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Abstract

We investigate the computational complexity of the
task of detecting dense regions of an unknown dis-
tribution from un-labeled samples of this distribu-
tion. We introduce a formal learning model for
this task that uses a hypothesis class as its ‘anti-
overfitting’ mechanism.

The learning task in our model can be reduced to a
combinatorial optimization problem. We can show
that for some constants, depending on the hypoth-
esis class, these problems are NP hard to approxi-
mate to within these constant factors.

We go on and introduce a new criterion for the suc-
cess of approximate optimization geometric prob-
lems. The new criterion requires that the algorithm
competes with hypotheses only on the points that
are separated by some margirfirom their bound-
aries.

Quite surprisingly, we discover that for each of the
two hypothesis classes that we investigate, there is
a ’critical value’ of the margin parameter. For

any value below the critical value the problems
are NP hard to approximate, while, once this value
is exceeded, the problems become poly-time solv-
able.

Hans Ulrich Simon
Fakultat fur Mathematik
Ruhr Universitat Bochum

D-44780 Bochum, Germany
simon@lmi.ruhr-uni-bochum.de

is, undoubtedly, one of the applicable tasks of un-supedvis
learning.

The scenario that we address is one in which the learner
is supposed to infer information about an unknown distribu-
tion from a random sample it generates. An adequate model
should therefore include some mechanism for avoiding over-
fitting. That is, the model should impose some restrictions
on the class of possible learner’s outputs. The model we
propose fixes a collection of domain subsets (a hypothesis
class, if you wish) ahead of seeing the data. The task of the
learner is to find a member of this class in which the average
density of the example-generating distribution is maxadiz
For simplicity we restrict our attention to the case that the
domain is the Euclidean spa&&*. Density is defined rela-
tive to the Euclidean volume. By restricting our hypothesis
classes to classes in which all the sets have the same volume,
we can ignore the volume issue.

A model similar to ours was introduced by Ben-David
and Lindenbaum [2]. In that paper a somewhat more gen-
eral learning task is considered; Given a threshodd[0, 1]
the learner is required to output the hypothesis in the class
that best approximates the area on which the distributien ha
density above. Ben-David et al define a notion of a cost of
a hypothesis, relative to a target distribution, and pieye)
type generalization bounds. As can be expected, the sample
size needed for generalization depends on the VC-dimension
of the underlying hypothesis class. We refer to that paper fo
a discussion of the relevance and potential applications of
the model. However, [2] does not address the computational
complexity of learning in this model.

1 INTRODUCTION ; . . .
Standard uniform convergence considerations imply that

Un-supervised learning is an important area of practical ma detecting a hypothesis (domain subset from the hypothesis
chine learning. Just the same, the computational learningclass) with close-to-maximal density is essentially eguiv
theory literature has hardly addressed this issue. Pani®ft lentto detecting a hypothesis that approximates the maxima
discrepancy may be due to the fact that there is no formal empirical density, with respect to the training data. We are
well defined model that captures the many different tasks tha therefore led to the following, purely combinatorial, prob
fallinto this category. While the formation of such a compre lem:
hensive model may be a very difficult task, its absence should
not deter the COLT community from researching models that
capture restricted subareas of un-supervised learnirtidn
paper we investigate the computational complexity aspects
of a formal model that addresses one specific task in this do-
main. We consider two hypothesis classes: the class of axis

The model we discuss addresses the problem of locat-aligned hypercubes and the class of balls (botR1). For
ing the densest sub-domains of a distribution on the basis ofeach of these classes we prove that there exists some
seeing random samples generated by that distribution. This(independent of the input sample size and dimensionality)

Given a collection 'H of subsets of some domain
set, on input — a finite subset S of the domain —
output a set h € H that maximizes |\S N h|
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such that, unless=FNP, no polynomial time algorithm can  considering along with some basic background in hardness-
output, for every input sample, a hypothesis in the class tha of-approximation theory. Section 3 discusses the class of
has agreement rate (on the input) within a factoy aff the hypercubes and provides both the positive algorithmidtesu
optimal hypothesis in the class. and the negative hardness result. Next we discuss the ¢lass o
On the other hand, we consider an alternative to the com- balls, Section 4 brings the hardness result for this claskewh
mon definition of approximation. Rather than requiring an the following Section 5 provides the optimization algonith
approximation algorithm to achieve a fixed success ratio ove for the z-margin relaxation of the densest ball problem. Fi-
all inputs (or over all inputs of the same size or dimension- nally, in Section 6 we list several possible extensions isf th
ality), we let the required approximation ratio depend an th work.
structure of each specific input. Given a hypothesis cass
of subsets o), ", and a parameter > 0, 2 DEFINITIONS AND BASIC RESULTS

In this section we introduce the combinatorial problems tha
we shall address in this paper. We then proceed to provide
the basic definitions and tools that we shall use from the
theory of approximation of combinatorial optimization pro
lems. We end this section with a list of the previously known
hardness-of-approximation results that we shall employ in
our work.

a u-successful learning algorithm fof{ is an algo-
rithm that, for every input sample, outputs a mem-
ber of # that contains as many sample points as
any member of{ can contairwith margin >
(where the margin of a point relative to a hypothe-
sis is the radius of the largest ball around the point
that is fully contained in the hypothesis).

2.1 THE COMBINATORIAL OPTIMIZATION
In other words, Au-successful algorithm is required to PROBLEMS

output a hypothesis with close-to-optimal performance on
the input data, whenever this input sample allows a maxi-
mal intersection (with a member 6f) that achieves large

enough margin for most of the points it contains. On the The densest set problem for a class 7: Given a collection

In this paper, we discuss combinatorial optimization prob-
lems of the following type:

other hand, if for every element € H that achieves close- H = U2, M, of subsetsH,, C 22", oninput—(n, S)
to-maximal-size intersection with the input a large peteen where$is a finite multi-set of points il” — output a
age of the points in the intersection are closé'®bound- seth € #,, so thath contains as many points fromas
aries, then an algorithm can settle for a relatively poor suc possible (accounting for their multiplicity ifi).

cess ratio without violating the-success criterion.
One appealing feature of this new performance measure  We shall mainly be concerned with two instantiations of
is that it provides a rigorous success guarantee for agnos-the above problem;
tic learning that may be achieved by efficient algorithms for _
classes that can't have poly-time algorithms that succéttl w  Densest Open Ball (DOB) Each class{, is the class of all
respect to the common ‘uniform’ approximation ratio crite- open balls of radius in %"
rion. We shall show below that the class of balls provides
such an example, and in a forthcoming paper [3] we show
that the class of linear perceptrons is another such case.
This paper investigates the existence-afuccessful learn-
ing algorithms. Clearlyy-success gets easier to achievg as
grows, and is hardest far= 0, in which case itbecomes the |, hoth cases let us denaie — 15|
usual optimization problem (without approximation). Taes For the sake of our proofs, we shall also have to address
exact optimization problems — finding the densest ball or the gy me other optimization problems, namely:
densest hypercube — are NP-hard, as we show below (for
other NP-hardness results of this type see [5], [6]). We are yjA X-E2-SAT Input is a collectiorC' of 2-clauses oven
interested in determining the values @fat which the NP Boolean variables. The problem is to find an assign-
hardness of the approximation problems breaks down. menta € {0, 1}" satisfying as many 2-clauses Gfas

Densest Axis-aligned Cube (DAC) Each clas${,, consists
of all cubes with side length equalin . That is,
each member oft,, is of the form[];_, I;, where the
I;’s are real intervals of the formy = [a;, a; + 1].

Quite surprisingly, for each of the classes we investigate possible. We denote by the number of clauses .
(axis-aligned hyper-cubes and balls), there exists a yajue
so that, on one hand, for every> u,, there exist efficient- BSH Inputs are of the form{n, S;,S_), wheren > 1,
successful algorithms for the class, while on the other hand andsS,, .S_ are multi-sets of (not necessarily different)
for everyp < po p-learnability is NP-hard. That is, assum- points from$”. We denotem, = |Sy| andm_ =
ing P£ANP, nop-successful learning algorithms for the class |S_|. A hyper-planeH (w,t), wherew € R” andt €
runs in polynomial time. Furthermore, there exists a pasiti R, correctly classifies p € Sy if wp > t, and itcor-
constant such that for evepy < pq it is NP-hard to approx- rectly classifies p € S_ if wp < t. The problem is to
imate the optimal margip-success ratio of members of the find the Best Separating Hyper-plane for S, and S_,
class to within this constant factor. A similar phenomena that is, a paif(w,t) € " x % such thatH (w, t) cor-
holds also for the class of linear perceptrons [3]. rectly classifies as many points frash. U S_ as pos-

The paper is organized as follows: Section 2 introduces sible (accounting for their multiplicities in the lisks,
the combinatorial optimization problems that we shall be ands_).

256



DOH This is the densest set approximation problem for the Proof: By adding a coordinate one can translate hyper-
class of open hemispheres. That is, inputs are multi-setsplanes tdhomogeneous hyper-planes (i.e., hyper-planes that
S of points fromS™~! - the (n — 1) dimensional unit pass through the origin). To get from the homogeneous hyper-
sphere. and each cla®s, is the class of all sets of the planes separating problem to the densest hemisphere prob-
form{z : wx > 0} for w € N". lem one applies the standard scaling and reflection tri¢ks.

DCB The Densest Closed Ball problem is the same as the Corollary 2.5 Assuming P#NP, for any § < 3/418, there is
Densest Open Ball problem, except that niy con- no polynomial time §-approximation algorithm for DOH.
sists of closed radius 1 balls.
Before we proceed, let us fix some notation for the sub-
2.2 BASICS OF COMBINATORIAL sets ofit™ that we shall be dealing with. Let > 1, w, z €
OPTIMIZATION APPROXIMATION THEORY Rt e RN, andR € RY. H(w,t) = {z € R" : we =t} de-
notes the hyper-plane induced yandi. A (w,t) = {z €
R we >thandH_(w,t) = {x € N" : we < t} de-
note the corresponding positive and negative open hakspac
respectively. B(z, R) = {x € %" : ||z — z|]» < R} de-
notes the open ball of radiug around centet. B(z, R) =
{x € " : ||z — z||2 < R} denotes the corresponding closed
ball. S»~1 = {z € ®* : ||z||» = 1} denotes thén — 1)-
M dimensional ujhit sphere.|| | } ¢ )
opt(/)
is called therelative error of A on input instance I. A is 24 THE NEW NOTION OF APPROXIMATION -
called ad-approximation algorithm for 11, wheres € R, if #-RELAXED DENSEST SET PROBLEMS

its relative error orf is at mos¥ for all input instances. As mentioned in the introduction, we shall also discuss a
The tool we use to show hardness results for these max-variant of the above notion of approximation for densest set
imization problems is the basic cost-preserving reduction problems. The idea above this new notion, that we tgrm

For each maximization probleii and each input instance

I for TI, opt;(/) denotes the maximum profit that can be
realized by a legal solution fof. Subscriptll is omitted
when this does not cause confusion. The profit realized by
an algorithmA on input instance is denoted byA(7). The
guantity

Let1I andIl’ be two maximization problems. st preserv- margin approximation’, is that the required approximation
ing polynomial reduction from 11 to 11, written asﬂggglﬂf rate varies with the structure of the inout sample. When
consists of the following components: there exist optimal solutions that are ‘stable’, in the sens
that minor variations to these solutions will not effectithe
¢ a polynomial time computable mappidg— I’, which cost, then we require a high approximation ratio. On the
maps an input instandeof I1 to an input instancé’ of other hand, when all optimal solutions are ‘unstable’ then
I we settle for lower approximation ratios.

e for eachl/, a mappingo- — ¢, which maps a |ega| Definition 2.6 Given a hypothesis class H = U,H,, and a
solutione for I with profit s to a legal solutiow’ for I’ real parameter i > 0,

with the same profi¢ e For h C N", let h=" be the set of points that are in-

o foreach!, a polynomial time computable mappiag— cluded in h with a margin 1. That is:
o, which maps a legal solutiarf for I’ with profit s to PN -
a legal solutiory for I with the same profig h=" = {l’ €RN" : Blw,p) C h}

e Given a finite P C N™, a hypothesis h € H, is a p-

The following result is evident: margin approximatiofor P w.rt. H if

Lemma 2.1 Ing;’;,H’ and there is no polynomial time §- |P A h| > max |P A h_“| .
approximation algorithm for 11, then there is no polynomial heH
time -approximation algorithm for IV o The p-relaxationversion of the densest set problem for

23 SOME KNOWN o 5
HARDNESS-OF-APPROXIMATION RESULTS ’ . o

H. We shall use superscript p to denote the pi-relaxed

We shall base our hardness reductions on two known results. version of a problem. For example, DAC" denotes the

u relaxation of DAC.
Theorem 2.2 [Hastad, [4]] Assuming P£NPF, for any § <

1/22, there is no polynomial time é-approximation algorithm
for MAX-E2-SAT.

o A densest set algorithm A for a class H is an algorithm
that on input P subsetR™ outputs a hypothesis A(P) €

Hn.
Theorem 2.3 [Ben-David, Eiron and Long, [1]] Assuming o A densest set algorithm A is p-successfufor H if it
P#£NP, for any 6 < 3/418, there is no polynomial time J- solves the p-relaxation version of the densest set prob-
approximation algorithm for BSH. lem for H. In other words, if for every finite input
P C R, its output A(P) is a p-margin approximation
Claim 2.4 BSH<? DOH. for P w.rt. H.

=pol
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3 THE DENSEST CUBE PROBLEM AND
ITS ;-RELAXATIONS

For the DAC problem, we show a hardness of approxima-
tion result, that extends to therelaxed problem for every

u < 1/4. We complement this result with a positive result,
showing that there exist@asuccesful polynomial time algo-
rithm for DAC, for all x > 1/4. This result is quite surpris-
ing in that it gives a tight bound on the relaxation required t
solve DAC efficiently. Let us first show the negative result:

Theorem 3.1 The densest cube problem is NP-hard to ap-
proximate to within € for every ¢ < 1/22. Furthermore, this
hardness result holds for the relaxed DAC* problem for any
n<1/4.

Proof: We define a cost-preserving reduction of MAX-E2-

SAT to the densest cube problem. First, we define a mapping

¢ from instances of MAX-E2-SAT (ovet variables) to sub-
sets ofit™. Letwv; ..., v, be the variables that appear in the
propositional formulas. Let be the following function:

Vi h(vi) = e = (0,...,0,1,0,...,0)
N——
i—1
Vi h(m) = —e = (0,...,0,—1,0,...,0)

Given a 2-clausé V 5, define

(L V1z) =
{h(l) + h(l2), —h(l1) + h(l2), h(l1) — h(2)}.

Informally, we associate with each clause three pointsén th

1. For everyn and every claus€' in it, any unit-size rect-
angle contains at most one point fraim(C).

2. For every unit-size rectangleand every clausé€’, if
hn¢,(C)# Btheng(h) satisfiesC'.

3. For every claus€’ and every truth assignmest if s
satisfies” thenR(s) N ¢(C) # 0.

[

The complementary positive result uses a rather simple
algorithm. Recall that all that is required ofiasuccessful
algorithm for the DAC problem, is to output a cubdhat in-
cludes as many points of the input as an optimal cube would
include with a margin at leagt. Let {p1,...,pm} be the
pointsin P, the input to the algorithm.

Algorithm 3.2:

1. Foralli € {1,...,m} do:
(a) LetC; be the cube of side lengihwhose center is
pi.

(b) Lete; £|C; N P).
2. Output the cub€’; for which¢; is maximal.

Theorem 3.3 Algorithm 3.2 is a polynomial time p-successful
algorithm for DAC for any p > 1/4.

hyper-plane spanned by the coordinates that correspond tdProof: The claim on the running time of the algorithm is

the variables of this clause. These three points corresfwond
the three truth assignment to these variables that satisfy t
given clause.
Finally, defineg over formulas to be:
m
= J¢(c).
2

o(A) -0

/\ei

Given a cubel = II7_, /; and a 2CNF formula, we

define a truth assignment R) by setting
g(C’)(vZ) Tiff1el;
In the other direction, given a truth assignment
s {vla"'avn} = {F’T}a

we define a corresponding cubés) = TI¢? where
[0,1]if s(v;) =T andt{ = [-1,0] if s(v;) =F
For any giveni: < 1/4 we constract a mapping,, from
propositional formulas to subsets ®f'. The mappingp,,
is the same as the mappigabove, except that for some
1 —2u > p > 1/2 all the coordinates of the points #{«)
are multiplied byp (so the values of the non-zero entries are
+/—p rather thant-/—1). Similarly, we define the functions
from cubes to truth assignments by(C) = T iff p € I,
and the functions in the inverse direction®y= [—u, 1 — u]
if s(v;) = T andt; = [—(1 — p), p] if s(v;) = F. The
following three observations suffice to show that, for every
u < 1/4 these reductions are cost preserving.
In the following leta: denote a 2-CNF formula and léf«)
be its image under the above construction.

m
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immediate: We loop over all points, construct a cube around
each, and check inclusion of all other points within thiseub
All these operations may easily be carried out in time poly-
nomial inn andm.

To prove the correctness of the algorithm, we have to
show that for anyu > 1/4, the output of this algorithm
is a cube containing at least as many points frBnas the
optimal cube of side length does. LetC' be some cube of
side lengthl, that includes a maximal number of points from
P with a marginu (i.e., |[P N C~*#| is maximal). Consider
somep; € C'N P. The cubeC;, defined above in the de-
scription of the algorithm, will contain all points that feav
distance< 1/2 from p; in thel,, norm. However, no pair of
pointsinP N C~* are more than /2 apart in the, norm.
Hence,P N C~* C C; N P. Since the algorithm chooses the
C; that maximizes the number of points it includes, its out-
put will satisfy the conditions required fromasuccessful
algorithm. [

4 HARDNESS OF APPROXIMATION FOR
THE DENSEST BALL PROBLEM

In this section, we calH 1 (w,0) an open hemisphere be-
cause we use the hyper-plafégw, 0) as a separator of the
unit spheres™~! into two hemispheres. We may further-
more assume thdtw||s = 1 because vectors and Aw,

A > 0, lead to the same separationsf=1.

Lemma 4.1 DOH<,? DOB.



Proof: Let P be an input instance for DOH of size in
S7—1. We choose the sam@ as the corresponding input
instance/‘ of DOB.

Let C'(w, P) be the multi-set of points fron® that be-
long to H (w, 0), and letC’(z, P) is the multi-set of points
from P that belong toB(z, 1). The reduction from DOH to
DOB is now accomplished by proving the following state-
ments:

Ywe SPTL 3z e 7
Vze R

C(w, P) C B(z,1).
B(z,1) C Hy(z,0).

1)
(2)

If the optimal ball of radius 1 contains q points of
S, then there exists a ball of radius 1 — p which
also contains q points of S.

The main result of this section is:

Theorem 5.1 There exists a family (Ag)r>1 of polynomial
time algorithms such that for all n > 2 the following holds.
Ay on input S C R" outputs a point y € R" such that the
closed ball B(y,1 + \/1/k) contains not less points of S
than the optimal closed ball of radius 1.

These statements imply that there exists an open hemisphergye postpone the proof of this theorem to Subsections 5.1

containing at least points of P iff there exists an open unit
ball containing at least points of P. Thus, we have a cost-
preserving reduction from DOH to DOB.

To prove statement (1), we set= min,cc(w,p) [wp| -
This implies thatvg > p for all ¢ € C(w, P). We claim
thatz = pw is an appropriate choice far, i.e., eachy €
C'(w, P) also belongs t®(z, 1). Usinguww = ¢¢ = 1, this
claim is evident from the following calculation:

lz=dllz = (z—9)(z—0)
zz — 2294 qq
= plww — 2pwq + qq
p? = 2pwq + 1
< -t
= 1—/12
< 1

In order to prove statement (2), we have to show that
eachg € B(z, 1) satisfieszg > 0. To this end, note first that
g € B(z, 1) implies that

L>lz =gl = 22-22q+qq
= zz—2zq+1
> —2zq+1.

[

Clearly, this implies thatq > 0.
Applying Corollary 2.5 we readily get

Theorem 4.2 Assuming P#NP, for any § < 3/418, there is
no polynomial time §-approximation algorithm for DOB.

Applying a similar construction we get a hardness result for
the densest set problem for the classlofed radius 1 balls.
Namely,

Theorem 4.3 Assuming P#NP, for any § < 1/198, there is
no polynomial time §-approximation algorithm for DCB.

For lack of space we defer the proof to the full version of the
paper.

S COMPUTATION OF DENSE BALLS

We know from Section 4 that it is an NP-hard problem to

find an (approximately) densest (open or closed) ball for a

given set of points im”. In this section, we show that, for
each constant > 0, the u-relaxation of this problem can
be solved optimally in polynomial time. Remember that, in

the relaxed version of the problem, we assume that the input

setS C N is u-robust for balls. It is easy to see that the
u-robustness aof is equivalent to the following condition:
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and 5.2. Theorem 5.1 immediately implies the following re-
sult:

Corollary 5.2 For each p > 0, there exists a polynomial
time algorithm A which solves the p-relaxation of the Dens-
est Closed Ball Problem optimally.

Proof: The proof is based on “Scaling and Rescaling”. We
omit the details in this brief abstract and only note thasit i

sufficient to choosé such that,/1/k < ﬁ to apply A

to a properly scaled version of inpgtand to re-scale the
output properly.k = 1 + [1/1%] is a possible choice for.
[

In the next two subsections, we describe and analyze the
family A, of algorithms that witnesses the correctness of
Theorem 5.1.

5.1 A FAMILY OF ALGORITHMS FOR THE
DENSEST BALL PROBLEM

The naive implementation of algorithry, is quite simple to
describe. Oninput C 3", it exhaustively searches through
all subsetsl” of S of size k and outputs the centefr of
the smallest ball ift™ that contains/”. Then it computes
the profitp(7) achieved byr’, that is, the number of points

from S that fall into the ballB(zr,1 + /1/k). Finally,
it selects the sef’ with a maximal profit and outputsy.
This implementation takgs'|*poly(|S|) steps under the unit
cost measure. We briefly note that there exists a more clever
implementation which takes on#’*)poly(|S|) steps under
the uniform cost measure. The interested reader is referred
to the full paper.

In order to prepare the geometric analysis that is given in
the next subsection, we make the following technical obser-
vations:

¢ We may assume without loss of generality that the op-
timal ball Bs of radius1 for input.S has at least + 1
points ofS on its sphere. We briefly sketch why. First,
we can conceptually shrinks as long as this does not
diminish the profit. LetS” C S denote the set of points
from S belonging toBy after the shrinking phase. Now
Bg is the smallest ball containingf. If |[S/| < n + 1,
our analysis may switch to a lower-dimensional ball of
dimension|S’| — 1. Now |S’| = »’ + 1 holds for the
reduced dimension’. It can be strictly argued that the
worst-case for the algorithm occurs, when no shrinking
occurs and the dimensionality does not decrease. De-
tails are given in the full paper.



o If |S’| > n+ 1 and By is the smallest ball containing
S’, then there exists a subsgt of S of sizen + 1
such thatBs is the smallest ball containing”’. The
latter condition is equivalent to saying that the+ 1)-
simplex induced by’ contains the center d8s.

The main result of the next subsection, Corollary 5.11,
will imply that there exists a subsgt of S” of sizek such
thatB(zr, 14+/1/k) containsBs. This proves Theorem 5.1.

Since the location of the baBg is immaterial for our
analysis, we may assume for the sake of simplicity that its
center coincides with the origih € %". Thus the analysis
of algorithm A, boils down to a purely geometric question:
given a sefS consisting ofz + 1 points on the sphere of the
closed unitbalB (0, 1) such that the induce@+1)-simplex
contains the origin, does there exist a sulisef S of sizek
such that3(zr, 1+ /1/k) containsB (0, 1)? This question
will be answered affirmatively in the next subsection.

5.2 GEOMETRIC ANALYSIS

Throughout this subsection, we make the following nota-
tional conventions.0 denotes the all-zeros vector ®".

B. = B(0,1), i.e., B. denotes the closed unit ball#f*. S,
denotes the unit sphere #ti’. A (n + 1)-simplex with ver-
tices on S™ is given byn + 1 points (also called “vertices”)
from S,. Since we discuss only: + 1)-simplexes with ver-
tices onS. (together with their sub-simplexes), we simply
say(n + 1)-simplex in the sequel. It should be clear without
saying that eacl. + 1)-simplex contains a whole hierarchy
of lower-dimensional sub-simplexes. A sub-simplex with
points is calledk-sub-simplex. A n-sub-simplex is called a
face, a2-sub-simplex is called a#dge, and al-sub-simplex

is called avertex. Let i’ be a(n+1)-simplex andy”’ a face of
K. The unique hyper-plane iR"™ that containg{”’ is called
thesupporting hyper-plane of K’ and denoted by/ (K') (or
simply by H’). Note that the intersection gf’ and B, is

a closed(n — 1)-dimensional ball. We denote this ball by
B(K') (or simply B") and its center by (K’) (or simplyz’).
Pointz(K') is called thecenter of K’. The notion of a cen-
ter is generalized to lower-dimensional sub-simplexesén t
obvious way. A simplex that does not contain its center is
calledmarginal. Figure 1 shows two examples. In our proof
we will also be interested in the radius of the ball inscribed
a simplexK . We denote the radius of such ba{lK). »(K)

is, theorefore, the minimal distance between the origin and

any pointon a face if thén + 1)-simplex k.

A regular (n + 1)-simplex is a(n + 1)-simplex with the
property that for allk = 1,..., n, all its k-sub-simplexes
are congruent. Since it is unique up to rotation, we speak o
“the” regular(n + 1)-simplex and denote it b§(,. All sub-
simplexes ofK, are again regular (in a lower-dimensional

space). Note that a center of a regular simplex coincides

with the center of gravity of its vertices. Clearly, regular
ity implies non-marginality. Figure 2 shows the reguar
and the regulat-simplex (augmented with some additional
information whose purpose will be clarified later). The ser-
pentine lines indicate lines of length The same convention
is used for the subsequent figures.

Lemma 5.3 Let 2’ be the center of a face K. of the regular
(n+ 1)-simplex K. Then ||2||» = 1/n.
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Proof: The proof is illustrated in Figure 2(b). Note thst
is the projection of the origia = 0 to the supporting hyper-
planeH (K}). Choose an orthonormal base #t with one
base vector, say theth one, in direction(z, z’). Thus, 2’
has only one coordinate, namel§, which is different from
0. Note that all of then vertices inK, havez; asi-th co-
ordinate. The-th coordinate of the remaining vertex-isl.
Because of regularity; = 0 is the average of theth coor-
dinates of alln + 1 vertices ofK ., i.e.,0 = z; = —1 + nzl.
Thus,z! = 1/n. We conclude thatz'||» = |z | = 1/n. [

Lemma 5.4 Let z*) be the center of a k-sub-simplex K!'
of the regular (n + 1)-simplex K. Then ||2")||s = R n,

where R(k,n) = {/2=EEL

kn

Proof: The proof is illustrated in Figure 3(aj?*? =

0 denotes the center df., z(*) denotes the center of the
n-sub-simplexi’. of K, which containsk’/, andz(®) de-
notes a vertex of. The rest of the proof makes use of
the fact that the triangles induced bY"), z(*) »(»*+1) and
z(k) () 2(n+1) | respectively, have both a right angle at
z(n),

Note first thatR’, is a regulam-simplex, except that its
vertices belong to the sphere of a ball of radiys= ||2(") —
29|, < 1. According to the law of Pythagoras, = 1 —
1/n%. Thus, K. is a regulam-simplex up to the scaling
factorr, = /1 — 1/n?%.

Let Ry, = ||z¥)]|2, i.e., Rx » denotes the distance be-
tween :(*) and the center(*t!) = 0 of K,. Note that
Rj = ||2(") — 2|, coincides withRy, ,_; up to the
scaling factor,, i.e.,R;cyn_1 = o Ry n—1. Applying again
the law of Pythagoras, we arrive at the following recursion:

(3)

Using the obvious fact thak, .1 = 0, an easy induc-
tion (to be presented in the full paper) shows that, =

\/ £t solves the recursion. 0
n

Lemma 5.5 The volume of the regular (n + 1)-simplex K,
is larger than the volume of any non-regular (n+1)-simplex.

1
Rj, = —+ (1 —1/n*)Ry n_y

Proof: The claim of the lemma is easy to establishsios
2. Let nown > 3 and K be a non-regulafn + 1)-simplex.

#An easy compactness argument shows that there eXists a

1)-simplex with maximal volume. It is therefore sufficient
to show that the volume ok is not maximal. Applying a
transitivity argument, it is easy to see (although wrong for
n = 2) that K must contain a non-regular fadé’. The
remainder of the proof is visualized in Figure 4. L&t be
the supporting hyper-plane df’, (%) be the vertex ofik’
outsideK”’, andh be the distance betweef) andH’. The
volume of K can be written as vK) = $ - h - voI(K’).
Compare with Figure 4(a).

If we replaceK’ by its regularization, i.e., the regular
face within the(n — 1)-dimensional balH’ N B, we obtain
a new(n + 1)-simplex whose volume exceeds the volume



of K. This is because, according to our induction hypoth-
esis, the regularization of’ has a higher volume thak’,
and the height-parametgiis left unchanged. Compare with
Figure 4(b). [

Lemma 5.6 Let K be a non-marginal (n + 1)-simplex and
K’ be a face of K whose center z' has a minimal Euclidean
norm (i.e., a minimal distance from the origin z = 0 which
is the center of K ). Then K’ is non-marginal.

Proof: Figure 5 shows a non-margin@l + 1)-simplex K
with centerz = 0 and a marginal fac&™" of K with center
2'. Let H' be the supporting hyper-plane &f. Clearly, 2’
is the projection of: onto H’. Since K’ is non-marginal,
2’ does not belong t&”’. Thus, the line connecting and

2’ penetrates another face. It follows that the center of the

[

Definition 5.7 Let K be a (n + 1)-simplex whose center is
2"+ = 0. We will associate with K a sequence

penetrated face is closer to the origithanz’.

Knt1 D Kn D - D Ky

0)

with centers z" T () 2

tively defined as follows:

, respectively, that is induc-

o Kpy1 =K.

o forall k = n,...,0, let K4 be a d-sub-simplex of
K441 whose center 2D has minimal distance from Z(d+1)
(ties broken arbitrarily).

A sequence that can be obtained in this way is called a K-
sequence

It is obvious that a least on& -sequence exists. Further-
more, iterative application of Lemma 5.6 shows that all mem-
bers of ai-sequence are non-marginakifis non-marginal.

Lemma 5.8 Each (n+ 1)-simplex K satisfies r(K) < 1/n.

In order to prove Lemma 5.8, we will derive several for-
mulas for the g-dimensional) volumé” of K (in terms of
r(K') and some other parameters) which algebraically imply
thatr(K) < 1/n.

LetV = {wvp, ..., v, } bethe set of vertices df . Let K;
be the face of{ that is spanned by \ {v;}, and letV; de-
note the (n — 1)-dimensional) volume oK. Let K/ be the
simplex that is obtained frorA™ when we replace vertex
by the origin, and let’/ denote thex-dimensional) volume
of K. Let finally h; denote the distance between vertgx
andK; (i.e., the height of{ when viewed as simplex on top
of face K;), and letr; denote the distance between the origin
andKj; (i.e., the height of/ when viewed as simplex on top
of face K;). An illustration of these notations may be found
in Figure 6. Note that the smallestis the radius of the ball
inscribed ink:

r(K) (4)

_min 7y

1=0,...,n

We proceed with the following auxiliary result:

Lemmas5.9 Foralli=0,...,n: h; <1+,
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Proof: Let z; be the projection of the origin to fack;.
Clearly, h; is not greater than the distance fremto z;, i.e.,
hi </||zi — vi||]2- As a vertex ofK, v; has distancé from
the origin, and (by definition of;) the origin has distance
to z;. Using the triangle inequality, we conclude that <
llzi — villa <147

We are now prepared to derive various formulasfor
Remember that the-dimensional volume of a simplex in
R, viewed as simplex of heiglit, on top of a facey’. with
(n — 1)-dimensional volumé’,, is given byh.V./n. In
combination with Lemma 5.9, we get

_ hiV; < (1-1-7“2')‘/2'.

4 < ()
n n
Summing over alt, we obtain
(n+ 1)V =21(hVo+ -+~ Vp) ()

< (L))ot -+ (L4 r)Va).

Since K partitions intoK, ..., K/, (up to an overlap ofi-
dimensional volume zero), we may alternatively wiiteas
follows:

1
V=Vi+-+V = ;(rovo+~~+rnvn) (7)
Subtracting (7) from (6), we get
1 S
nV<—(Vo+--+V,) =—, (8)
n n

whereS = Vp+- - -+V}, isthe (n—1)-dimensional) volume
of the surface of<. Dividing (7) by (8), we obtain

(9)

Note that the right hand of this inequality is a convex combi-
nation ofry, .. ., r, and therefore lower-bounded by

~min r; = r(K).
1=0,...,n

.

This completes the proof of Lemma 5.8.

We finally would like to mention that (8) implies that
V/S < 1/n?. Quantityl /n? is precisely the volume-surface
ratio of the regulafn + 1)-simplex K ,,. We have therefore
accidentally proven thak’,, achieves the highest volume-
surface ratio among aflz + 1)-simplices, which might be
interesting in its own right.

Lemma5.10 Let K = K41 be a (n + 1)-simplex and
Kny1 D Ky D -+ D Ky bea K-sequence of sub-simplexes
2, respectively. Then, for

2|2 < Ry n, where R, = «/"_k—k"'l.

Proof: We apply downward induction o Casek = n+1

is trivial and casé = n is covered by Lemma 5.8. Let now
k be fixed but arbitrary in the range fratmio n — 1. Remem-
ber thatk = K, 4, has center(**!) = 0, K, has center
%) and K,, has centet("). The situation is visualized in
Figure 3(b), wheré:,, = |[z(™)||,. Lemma 5.8 implies that
h, < 1/n. Inanalogy to the proof of Lemma 5.4, we discuss

with centers z+1) (M)
allk =n+1,...,0,




the quantityRy, ,, = ||2(¥)]|2 = ||2"*+1) — 2*)||, and obtain
the recursion

RE, =82+ (1—h2)Ry -1 (10)
¢ From the induction hypothesis, we conclude fﬁ@y_l <
Ry n—1 < 1. A comparison of the recursions 3 and 10 re-

veals thatf%k,n < Ry », which concludes the proof. [

Corollary 5.11 Let K = K, 41 be a (n + 1)-simplex and
Kny1 D Ky D - D Ky bea K-sequence of sub-simplexes
with centers z*t1) () 2(0) yespectively. Then, for
allk =n, ..., 1, the unit ball B. = B(0,1) is contained in

B(Zk’l"i'\/l/_k)'

[1]

(2]

Proof: It suffices to show thatzx||» < y/1/k. This follows
from Lemma 5.10 by observing tha, ,, is increasing im

and approacheg/1/k whenn approaches infinity. 0
Let’s finally glue things together. We argued in Subsec-
tion 5.1 that, without loss of generality, the input set. "
containsn + 1 points that are located on the spheéteand
induce a non-margingk: + 1)-simplex K. Corollary 5.11
states that there exists a sub%eof S of size k, namely
the vertices o\, such that3(z;, 1 + /1/k) containsB,.
Thus, if A outputsz, or even something superior to it, we
are done. It suffices to show that is among the candidate
centers thatd; is inspecting. Sincé( is nhon-marginal and
Ky belongs to &-sequencel(y, is also non-marginal. This
amounts in saying that the smallest ball containindpas
centerz,. Thus,z; is indeed one of the candidate centers of
algorithmAy. This concludes the proof of Theorem 5.1.

6 CONCLUSIONS

We briefly mention some extensions of our work that will be
described in greater detail in the full paper:

(3]

[5]

[6]

¢ The notion ofu-relaxation can be generalized (in the
obvious fashion) from a constamto a functiory: in pa-
rameters: (the dimension) o (the number of points
in the input instance).

¢ It can be shown that the cost-preserving reduction from
the Densest Open Hemisphere Problem to the Densest
(Open or Closed) Ball Problem is basically preserving
the parametep.. More precisely, the:-relaxation of
DOH is reduced to th&é—+/1 — p2-relaxation of DOB
or DCB. This holds also for functions which typically
approach zero whem approaches infinity. Fgr being
close to zero, termh — /1 — 2 roughly equalg:. We
call reductions of this type “margin-preserving” in the
sequel.

o It follows that our family A, of algorithms for theu-
relaxation of DCB can be combined with the polyno-
mial cost- and margin-preserving reduction from DOH
to DCB. The resulting algorithm finds a densest hemi-
sphere given that there exists a densest hemisphere that
yields a sufficiently large margin. This seems to be a
nice alternative to perceptron-style algorithms.
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¢ It can be shown that the(,/1/n)-relaxation of DOH

(and thus also of DOB or DCB) is still an NP-hard
approximation problem. On the other hand, it is pos-
sibly to solve, in polynomial time, th&(/1/ logn)-
relaxation of DCB (and thus also of DOH). We were
not able to close the gap between these two bounds.
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1/2

Figure 2: (a) The regula-simplex (augmented with some
additional information), its center = 0 and the centet’ of

Figure 1: (a) A non-marginal-simplex X" with its centerz one of its faces. (b) The regularsimplex (augmented with

inside X, a faceK’ and the centet’ of K’. (b) A marginal some additional information), its center= 0, the center

4-simplex K with its centerz outsidek’. 2 of one of its faces, and the centgf of one of its2-sub-
simplexes.
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(b)

Figure 3: (a) Two triangles (with a right anglezAt), respec-

tively) induced by the center®*+1) of the regular(n + 1)-

simplex K, and the centers of some sub-simplexesiof " “
(b) The corresponding two triangles (with a right angle at
2(7) respectively) in case of an arbitray+ 1)-simplex .

(b)
Figure 4: (a) A non-regulam + 1)-simplex K with a non-

regular facek’. (b) The simplex that results fromi’ by
replacingK”’ by its regularization.
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Figure 5: A non-marginali-simplex K with centerz, a
marginal facek’’ with centerz’.

Figure 6: A4-simplex illustrating the notations used in the
proof of Lemma 5.8.
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