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Abstract

We investigate the computational complexity of the
task of detecting dense regions of an unknown dis-
tribution from un-labeled samples of this distribu-
tion. We introduce a formal learning model for
this task that uses a hypothesis class as its ‘anti-
overfitting’ mechanism.

The learning task in our model can be reduced to a
combinatorial optimization problem. We can show
that for some constants, depending on the hypoth-
esis class, these problems are NP hard to approxi-
mate to within these constant factors.

We go on and introduce a new criterion for the suc-
cess of approximate optimization geometric prob-
lems. The new criterion requires that the algorithm
competes with hypotheses only on the points that
are separated by some margin� from their bound-
aries.

Quite surprisingly, we discover that for each of the
two hypothesis classes that we investigate, there is
a ’critical value’ of the margin parameter�. For
any value below the critical value the problems
are NP hard to approximate, while, once this value
is exceeded, the problems become poly-time solv-
able.

1 INTRODUCTION

Un-supervised learning is an important area of practical ma-
chine learning. Just the same, the computational learning
theory literature has hardly addressed this issue. Part of this
discrepancy may be due to the fact that there is no formal
well defined model that captures the many different tasks that
fall into this category. While the formation of such a compre-
hensive model may be a very difficult task, its absence should
not deter the COLT community from researching models that
capture restricted subareas of un-supervised learning. Inthis
paper we investigate the computational complexity aspects
of a formal model that addresses one specific task in this do-
main.

The model we discuss addresses the problem of locat-
ing the densest sub-domains of a distribution on the basis of
seeing random samples generated by that distribution. This

is, undoubtedly, one of the applicable tasks of un-supervised
learning.

The scenario that we address is one in which the learner
is supposed to infer information about an unknown distribu-
tion from a random sample it generates. An adequate model
should therefore include some mechanism for avoiding over-
fitting. That is, the model should impose some restrictions
on the class of possible learner’s outputs. The model we
propose fixes a collection of domain subsets (a hypothesis
class, if you wish) ahead of seeing the data. The task of the
learner is to find a member of this class in which the average
density of the example-generating distribution is maximized.
For simplicity we restrict our attention to the case that the
domain is the Euclidean spaceRn. Density is defined rela-
tive to the Euclidean volume. By restricting our hypothesis
classes to classes in which all the sets have the same volume,
we can ignore the volume issue.

A model similar to ours was introduced by Ben-David
and Lindenbaum [2]. In that paper a somewhat more gen-
eral learning task is considered; Given a thresholdr 2 [0; 1]

the learner is required to output the hypothesis in the class
that best approximates the area on which the distribution has
density abover. Ben-David et al define a notion of a cost of
a hypothesis, relative to a target distribution, and prove(�; �)

type generalization bounds. As can be expected, the sample
size needed for generalization depends on the VC-dimension
of the underlying hypothesis class. We refer to that paper for
a discussion of the relevance and potential applications of
the model. However, [2] does not address the computational
complexity of learning in this model.

Standard uniform convergence considerations imply that
detecting a hypothesis (domain subset from the hypothesis
class) with close-to-maximal density is essentially equiva-
lent to detecting a hypothesis that approximates the maximal
empirical density, with respect to the training data. We are
therefore led to the following, purely combinatorial, prob-
lem:

Given a collection H of subsets of some domain
set, on input – a finite subset S of the domain –
output a set h 2 H that maximizes jS \ hj

We consider two hypothesis classes: the class of axis
aligned hypercubes and the class of balls (both inRn). For
each of these classes we prove that there exists some
 > 0

(independent of the input sample size and dimensionality)
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such that, unless P=NP, no polynomial time algorithm can
output, for every input sample, a hypothesis in the class that
has agreement rate (on the input) within a factor of
 of the
optimal hypothesis in the class.

On the other hand, we consider an alternative to the com-
mon definition of approximation. Rather than requiring an
approximation algorithm to achieve a fixed success ratio over
all inputs (or over all inputs of the same size or dimension-
ality), we let the required approximation ratio depend on the
structure of each specific input. Given a hypothesis classH

of subsets of[
n

<

n, and a parameter� > 0,

a�-successful learning algorithm forH is an algo-
rithm that, for every input sample, outputs a mem-
ber ofH that contains as many sample points as
any member ofH can containwith margin > �

(where the margin of a point relative to a hypothe-
sis is the radius of the largest ball around the point
that is fully contained in the hypothesis).

In other words, A�-successful algorithm is required to
output a hypothesis with close-to-optimal performance on
the input data, whenever this input sample allows a maxi-
mal intersection (with a member ofH) that achieves large
enough margin for most of the points it contains. On the
other hand, if for every elementh 2 H that achieves close-
to-maximal-size intersection with the input a large percent-
age of the points in the intersection are close toh’s bound-
aries, then an algorithm can settle for a relatively poor suc-
cess ratio without violating the�-success criterion.

One appealing feature of this new performance measure
is that it provides a rigorous success guarantee for agnos-
tic learning that may be achieved by efficient algorithms for
classes that can’t have poly-time algorithms that succeed with
respect to the common ‘uniform’ approximation ratio crite-
rion. We shall show below that the class of balls provides
such an example, and in a forthcoming paper [3] we show
that the class of linear perceptrons is another such case.

This paper investigates the existence of�-successful learn-
ing algorithms. Clearly,�-success gets easier to achieve as�

grows, and is hardest for� = 0, in which case it becomes the
usual optimization problem (without approximation). These
exact optimization problems – finding the densest ball or the
densest hypercube – are NP-hard, as we show below (for
other NP-hardness results of this type see [5], [6]). We are
interested in determining the values of� at which the NP
hardness of the approximation problems breaks down.

Quite surprisingly, for each of the classes we investigate
(axis-aligned hyper-cubes and balls), there exists a value�

0

so that, on one hand, for every� > �

0

, there exist efficient�-
successful algorithms for the class, while on the other hand,
for every� < �

0

�-learnability is NP-hard. That is, assum-
ing P6=NP, no�-successful learning algorithms for the class
runs in polynomial time. Furthermore, there exists a positive
constant such that for every� < �

0

it is NP-hard to approx-
imate the optimal margin-� success ratio of members of the
class to within this constant factor. A similar phenomena
holds also for the class of linear perceptrons [3].

The paper is organized as follows: Section 2 introduces
the combinatorial optimization problems that we shall be

considering along with some basic background in hardness-
of-approximation theory. Section 3 discusses the class of
hypercubes and provides both the positive algorithmic result
and the negative hardness result. Next we discuss the class of
balls, Section 4 brings the hardness result for this class while
the following Section 5 provides the optimization algorithm
for the�-margin relaxation of the densest ball problem. Fi-
nally, in Section 6 we list several possible extensions of this
work.

2 DEFINITIONS AND BASIC RESULTS

In this section we introduce the combinatorial problems that
we shall address in this paper. We then proceed to provide
the basic definitions and tools that we shall use from the
theory of approximation of combinatorial optimization prob-
lems. We end this section with a list of the previously known
hardness-of-approximation results that we shall employ in
our work.

2.1 THE COMBINATORIAL OPTIMIZATION
PROBLEMS

In this paper, we discuss combinatorial optimization prob-
lems of the following type:

The densest set problem for a class H: Given a collection
H = [

1

n=1

H

n

of subsets,H
n

� 2

<

n

, on input –(n; S)
whereS is a finite multi-set of points in<n – output a
seth 2 H

n

so thath contains as many points fromS as
possible (accounting for their multiplicity inS).

We shall mainly be concerned with two instantiations of
the above problem;

Densest Open Ball (DOB) Each classH
n

is the class of all
open balls of radius1 in <n.

Densest Axis-aligned Cube (DAC) Each classH
n

consists
of all cubes with side length equal1 in <

n. That is,
each member ofH

n

is of the form
Q

n

i=1

I

i

, where the
I

i

’s are real intervals of the formI
i

= [a

i

; a

i

+ 1].

In both cases let us denotem = jSj.
For the sake of our proofs, we shall also have to address

some other optimization problems, namely:

MAX-E2-SAT Input is a collectionC of 2-clauses overn
Boolean variables. The problem is to find an assign-
menta 2 f0; 1g

n satisfying as many 2-clauses ofC as
possible. We denote bym the number of clauses inC.

BSH Inputs are of the form(n; S
+

; S

�

), wheren � 1,
andS

+

; S

�

are multi-sets of (not necessarily different)
points from<

n. We denotem
+

= jS

+

j andm
�

=

jS

�

j. A hyper-planeH(w; t), wherew 2 <

n andt 2
<, correctly classifies p 2 S

+

if wp > t, and it cor-
rectly classifies p 2 S

�

if wp < t. The problem is to
find theBest Separating Hyper-plane for S

+

andS
�

,
that is, a pair(w; t) 2 <

n

� < such thatH(w; t) cor-
rectly classifies as many points fromS

+

[ S

�

as pos-
sible (accounting for their multiplicities in the listsS

+

andS
�

).



257

DOH This is the densest set approximation problem for the
class of open hemispheres. That is, inputs are multi-sets
S of points fromS

n�1 - the (n � 1) dimensional unit
sphere. and each classH

n

is the class of all sets of the
form fx : wx > 0g for w 2 <

n.

DCB The Densest Closed Ball problem is the same as the
Densest Open Ball problem, except that nowH

n

con-
sists of closed radius 1 balls.

2.2 BASICS OF COMBINATORIAL
OPTIMIZATION APPROXIMATION THEORY

For each maximization problem� and each input instance
I for �, opt

�

(I) denotes the maximum profit that can be
realized by a legal solution forI. Subscript� is omitted
when this does not cause confusion. The profit realized by
an algorithmA on input instanceI is denoted byA(I). The
quantity

opt(I) � A(I)

opt(I)

is called therelative error of A on input instance I. A is
called a�-approximation algorithm for �, where� 2 <

+, if
its relative error onI is at most� for all input instancesI.

The tool we use to show hardness results for these max-
imization problems is the basic cost-preserving reduction:
Let� and�0 be two maximization problems. Acost preserv-
ing polynomial reduction from � to �

0, written as��cp
pol�

0

consists of the following components:

� a polynomial time computable mappingI 7! I

0, which
maps an input instanceI of � to an input instanceI 0 of
�

0

� for eachI, a mapping� 7! �

0, which maps a legal
solution� for I with profit s to a legal solution�0 for I0

with the same profits

� for eachI, a polynomial time computable mapping�0 7!
�, which maps a legal solution�0 for I0 with profit s to
a legal solution� for I with the same profits

The following result is evident:

Lemma 2.1 If ��
cp
pol�

0 and there is no polynomial time �-

approximation algorithm for �, then there is no polynomial
time �-approximation algorithm for �0.

2.3 SOME KNOWN
HARDNESS-OF-APPROXIMATION RESULTS

We shall base our hardness reductions on two known results.

Theorem 2.2 [Håstad, [4]] Assuming P6=NP, for any � <

1=22, there is no polynomial time �-approximation algorithm
for MAX-E2-SAT.

Theorem 2.3 [Ben-David, Eiron and Long, [1]] Assuming
P6=NP, for any � < 3=418, there is no polynomial time �-
approximation algorithm for BSH.

Claim 2.4 BSH�
cp
polDOH.

Proof: By adding a coordinate one can translate hyper-
planes tohomogeneous hyper-planes (i.e., hyper-planes that
pass through the origin). To get from the homogeneous hyper-
planes separating problem to the densest hemisphere prob-
lem one applies the standard scaling and reflection tricks.

Corollary 2.5 Assuming P6=NP, for any � < 3=418, there is
no polynomial time �-approximation algorithm for DOH.

Before we proceed, let us fix some notation for the sub-
sets of<n that we shall be dealing with. Letn � 1, w; z 2
<

n, t 2 <, andR 2 <

+. H(w; t) = fx 2 <

n

: wx = tg de-
notes the hyper-plane induced byw andt. H

+

(w; t) = fx 2

<

n

: wx > tg andH
�

(w; t) = fx 2 <

n

: wx < tg de-
note the corresponding positive and negative open halfspace,
respectively.B(z;R) = fx 2 <

n

: kz � xk

2

< Rg de-
notes the open ball of radiusR around centerz. �

B(z;R) =

fx 2 <

n

: kz�xk

2

� Rg denotes the corresponding closed
ball. Sn�1 = fx 2 <

n

: kxk

2

= 1g denotes the(n � 1)-
dimensional unit sphere.

2.4 THE NEW NOTION OF APPROXIMATION –
�-RELAXED DENSEST SET PROBLEMS

As mentioned in the introduction, we shall also discuss a
variant of the above notion of approximation for densest set
problems. The idea above this new notion, that we term ‘�-
margin approximation’, is that the required approximation
rate varies with the structure of the inout sample. When
there exist optimal solutions that are ‘stable’, in the sense
that minor variations to these solutions will not effect their
cost, then we require a high approximation ratio. On the
other hand, when all optimal solutions are ‘unstable’ then
we settle for lower approximation ratios.

Definition 2.6 Given a hypothesis class H = [

n

H

n

and a
real parameter � > 0,

� For h � <

n, let h�� be the set of points that are in-
cluded in h with a margin �. That is:

h

��

4

=

�

x 2 <

n

:

�

B(x; �) � h

	

� Given a finite P � <

n, a hypothesis h 2 H

n

is a �-
margin approximationfor P w.r.t. H if

jP \ hj � max

h2H

�

�

P \ h

��

�

�

:

� The �-relaxationversion of the densest set problem for
a class H is to output, for every n and every finite input
set P � <

n, a �-margin approximation for P w.r.t.
H. We shall use superscript � to denote the �-relaxed
version of a problem. For example, DAC� denotes the
� relaxation of DAC.

� A densest set algorithmA for a class H is an algorithm
that on inputP subset<

n outputs a hypothesisA(P ) 2

H

n

.

� A densest set algorithm A is �-successfulfor H if it
solves the �-relaxation version of the densest set prob-
lem for H. In other words, if for every finite input
P � <

n, its output A(P ) is a �-margin approximation
for P w.r.t. H.
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3 THE DENSEST CUBE PROBLEM AND
ITS �-RELAXATIONS

For the DAC problem, we show a hardness of approxima-
tion result, that extends to the�-relaxed problem for every
� < 1=4. We complement this result with a positive result,
showing that there exist a�-succesful polynomial time algo-
rithm for DAC, for all � � 1=4. This result is quite surpris-
ing in that it gives a tight bound on the relaxation required to
solve DAC efficiently. Let us first show the negative result:

Theorem 3.1 The densest cube problem is NP-hard to ap-
proximate to within � for every � < 1=22. Furthermore, this
hardness result holds for the relaxed DAC� problem for any
� < 1=4.

Proof: We define a cost-preserving reduction of MAX-E2-
SAT to the densest cube problem. First, we define a mapping
� from instances of MAX-E2-SAT (overn variables) to sub-
sets of<n. Let v

1

: : : ; v

n

be the variables that appear in the
propositional formulas. Leth be the following function:

8i h(v

i

) = e

i

= (0; : : : ; 0

| {z }

i�1

; 1; 0; : : :; 0)

8i h(v

i

) = �e

i

= (0; : : : ; 0

| {z }

i�1

;�1; 0; : : :; 0)

Given a 2-clausel
1

_ l

2

, define

�(l

1

_ l

2

)

4

=

fh(l

1

) + h(l

2

);�h(l

1

) + h(l

2

); h(l

1

) � h(l

2

)g :

Informally, we associate with each clause three points in the
hyper-plane spanned by the coordinates that correspond to
the variables of this clause. These three points correspondto
the three truth assignment to these variables that satisfy the
given clause.

Finally, define� over formulas to be:

�

 

m

^

i=1

c

i

!

=

m

[

i=1

�(c

i

):

Given a cubeR = �

n

i=1

I

i

and a 2CNF formula�, we
define a truth assignmentg(R) by setting

g(C)(v

i

) = T iff 1 2 I

i

In the other direction, given a truth assignment

s : fv

1

; : : : ; v

n

g 7! fF; Tg;

we define a corresponding cubeR(s) = �t

s

i

where

t

s

i

= [0; 1] if s(v

i

) = T and t

s

i

= [�1; 0] if s(v

i

) = F

For any given� < 1=4 we constract a mapping�
�

from
propositional formulas to subsets of<n. The mapping�

�

is the same as the mapping� above, except that for some
1 � 2� > � > 1=2 all the coordinates of the points in�(�)
are multiplied by� (so the values of the non-zero entries are
+=�� rather than+=�1). Similarly, we define the functions
from cubes to truth assignments byg

�

(C) = T iff � 2 I

i

,
and the functions in the inverse direction byt

s

i

= [��; 1��]

if s(v
i

) = T and ts
i

= [�(1 � �); �] if s(v
i

) = F . The
following three observations suffice to show that, for every
� < 1=4 these reductions are cost preserving.
In the following let� denote a 2-CNF formula and let�(�)
be its image under the above construction.

1. For every� and every clauseC in it, any unit-size rect-
angle contains at most one point from�

�

(C).

2. For every unit-size rectangleh and every clauseC, if
h \ �

�

(C) 6= ; theng(h) satisfiesC.

3. For every clauseC and every truth assignments, if s
satisfiesC thenR(s) \ �(C) 6= ;.

The complementary positive result uses a rather simple
algorithm. Recall that all that is required of a�-successful
algorithmfor the DAC problem, is to output a cubeC that in-
cludes as many points of the input as an optimal cube would
include with a margin at least�. Let fp

1

; : : : ; p

m

g be the
points inP , the input to the algorithm.

Algorithm 3.2:

1. For alli 2 f1; : : : ;mg do:

(a) LetC
i

be the cube of side length1 whose center is
p

i

.

(b) Let c
i

4

= jC

i

\ P j.

2. Output the cubeC
j

for which c
j

is maximal.

Theorem 3.3 Algorithm 3.2 is a polynomial time�-successful
algorithm for DAC for any � � 1=4.

Proof: The claim on the running time of the algorithm is
immediate: We loop over all points, construct a cube around
each, and check inclusion of all other points within this cube.
All these operations may easily be carried out in time poly-
nomial inn andm.

To prove the correctness of the algorithm, we have to
show that for any� � 1=4, the output of this algorithm
is a cube containing at least as many points fromP as the
optimal cube of side length1 does. LetC be some cube of
side length1, that includes a maximal number of points from
P with a margin� (i.e., jP \ C

��

j is maximal). Consider
somep

i

2 C \ P . The cubeC
i

, defined above in the de-
scription of the algorithm, will contain all points that have
distance� 1=2 from p

i

in thel
1

norm. However, no pair of
points inP \ C

�� are more than1=2 apart in thel
1

norm.
Hence,P \C

��

� C

i

\P . Since the algorithm chooses the
C

i

that maximizes the number of points it includes, its out-
put will satisfy the conditions required from a�-successful
algorithm.

4 HARDNESS OF APPROXIMATION FOR
THE DENSEST BALL PROBLEM

In this section, we callH
+

(w; 0) an open hemisphere be-
cause we use the hyper-planeH(w; 0) as a separator of the
unit sphereSn�1 into two hemispheres. We may further-
more assume thatkwk

2

= 1 because vectorsw and �w,
� > 0, lead to the same separation ofS

n�1.

Lemma 4.1 DOH�
cp
polDOB.
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Proof: Let P be an input instance for DOH of sizem in
S

n�1. We choose the sameP as the corresponding input
instanceI` of DOB.

Let C(w;P ) be the multi-set of points fromP that be-
long toH

+

(w; 0), and letC 0(z; P ) is the multi-set of points
from P that belong toB(z; 1). The reduction from DOH to
DOB is now accomplished by proving the following state-
ments:

8w 2 S

n�1

; 9z 2 <

n

: C(w;P ) � B(z; 1): (1)
8z 2 <

n

: B(z; 1) � H

+

(z; 0): (2)

These statements imply that there exists an open hemisphere
containing at leasts points ofP iff there exists an open unit
ball containing at leasts points ofP . Thus, we have a cost-
preserving reduction from DOH to DOB.

To prove statement (1), we set� = min

p2C(w;P )

jwpj .
This implies thatwq � � for all q 2 C(w;P ). We claim
that z = �w is an appropriate choice forz, i.e., eachq 2

C(w;P ) also belongs toB(z; 1). Usingww = qq = 1, this
claim is evident from the following calculation:

kz � qk

2

2

= (z � q)(z � q)

= zz � 2zq + qq

= �

2

ww � 2�wq + qq

= �

2

� 2�wq+ 1

� �

2

� 2�

2

+ 1

= 1� �

2

< 1

In order to prove statement (2), we have to show that
eachq 2 B(z; 1) satisfieszq > 0. To this end, note first that
q 2 B(z; 1) implies that

1 > kz � qk

2

2

= zz � 2zq + qq

= zz � 2zq + 1

� �2zq + 1:

Clearly, this implies thatzq > 0.
Applying Corollary 2.5 we readily get

Theorem 4.2 Assuming P6=NP, for any � < 3=418, there is
no polynomial time �-approximation algorithm for DOB.

Applying a similar construction we get a hardness result for
the densest set problem for the class ofclosed radius 1 balls.
Namely,

Theorem 4.3 Assuming P6=NP, for any � < 1=198, there is
no polynomial time �-approximation algorithm for DCB.

For lack of space we defer the proof to the full version of the
paper.

5 COMPUTATION OF DENSE BALLS

We know from Section 4 that it is an NP-hard problem to
find an (approximately) densest (open or closed) ball for a
given set of points in<n. In this section, we show that, for
each constant� > 0, the�-relaxation of this problem can
be solved optimally in polynomial time. Remember that, in
the relaxed version of the problem, we assume that the input
setS � <

n is �-robust for balls. It is easy to see that the
�-robustness ofS is equivalent to the following condition:

If the optimal ball of radius 1 contains q points of
S, then there exists a ball of radius 1 � � which
also contains q points of S.

The main result of this section is:

Theorem 5.1 There exists a family (A

k

)

k�1

of polynomial
time algorithms such that for all n � 2 the following holds.
A

k

on input S � <

n outputs a point y 2 <

n such that the

closed ball �

B(y; 1 +

p

1=k) contains not less points of S
than the optimal closed ball of radius 1.

We postpone the proof of this theorem to Subsections 5.1
and 5.2. Theorem 5.1 immediately implies the following re-
sult:

Corollary 5.2 For each � > 0, there exists a polynomial
time algorithmA which solves the �-relaxation of the Dens-
est Closed Ball Problem optimally.

Proof: The proof is based on “Scaling and Rescaling”. We
omit the details in this brief abstract and only note that it is
sufficient to choosek such that

p

1=k �

�

1��

, to applyA
k

to a properly scaled version of inputS and to re-scale the
output properly.k = 1 + d1=�

2

e is a possible choice fork.

In the next two subsections, we describe and analyze the
family A

k

of algorithms that witnesses the correctness of
Theorem 5.1.

5.1 A FAMILY OF ALGORITHMS FOR THE
DENSEST BALL PROBLEM

The naive implementation of algorithmA
k

is quite simple to
describe. On inputS � <

n, it exhaustively searches through
all subsetsT of S of size k and outputs the centerz

T

of
the smallest ball in<n that containsT . Then it computes
the profitp(T ) achieved byT , that is, the number of points
from S that fall into the ball �B(z

T

; 1 +

p

1=k). Finally,
it selects the setT with a maximal profit and outputsz

T

.
This implementation takesjSjkpoly(jSj) steps under the unit
cost measure. We briefly note that there exists a more clever
implementation which takes only2O(k)poly(jSj) steps under
the uniform cost measure. The interested reader is referred
to the full paper.

In order to prepare the geometric analysis that is given in
the next subsection, we make the following technical obser-
vations:

� We may assume without loss of generality that the op-
timal ball �B

S

of radius1 for inputS has at leastn + 1

points ofS on its sphere. We briefly sketch why. First,
we can conceptually shrink�B

S

as long as this does not
diminish the profit. LetS0 � S denote the set of points
fromS belonging to�B

S

after the shrinking phase. Now
�

B

S

is the smallest ball containingS0. If jS0j < n + 1,
our analysis may switch to a lower-dimensional ball of
dimensionjS0j � 1. Now jS

0

j = n

0

+ 1 holds for the
reduced dimensionn0. It can be strictly argued that the
worst-case for the algorithm occurs, when no shrinking
occurs and the dimensionality does not decrease. De-
tails are given in the full paper.
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� If jS0j � n + 1 and �

B

S

is the smallest ball containing
S

0, then there exists a subsetS00 of S0 of sizen + 1

such that�B
S

is the smallest ball containingS00. The
latter condition is equivalent to saying that the(n+ 1)-
simplex induced byS00 contains the center of�B

S

.

The main result of the next subsection, Corollary 5.11,
will imply that there exists a subsetT of S00 of sizek such
that �B(z

T

; 1+

p

1=k) contains�B
S

. This proves Theorem 5.1.
Since the location of the ball�B

S

is immaterial for our
analysis, we may assume for the sake of simplicity that its
center coincides with the origin�0 2 <

n. Thus the analysis
of algorithmA

k

boils down to a purely geometric question:
given a setS consisting ofn+ 1 points on the sphere of the
closed unit ball�B(

�

0; 1) such that the induced(n+1)-simplex
contains the origin, does there exist a subsetT of S of sizek
such that�B(z

T

; 1+

p

1=k) contains�B(

�

0; 1)? This question
will be answered affirmatively in the next subsection.

5.2 GEOMETRIC ANALYSIS

Throughout this subsection, we make the following nota-
tional conventions. �0 denotes the all-zeros vector in<n.
B

�

=

�

B(

�

0; 1), i.e.,B
�

denotes the closed unit ball in<n. S
�

denotes the unit sphere in<n. A (n + 1)-simplex with ver-
tices on S

� is given byn + 1 points (also called “vertices”)
fromS

�

. Since we discuss only(n+ 1)-simplexes with ver-
tices onS

�

(together with their sub-simplexes), we simply
say(n+ 1)-simplex in the sequel. It should be clear without
saying that each(n+ 1)-simplex contains a whole hierarchy
of lower-dimensional sub-simplexes. A sub-simplex withk

points is calledk-sub-simplex. A n-sub-simplex is called a
face, a2-sub-simplex is called anedge, and a1-sub-simplex
is called avertex. LetK be a(n+1)-simplex andK 0 a face of
K. The unique hyper-plane in<n that containsK0 is called
thesupporting hyper-plane of K 0 and denoted byH(K

0

) (or
simply byH0). Note that the intersection ofH 0 andB

�

is
a closed(n � 1)-dimensional ball. We denote this ball by
B(K

0

) (or simplyB0) and its center byz(K 0

) (or simplyz0).
Pointz(K 0

) is called thecenter of K0. The notion of a cen-
ter is generalized to lower-dimensional sub-simplexes in the
obvious way. A simplex that does not contain its center is
calledmarginal. Figure 1 shows two examples. In our proof
we will also be interested in the radius of the ball inscribedin
a simplexK. We denote the radius of such ballr(K). r(K)

is, theorefore, the minimal distance between the origin and
any point on a face if the(n+ 1)-simplexK.

A regular (n+ 1)-simplex is a(n + 1)-simplex with the
property that for allk = 1; : : : ; n, all its k-sub-simplexes
are congruent. Since it is unique up to rotation, we speak of
“the” regular(n+ 1)-simplex and denote it byK

�

. All sub-
simplexes ofK

�

are again regular (in a lower-dimensional
space). Note that a center of a regular simplex coincides
with the center of gravity of its vertices. Clearly, regular-
ity implies non-marginality. Figure 2 shows the regular3-
and the regular4-simplex (augmented with some additional
information whose purpose will be clarified later). The ser-
pentine lines indicate lines of length1. The same convention
is used for the subsequent figures.

Lemma 5.3 Let z0 be the center of a face K0

�

of the regular
(n+ 1)-simplex K

�

. Then kz0k
2

= 1=n.

Proof: The proof is illustrated in Figure 2(b). Note thatz

0

is the projection of the originz =

�

0 to the supporting hyper-
planeH(K

0

�

). Choose an orthonormal base for<

n with one
base vector, say thei-th one, in direction(z; z0). Thus,z0

has only one coordinate, namelyz0
i

, which is different from
0. Note that all of then vertices inK0

�

havez
i

as i-th co-
ordinate. Thei-th coordinate of the remaining vertex is�1.
Because of regularity,z

i

= 0 is the average of thei-th coor-
dinates of alln+ 1 vertices ofK

�

, i.e.,0 = z

i

= �1 + nz

0

i

.
Thus,z0

i

= 1=n. We conclude thatkz0k
2

= jz

i

j = 1=n.

Lemma 5.4 Let z(k) be the center of a k-sub-simplex K

00

�

of the regular (n + 1)-simplex K
�

. Then kz(k)k
2

= R

k;n

,

where R(k; n) =

q

n�k+1

kn

.

Proof: The proof is illustrated in Figure 3(a).z

(n+1)

=

�

0 denotes the center ofK
�

, z(n) denotes the center of the
n-sub-simplexK0

�

of K
�

which containsK00

�

, andz(0) de-
notes a vertex ofK00

�

. The rest of the proof makes use of
the fact that the triangles induced byz(0); z(n); z(n+1) and
z

(k)

; z

(n)

; z

(n+1), respectively, have both a right angle at
z

(n).
Note first thatK0

�

is a regularn-simplex, except that its
vertices belong to the sphere of a ball of radiusr

n

= kz

(n)

�

z

(0)

k

2

< 1. According to the law of Pythagoras,r2
n

= 1 �

1=n

2. Thus,K0

�

is a regularn-simplex up to the scaling
factorr

n

=

p

1� 1=n

2.
Let R

k;n

= kz

(k)

k

2

, i.e.,R
k;n

denotes the distance be-
tweenz(k) and the centerz(n+1) =

�

0 of K
�

. Note that
R

0

k;n�1

= kz

(n)

� z

(k)

k

2

coincides withR
k;n�1

up to the
scaling factorr

n

, i.e.,R0
k;n�1

= r

n

R

k;n�1

. Applying again
the law of Pythagoras, we arrive at the following recursion:

R

2

k;n

=

1

n

2

+ (1� 1=n

2

)R

k;n�1

(3)

Using the obvious fact thatR
k;k�1

= 0, an easy induc-
tion (to be presented in the full paper) shows thatR

k;n

=

q

n�k+1

kn

solves the recursion.

Lemma 5.5 The volume of the regular (n + 1)-simplex K
�

is larger than the volume of any non-regular (n+1)-simplex.

Proof: The claim of the lemma is easy to establish forn =

2. Let nown � 3 andK be a non-regular(n + 1)-simplex.
An easy compactness argument shows that there exists a(n+

1)-simplex with maximal volume. It is therefore sufficient
to show that the volume ofK is not maximal. Applying a
transitivity argument, it is easy to see (although wrong for
n = 2) thatK must contain a non-regular faceK 0. The
remainder of the proof is visualized in Figure 4. LetH

0 be
the supporting hyper-plane ofK0, z(0) be the vertex ofK
outsideK0, andh be the distance betweenz(0) andH 0. The
volume ofK can be written as vol(K) =

1

2

� h � vol(K 0

).
Compare with Figure 4(a).

If we replaceK0 by its regularization, i.e., the regular
face within the(n� 1)-dimensional ballH0

\B

�

, we obtain
a new(n + 1)-simplex whose volume exceeds the volume
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of K. This is because, according to our induction hypoth-
esis, the regularization ofK 0 has a higher volume thanK0,
and the height-parameterh is left unchanged. Compare with
Figure 4(b).

Lemma 5.6 Let K be a non-marginal (n + 1)-simplex and
K

0 be a face of K whose center z0 has a minimal Euclidean
norm (i.e., a minimal distance from the origin z =

�

0 which
is the center of K). Then K

0 is non-marginal.

Proof: Figure 5 shows a non-marginal(n + 1)-simplexK
with centerz =

�

0 and a marginal faceK 0 of K with center
z

0. Let H0 be the supporting hyper-plane ofK0. Clearly,z0

is the projection ofz ontoH0. SinceK0 is non-marginal,
z

0 does not belong toK0. Thus, the line connectingz and
z

0 penetrates another face. It follows that the center of the
penetrated face is closer to the originz thanz0.

Definition 5.7 Let K be a (n + 1)-simplex whose center is

z

(n+1)

=

�

0. We will associate with K a sequence

K

n+1

� K

n

� � � � � K

0

with centers z(n+1); z(n) : : : ; z(0), respectively, that is induc-
tively defined as follows:

� K

n+1

= K.

� For all k = n; : : : ; 0, let K
d

be a d-sub-simplex of
K

d+1

whose center z(d) has minimal distance from z

(d+1)

(ties broken arbitrarily).

A sequence that can be obtained in this way is called a K-
sequence.

It is obvious that a least oneK-sequence exists. Further-
more, iterative application of Lemma 5.6 shows that all mem-
bers of aK-sequence are non-marginal ifK is non-marginal.

Lemma 5.8 Each (n+ 1)-simplex K satisfies r(K) � 1=n.

In order to prove Lemma 5.8, we will derive several for-
mulas for the (n-dimensional) volumeV of K (in terms of
r(K) and some other parameters) which algebraically imply
thatr(K) � 1=n.

Let V = fv

0

; : : : ; v

n

g be the set of vertices ofK. LetK
i

be the face ofK that is spanned byV n fv

i

g, and letV
i

de-
note the ((n� 1)-dimensional) volume ofK

i

. LetK0

i

be the
simplex that is obtained fromK when we replace vertexv

i

by the origin, and letV 0
i

denote the (n-dimensional) volume
of K0

i

. Let finally h
i

denote the distance between vertexv

i

andK
i

(i.e., the height ofK when viewed as simplex on top
of faceK

i

), and letr
i

denote the distance between the origin
andK

i

(i.e., the height ofK0

i

when viewed as simplex on top
of faceK

i

). An illustration of these notations may be found
in Figure 6. Note that the smallestr

i

is the radius of the ball
inscribed inK:

r(K) = min

i=0;:::;n

r

i

(4)

We proceed with the following auxiliary result:

Lemma 5.9 For all i = 0; : : : ; n: h
i

� 1 + r

i

.

Proof: Let z
i

be the projection of the origin to faceK
i

.
Clearly,h

i

is not greater than the distance fromv
i

to z
i

, i.e.,
h

i

� kz

i

� v

i

k

2

. As a vertex ofK, v
i

has distance1 from
the origin, and (by definition ofr

i

) the origin has distancer
i

to z

i

. Using the triangle inequality, we conclude thath

i

�

kz

i

� v

i

k

2

� 1 + r

i

.
We are now prepared to derive various formulas forV .

Remember that then-dimensional volume of a simplex in
<

n, viewed as simplex of heighth
�

on top of a faceK
�

with
(n � 1)-dimensional volumeV

�

, is given byh
�

V

�

=n. In
combination with Lemma 5.9, we get

V =

h

i

V

i

n

�

(1 + r

i

)V

i

n

: (5)

Summing over alli, we obtain

(n+ 1)V =

1

n

(h

0

V

0

+ � � �+ h

n

V

n

)

�

1

n

((1 + r

0

)V

0

+ � � �+ (1 + r

n

)V

n

) :

(6)

SinceK partitions intoK0

0

; : : : ;K

0

n

(up to an overlap ofn-
dimensional volume zero), we may alternatively writeV as
follows:

V = V

0

0

+ � � �+ V

0

n

=

1

n

(r

0

V

0

+ � � �+ r

n

V

n

) (7)

Subtracting (7) from (6), we get

nV �

1

n

(V

0

+ � � �+ V

n

) =

S

n

; (8)

whereS = V

0

+� � �+V

n

is the ((n�1)-dimensional) volume
of the surface ofK. Dividing (7) by (8), we obtain

1

n

�

V

0

S

� r

0

+ � � �+

V

n

S

� r

n

: (9)

Note that the right hand of this inequality is a convex combi-
nation ofr

0

; : : : ; r

n

and therefore lower-bounded by

min

i=0;:::;n

r

i

= r(K):

This completes the proof of Lemma 5.8.
We finally would like to mention that (8) implies that

V=S � 1=n

2. Quantity1=n2 is precisely the volume-surface
ratio of the regular(n + 1)-simplexK

n

. We have therefore
accidentally proven thatK

n

achieves the highest volume-
surface ratio among all(n + 1)-simplices, which might be
interesting in its own right.

Lemma 5.10 Let K = K

n+1

be a (n + 1)-simplex and
K

n+1

� K

n

� � � � � K

0

be a K-sequence of sub-simplexes

with centers z

(n+1)

; z

(n)

; : : : ; z

(0), respectively. Then, for

allk = n+1; : : : ; 0, kz
k

k

2

� R

k;n

, whereR
k;n

=

q

n�k+1

kn

.

Proof: We apply downward induction onk. Casek = n+1

is trivial and casek = n is covered by Lemma 5.8. Let now
k be fixed but arbitrary in the range from0 ton�1. Remem-
ber thatK = K

n+1

has centerz(n+1) =

�

0, K
k

has center
z

(k), andK
n

has centerz(n). The situation is visualized in
Figure 3(b), whereh

n

= kz

(n)

k

2

. Lemma 5.8 implies that
h

n

� 1=n. In analogy to the proof of Lemma 5.4, we discuss
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the quantity~R
k;n

= kz

(k)

k

2

= kz

(n+1)

� z

(k)

k

2

and obtain
the recursion

~

R

2

k;n

= h

2

n

+ (1 � h

2

n

)

~

R

k;n�1

: (10)

¿From the induction hypothesis, we conclude that~

R

k;n�1

�

R

k;n�1

� 1. A comparison of the recursions 3 and 10 re-
veals that~R

k;n

� R

k;n

, which concludes the proof.

Corollary 5.11 Let K = K

n+1

be a (n + 1)-simplex and
K

n+1

� K

n

� � � � � K

0

be a K-sequence of sub-simplexes

with centers z

(n+1)

; z

(n)

; : : : ; z

(0), respectively. Then, for
all k = n; : : : ; 1, the unit ball B

�

= B(

�

0; 1) is contained in

B(z

k

; 1 +

p

1=k).

Proof: It suffices to show thatkz
k

k

2

�

p

1=k. This follows
from Lemma 5.10 by observing thatR

k;n

is increasing inn
and approaches

p

1=k whenn approaches infinity.
Let’s finally glue things together. We argued in Subsec-

tion 5.1 that, without loss of generality, the input setS � <

n

containsn + 1 points that are located on the sphereS

�

and
induce a non-marginal(n + 1)-simplexK. Corollary 5.11
states that there exists a subsetT of S of size k, namely
the vertices ofK

k

, such thatB(z

k

; 1 +

p

1=k) containsB
�

.
Thus, ifA

k

outputsz
k

, or even something superior to it, we
are done. It suffices to show thatz

k

is among the candidate
centers thatA

k

is inspecting. SinceK is non-marginal and
K

k

belongs to aK-sequence,K
k

is also non-marginal. This
amounts in saying that the smallest ball containingT has
centerz

k

. Thus,z
k

is indeed one of the candidate centers of
algorithmA

k

. This concludes the proof of Theorem 5.1.

6 CONCLUSIONS

We briefly mention some extensions of our work that will be
described in greater detail in the full paper:

� The notion of�-relaxation can be generalized (in the
obvious fashion) from a constant� to a function� in pa-
rametersn (the dimension) orm (the number of points
in the input instance).

� It can be shown that the cost-preserving reduction from
the Densest Open Hemisphere Problem to the Densest
(Open or Closed) Ball Problem is basically preserving
the parameter�. More precisely, the�-relaxation of
DOH is reduced to the1�

p

1� �

2-relaxation of DOB
or DCB. This holds also for functions�, which typically
approach zero whenn approaches infinity. For� being
close to zero, term1�

p

1� �

2 roughly equals�. We
call reductions of this type “margin-preserving” in the
sequel.

� It follows that our familyA
k

of algorithms for the�-
relaxation of DCB can be combined with the polyno-
mial cost- and margin-preserving reduction from DOH
to DCB. The resulting algorithm finds a densest hemi-
sphere given that there exists a densest hemisphere that
yields a sufficiently large margin. This seems to be a
nice alternative to perceptron-style algorithms.

� It can be shown that theo(
p

1=n)-relaxation of DOH
(and thus also of DOB or DCB) is still an NP-hard
approximation problem. On the other hand, it is pos-
sibly to solve, in polynomial time, the
(

p

1= logn)-
relaxation of DCB (and thus also of DOH). We were
not able to close the gap between these two bounds.
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z’z’

Figure 1: (a) A non-marginal4-simplexK with its centerz
insideK, a faceK0 and the centerz0 of K 0. (b) A marginal
4-simplexK with its centerz outsideK.
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Figure 2: (a) The regular3-simplex (augmented with some
additional information), its centerz =

�

0 and the centerz0 of
one of its faces. (b) The regular4-simplex (augmented with
some additional information), its centerz =

�

0, the center
z

0 of one of its faces, and the centerz00 of one of its2-sub-
simplexes.
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z
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r  =    1-1/n
n

2
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Figure 3: (a) Two triangles (with a right angle atz

(n), respec-
tively) induced by the centerz(n+1) of the regular(n + 1)-
simplexK

�

and the centers of some sub-simplexes ofK

�

.
(b) The corresponding two triangles (with a right angle at
z

(n), respectively) in case of an arbitrary(n+1)-simplexK.

(a)

(b)

z(0)

z(0)

z’

z

z’

K’

z

Figure 4: (a) A non-regular(n + 1)-simplexK with a non-
regular faceK0. (b) The simplex that results fromK by
replacingK0 by its regularization.



265

z’

z

K’

Figure 5: A non-marginal4-simplex K with centerz, a
marginal faceK0 with centerz0.
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Figure 6: A4-simplex illustrating the notations used in the
proof of Lemma 5.8.


