t

)

:
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This illustrates how the algorithm works: its estimate is a
weighted sum of the gradientsr�

U

t

(�; Y

t

), which are the
directions in parameter space that lead to a maximal increase
in the probability of the actionsU

t

that were chosen at each
time t. These directions are weighted by an estimate of the
value of that action (a discounted sum into the future of the
rewards that followed the actionU

t

). They are also weighted
by 1=�(U

t

), which ensures that very likely or unlikely ac-
tions are represented fairly in the average.

Each term in the sum (3) depends on the complete se-
quence of future rewards,R

t

. However, the dependence
decreases exponentially quickly, so the terms can be accu-
rately approximated by considering a finite window into the
future. To this end, we introduce a modified algorithm (the
k-blocked algorithm), which uses onlyk of the future reward
values. This algorithm returns

�

k

=

1

n

2

n

1

+n

2

�1

X

t=n

1

r

t

k�1

X

s=0

�

s

R

t+s+1

:

We assume thatk � n

3

+ 1.

Notice that the estimate�k of thek-blocked algorithm
is an average ofn

2

terms, each of which is a function of a
vector

S

k

t

= (r

t

; R

t+1

; R

t+2

; : : : ; R

t+k

) :

Define

�

k

t

= r

t

k�1

X

s=0

�

s

R

t+s+1

;

so that

�

k

=

1

n

2

n

1

+n

2

�1

X

t=n

1

�

k

t

:

Because of Assumptions 3 and 4, we have the bound

k�

k

t

k

1

�

BC

1� �

:

Lemma 12. Under Assumptions 1, 2, 3 and 4, the estimate
� returned by the GPOMDP algorithm and the estimate �k

returned by the k-blocked algorithm satisfy





�

k
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1

�

BC

1� �

�

k

:

Proof. Using Equation (3), we have




�

k

��





=

1

n

2













n

1

+n

2

�1

X

t=n

1

r

t

0

�

k�1

X

s=0

�

s

R

t+s+1

�

n

1

+n

2

+n

3

�(t+1)

X

s=0

�

s

R

t+s+1

1

A













�

1

n

2

n

1

+n

2

�1

X

t=n

1

kr

t

k

�

�

�

�

�

�

k�1

X

s=0

�

s

R

t+s+1

�

n

1

+n

2

+n

3

�(t+1)

X

s=0

�

s

R

t+s+1

�

�

�

�

�

�

�

1

n

2

n

1

+n

2

�1

X

t=n

1

kr

t

k

n

1

+n

2

+n

3

�(t+1)

X

s=k

�

s

jR

t+s�1

j

(for k � n

3

+ 1)

� sup

t

kr

t

k sup

t

jR

t

j

n

1

+n

2

+n

3

�(t+1)

X

s=k

�

s

;

which implies the result.

A similar proof, plus the ergodic theorem and the asymp-
totic convergence result in [3], give the following result.

Lemma 13.





E

�

�

k

t

�r

�

�





�

BC

1� �

�

k

:

We can now obtain the main result of this section. Recall
thatd is the number of policy parameters.

Theorem 14. If the process

S

k

t

= (r

t

; R

t+1

; R

t+2

; : : : ; R

t+k

)

is � -mixing, s � n

2

, and k � n

3

+ 1, then

Pr

�

k��r

�

�k

1

� �+

2BC

1� �

�

k

�

�

�

�

X

0

�1

�

�

sd

2

e

�bn

1

=�

+

n

2

d

2

e

�bs=�

+ 2sd exp

�

��

2

n

2

(1� �)

2

4B

2

C

2

s

�

:

The theorem is an easy consequence of the following the-
orem, applied to the function�k

t

of the vectorSk
t

, together
with Lemmas 12 and 13.

Theorem 15. If fX
t

g is � -mixing and f : X ! [a; b℄

d, and
s � n

2

, then

Pr

0

�











1

n

2

n

1

+n

2

�1

X

i=n

1

f(X

i

)� E

�

f











1

� �

�

�

�

�

�

�

X

0

�1

1

A

�

d

2

�

se

�bn

1

=�

+ n

2

e

�bs=�

+ 4s exp

�

��

2

n

2

4(b� a)

2

s

��

:



139

Proof. Combining Hoeffding’s inequality (Theorem 10) and
Lemma 9 shows that, for any� -mixing stochastic process
fX

i

g and anyf : X ! [a; b℄,

Pr

 

�

�

�

�

�

1

n

n�1

X

i=0

f(X

n

1

+it

) �E

�

f

�

�

�

�

�

� �

�

�

�

�

�

X

0

�1

!

�

1

2

e

�bn

1

=�

+

n � 1

2

e

�bt=�

+ 2 exp

�

�2�

2

n

(b� a)

2

�

: (4)

The idea of the rest of the proof is to split the sequence from
n

1

to n
1

+ n

2

� 1 intom interleaved subsequences, so that
each consecutive element of each of these subsequences is
separated bys time steps. Rapid mixing ensures that these
subsequences are approximately i.i.d. Suppose at first that
n

2

= ms for some positive integerm. Then

Pr

0

�











1

n

2

n

1

+n

2

�1

X

i=n

1

f(X

i

) �E

�

f











1

� �

�

�

�

�

�

�

X

0

�1

1

A

� Pr

0

�

9n

1

� j � n

1

+ s � 1 :











1

m

m�1

X

i=0

f(X

is+j

)� E

�

f











1

� �

�

�

�

�

�

X

0

�1

!

� smax

j

Pr

 










1

m

m�1

X

i=0

f(X

is+j

)� E

�

f











1

� �

�

�

�

�

�

X

0

�1

!

;

(5)

where the max is overn
1

� j � n

1

+ s� 1. Now, the union
bound and Inequality 4 imply that
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1

m

m�1

X

i=0

f(X

is+j

) �E

�

f











1

� �

�

�

�

�

�

X

0

�1

!

� d

�

1

2

e

�bj=�

+

m � 1

2

e

�bs=�

+ 2 exp

�

�2�

2

m

(b � a)

2

��

:

Thus, the right hand side of (5) is no more than

sd

�

1

2

e

�bn

1

=�

+

m� 1

2

e

�bs=�

+ 2 exp

�

�2�

2

m

(b� a)

2

��

:

Now, for any positive integers, if s does not dividen
2

, we
can use a similar argument, but some of the subsequences
in (5) will be of lengthm

j

= bn

2

=s and some of length
m

j

= dn

2

=se. But fors � n

2

,

n

2

=(2s) � bn

2

=s � n

2

=s � dn

2

=se � n

2

=s+1 � 2n

2

=s:

So the same argument shows that
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0

�
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2

n
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+n

2
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X
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1
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i
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�
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1

�

�
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�
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�

�

X

0

�1

!

�
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2

e

�bn

1

=�

+

n

2

d

2

e

�bs=�

+ 2sd exp

�

��

2

n

2

4(b� a)

2

s

�

;

where the max is overn
1

� j � n

1

+ s� 1.

Simple manipulations and logarithmic inequalities (see,
for example, the appendix of [1]) give the following corol-
lary.

Corollary 16. Suppose that the process

S

k

t

= (r

t

; R

t+1

; R

t+2

; : : : ; R

t+k

)

is � -mixing, � � n

2

, and k � n

3

+ 1. Then for

n

1

� 2� ln(3dn

2

=Æ);

with probability at least 1� Æ (conditioned on X0

�1

),

k��r

�

�k

1

= O

�

BC

1� �

�

�

k

+

r

�

n

2

ln

�

n

2

d

Æ

���

:

Equivalently, if

k �

1

1� �

ln

�

4BC

(1� �)�

�

;

n

1

�2� ln

�

3dn

2

Æ

�

; and

n

2

=


�

B

2

C

2

�

�

2

(1� �)

2

ln

2

�

d�B

2

C

2

�

2

(1� �)

2

Æ

��

;

then

Pr

�

k��r

�

�k

1

� �

�

�

X

0

�1

�

� Æ:

When isSk
t

� -mixing? Since it is composed ofr
t

and
k subsequent reward values, we expect that if the underlying
state is rapidly mixing, then so isSk

t

. The following result
shows that the mixing time ofSk

t

is not much worse than that
of the underlying Markov chain.

Lemma 17. If a Markov chain fX
t

g is � -mixing, then the
Markov chain (X

t

; X

t+1

; : : : ; X

t+k

) is � 0-mixing, where

�

0

� � ln(e(k + 1)):

Proof. The same argument as in the proof of Lemma 9 shows
that if the Markov chainfX

t

g is � -mixing, then the condi-
tional distributionpt of (X

t

; X

t+1

; : : : ; X

t+k

), givenXt

0

�1

,
has

d

TV

(p

t

; �) � (k + 1) exp

�

�

�

t

�

��

= exp

�

�

�

t

�

� ln(k + 1)

��

� exp

�

�

�

t

� (1 + ln(k + 1))

��

:

Since the stochastic process

S

k

t

= (r

t

; R

t+1

; : : : ; R

t+k

);

conditioned on(X
t

; : : : ; X

t+k

), is i.i.d., this implies that the
mixing time of Sk

t

is never more than the mixing time of
the Markov process(X

t

; X

t+1

; : : : ; X

t+k

). Together with
Corollary 16, this gives the following result.
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Corollary 18. If the Markov chain M (�) is � -mixing, then
for

n

1

� 2� ln(e(n

3

+ 2)) ln(3dn

2

=Æ);

for any start state X
0

, with probability at least 1� Æ

k��r

�

�k

1

= O

 

BC

1� �

 

�

n

3

+

r

� lnn

3

n

2

ln

�

n

2

d

Æ

�

!!

:

Notice that this corollary is weaker than Corollary 16,
since the mixing time ofM (�) provides only a loose up-
per bound on the mixing time ofSk

t

. In particular, suppose
the stateX

t

decomposes into(V
t

;W

t

), whereV
t

is rapidly
mixing, butW

t

is slowly mixing (and the evolution of each
is independent of the other). Then ifr

t

andR
t

depend
only onV

t

, they will mix rapidly, but the bound implied by
Lemma 17 will be poor. A similar example shows that we
cannot obtain a bound on the mixing time ofSk

t

in terms
of that ofr

t

(or that ofR
t

): consider what happens ifr
t

depends only onV
t

, butR
t

depends only onW
t

.

6 APPROXIMATION ERROR

The estimate� produced by theGPOMDP algorithm con-
verges tor

�

�, an approximation to the gradientr�. In [3],
we showed that this approximation is accurate, provided that
the time constant1=(1� �) is large compared with the mix-
ing time�� of the derived Markov chainM (�). But the proof
in [3] required the assumption that the eigenvalues of the
state transition probability matrix ofM (�) are all distinct.
In this section, we present a similar result, but without the
restriction on the eigenvalues of the state transition proba-
bility matrix. The result is in terms of a slightly different
mixing time, based on the�2 distance. (Despite the name,
the�2 distance is not symmetric).

Definition 19. Given two probability distributions P; � on
f1; 2; : : : ; Ng, with �

i

> 0 for all i, the �2 distance between
P and � is given by

d

�

2
(P; �) =

 

N

X

i=1

(P

i

� �

i

)

2

�

i

!

1=2

:

Lemma 20. For any two probability distributions P; � on
f1; 2; : : : ; Ng, with �

i

> 0 for all i,

d

TV

(P; �) � d

�

2
(P; �):

Proof. We can define a vectorv with v

i

= jp

i

� �

i

j=

p

�

i

,
so thatd

�

2
(P; �) = kvk. But d

T

V (P; �) =

p

�

0

v, where
p

� =

�

p

�

1

; : : : ;

p

�

N

�

. Sincek
p

�k = 1, the Cauchy-
Schwartz inequality implies the result.

Theorem 21. Partition the state transition probability ma-
trix P as

P

t

=

2

6

4

p

t

1

0

...

p

t

N

0

3

7

5

:

Suppose there are constants ; �� for which

�

E

X��

d

2

�

2

(p

t

X

; �)

�

1=2

�  exp

�

�

t

�

�

�

:

Then for all � 2 [0; 1),

kr�(�) � �r

�

�(�)k � kr

p

�

0

kk�

1=2

rk(1� �)�

�

;

where � = diag(�).

Notice thatk��1=2rk2 is the expectation ofR2

t

under
the stationary distribution. This result improves on the cor-
responding result in [3] by removing the restriction on the
distinctness of the eigenvalues of the transition probability
matrix. Unfortunately, the constants in this result are notas
small as we might like. In particular, it is easy to show that

E

X��

d

�

2

�

p

t

X

; �

�

2

� N � 1;

and the caset = 0 illustrates that this bound is tight. Thus,
the constant in the condition of Theorem 21 must be linear
in the sizeN of the state space, and hence to get a useful
bound,(1 � �) needs to be linear inN . The result in [3]
suggests that Theorem 21 can be improved.

The proof of Theorem 21 uses the following lemma.

Lemma 22.
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Proof. Write p

t

j
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t
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t
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)

0. Then for anyv =
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)

0, we have
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;

where both inequalities follow from the Cauchy-Schwartz
inequality.
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Proof. (of Theorem 21) Theorem 5 in [3] shows that
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