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Abstract

In this paper we examine master regression algo-
rithms that leverage base regressors by iterative-
ly calling them on modified samples. The most
successful leveraging algorithm for classification
is AdaBoost, an algorithm that requires only mod-
est assumptions on the base learning method for
its good theoretical bounds. We present three gra-
dient descent leveraging algorithms for regression
and prove AdaBoost-style bounds on their sam-
ple error using intuitive assumptions on the base
learners. We derive bounds on the size of the mas-
ter functions that lead to PAC-style bounds on the
generalization error.

1 Introduction

In this paper we consider the following regression setting.
Data is generated IID from a distributionP on some domain
X and labeled according to a functiong. A learning algorith-
m receives a sampleS = f(x
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; g(x

i

)); : : : ; (x

m

; g(x
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))g

and attempts to return a functionf close tog on the domain
X . There are many ways to measure the closeness off to g,
for example one may want the expected squared error to be
small or one may wantf to be uniformly close tog over the
entire domain.

In fact, one often considers the case where the data are
not labeled perfectly by any function, but rather have random
noise added to the labels. In this paper we consider only the
noise free case. However, many algorithms with good per-
formance guarantees for the noise free case also work well in
practical settings. AdaBoost [13, 2, 19, 12] is one example
in the classification setting.

A typical approach for learning is to choose a function
classF and find somef 2 F with small error on the sam-
ple. Then if the sample is large enough with respect to the
complexity of the classF , f will also provide small error on
the domainX with high probability (see e.g. Anthony and
Bartlett [1]).

To be useful any algorithm that works in this way must
also be computationally efficient, i.e. it must obtain a sim-
ple hypothesis, with high accuracy in a short time. There
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are many learning algorithms that produce simple hypothe-
ses efficiently, but the accuracy of these methods may be
less than desirable. Leveraging techniques, such as boost-
ing [23, 10, 13, 11, 14, 8], attempt to take advantage of such
algorithms to efficiently obtain a hypothesis with arbitrarily
high accuracy. These methods work by repeatedly calling
a simple (or base) learning method on modified samples in
order to obtain different base hypotheses that are combined
into an improved master hypothesis. Of course the complex-
ity of the combined hypothesis will often be much greater
than the complexity of the base hypotheses. However, if the
improvement in accuracy is large, and the increase in com-
plexity is small, then leveraging can improve generalization.

Leveraging has been examined primarily in the classifi-
cation setting where AdaBoost [13] and related leveraging
techniques [3, 9, 5, 4, 6, 14, 20] have been found to be use-
ful for increasing the accuracy of base classifiers. Such al-
gorithms repeatedly call a base learning algorithm, and con-
struct a linear combination of the hypotheses returned. These
techniques have recently been viewed as performing gradi-
ent descent on a potential function [4, 6, 20, 14, 9, 18] and
this viewpoint has enabled the derivation and analysis of new
algorithms in the classification setting [14, 9, 8, 18]. Recent
work by Friedman has shown that this gradient descent view-
point can also be used to construct leveraging algorithms for
regression with good empirical performance [15].

We are aware of several other generalizations of gradient
descent leveraging to the regression setting [13, 15, 17, 21,
5, 4, 6]. These approaches are discussed in more detail in
Section 2.

In analyzing and deriving gradient descent leveraging al-
gorithms, several issues arise. First, a potential function must
be chosen such that minimizing this potential implies that the
master function performs well with respect to the loss func-
tion of interest. This potential should also be amenable to
analysis; most of the bounds on such algorithms are proved
using an amortized analysis of the potential [13, 10, 9, 11].
This paper examines several potential functions for leverag-
ing in the regression setting and proves performance bounds
for the resulting gradient descent algorithms. Second, to de-
rive bounds, assumptions need to be made about the perfor-
mance of the base learners. In particular, if the base learner
does not return useful hypotheses, then the leveraging algo-
rithm cannot be expected to make progress. What constitutes
a useful hypothesis will depend on the potential function be-
ing minimized. Furthermore, how “usefulness” is measured



209

will have a major impact on the difficulty of proving perfor-
mance bounds. In this paper, we attempt to use weak as-
sumptions on the base learners, and use measures of “use-
fulness” that are intuitive. Finally, we desire performance
bounds that are of the strongest form possible. In this paper,
we prove non-asymptotic bounds on the sample error that
hold for every iteration of the leveraging algorithm. These
sample error bounds lead to PAC-style generalization bound-
s showing that with arbitrarily high probability over the ran-
dom sample, the leveraging algorithm will have arbitrarily
low generalization error. To obtain this performance our al-
gorithms need only run for a polynomial number of itera-
tions.

The regression setting has additional considerations not
seen in classification problems. In the classification setting
the complexity of the combined hypothesis can be bounded
in terms of the number of components in the combination
and the complexity of the base hypotheses. For regression,
however, we must also take the size of the coefficients in the
linear combination into account. This means that it may not
be best to take a large gradient descent step each iteration,s-
ince the step size may induce an overly large coefficient. The
choice of step size leads to a tradeoff between the complexity
of the combined hypothesis and the number of iterations re-
quired to achieve good performance on the training sample.
This trade off is discussed further in Section 3.

In the classification setting, the base learner can be forced
to return useful hypotheses simply by manipulating the dis-
tribution over the sample. This is not the case for regression.
In the regression setting, a leveraging algorithm must also
modify the sample in some way. However, no useful base
learner can perform well with respect to an arbitrarily labeled
sample. In Section 3, we illustrate a situation in which the
relabeling used by our algorithms is far from arbitrary. In
fact, in such situations the relabeling is still consistentwith a
reasonable hypothesis.

Throughout the paper we use the following notation. The
the leveraging algorithm is given a set ofm training exam-
plesS = f(x
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)g. For a master regression
functionF , theresiduals arer
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) for 1 � i � m.
Each iteration of the leveraging process the algorithm modi-
fies the sampleS to produce~S = f(x
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by changing the targety values to~y. The algorithm then cre-
ates a distributionD over the modified sample~S and call-
s a base regression algorithm on the modified sample with
the distributionD. The base regressor produces a function
f 2 F with some “edge”� on ~

S underD. (The different
algorithms evaluate the amount of “edge” differently). The
new master regressor then chooses a coefficient� for the
new base function and updates its master regression func-
tion toF + �f . We often use bold face as abbreviations for
vectors over the sample, e.g.f = (f(x
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); : : : ; f(x

m

)) and
y = (y
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).
In Section 3 we introduce and discuss three new poten-

tials from which we derive leveraging algorithms for regres-
sion. The proofs of these results are deferred to Section 4.
The potential functions we examine are two variants of the
squared error and an exponential criterion motivated by Ada-
Boost. Our first algorithm, SQUARELEV.R, uses a uniform
distribution on the sample and~y labels proportional to the

gradient of the potential. An amortized analysis shows that
this algorithm effectively reduces the loss on the sample if
the base regressor returns a functionf whose correlation co-
efficient with the~y values is at least some� > 0.

SQUARELEV.C, our second algorithm, uses the squared
error potential, but with confidence rated classifiers as its
base regressors. This second procedure places a distribu-
tion D on the examples proportional to the absolute value
of the gradient of the square loss and~y labels equal to the
sign of the gradient. We prove that this procedure effective-
ly reduces the loss on the sample when the base classifier
produces functionsf satisfying
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Both of these constraints on the base regressor are similar to
those assumed by the GeoLev algorithm [9] and analogous
to those for AdaBoost [13].

A third algorithm EXPLEV performs gradient descent on
the exponential criterion

P

exp(sr

i

)+exp(�sr

i

)�2 where
s is a scaling factor. This is a two-sided version of Ada-
Boost’sexp(�margin) potential. Whereas in the classifica-
tion setting AdaBoost can be seen as increasing the smallest
margin, for regression we want to decrease the magnitude of
the residuals. By noting that whensr

i

� 0 or sr
i

� 0, the
contribution to our potential is close toexp(sjr

i

j), it seems
reasonable that this potential tends to decrease the maximum
magnitude of the residuals. The probabilityD(x

i

) used by
EXPLEV is proportional to the absolute value of the gradi-
ent with respect toF, jr
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P ). If the weak regressor re-
turns functionsf with edge
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procedure rapidly reduces the exponential potential on the
sample, and for appropriates the maximumjy
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value is at most� afterO((lnm)=� ln(
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)) iterations.
Therefore, the master regression function approximately in-
terpolates the data [1].

Recall that the master function isF =

P

t

�

t

f

t

where�
t

andf
t

are the values computed at iterationt. With additional
assumptions on the base regressor we can bound

P

t

�

t

and
prove (�,Æ)-bounds for the generalization error of the master
regression function (assuming the sample was drawn IID).
For SQUARELEV.R, we require that the standard deviation
of f is not too much smaller than the standard deviation of
the~y values. For EXPLEV, we truncate large descent steps.

Some contributions of this work are deriving and rigor-
ously analyzing three new leveraging algorithms for regres-
sion, and exploring the complexity versus computation trade
off that arises in this regression setting.

2 Relation to Other Work

Leveraging techniques work by repeatedly calling a simple
(or base) learning method on modified samples to obtain d-
ifferent base rules that are combined into a master rule. In
this way leveraging methods attempt to produce a master
rule that is better than any of its components. Leveraging
methods include ARCing [5, 4, 6], Bagging [3] and Boost-
ing [23, 10, 13, 11, 14, 8]. Leveraging for classification has
received considerable attention [13, 3, 10, 2, 19, 12, 25, 20,
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18] and it has been observed that many of these algorithm-
s perform an approximate gradient descent of some poten-
tial [4, 6, 20, 14, 9, 18]. Given this observation it is possible
to derive new leveraging algorithms by choosing a new po-
tential.

The most successful gradient descent leveraging method
is Freund and Schapire’s Adaboost [13] algorithm for classi-
fication. In addition to its empirical success [2, 19, 12], Ada-
Boost has strong theoretical guarantees [13, 24] with reason-
ably weak assumptions on the base learners. Here we con-
centrate on deriving gradient descent leveraging algorithms
for regression with similar guarantees.

Although, leveraging for regression has not received n-
early as much attention as leveraging for classification, there
is some work examining gradient descent leveraging algo-
rithms in the regression context.

The AdaBoost.R algorithm [13] solves the regression
problem by reducing it to a classification problem. To fit
a set of(x; y) pairs with a regression function, where each
y 2 [�1; 1℄, AdaBoost.R converts each(x

i

; y

i

) regression
example into an infinite set of((x

i

; z); ~y

i

) pairs, wherez 2
[�1; 1℄ and~y

i

= sign(y
i

� z). The base regressor is given
a distribution D over(x

i

; z) pairs and must return a function

f(x) such that its weighted “error”
P
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j

R

f(x
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)
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i
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; z)dzj

is less than 1/2. Although experimental work shows that al-
gorithms related to AdaBoost.R [16, 22] can be effective, it
suffers from two drawbacks.

First, it expands each instance in the regression sam-
ple into many classification instances. Although the integral
above is piecewise linear, the number of different pieces can
grow linearly in the number of boosting iterations.

More seriously, the “error” function that the base regres-
sor should be minimizing is not (except for the first itera-
tion) a standard loss function. Furthermore, the loss func-
tion changes from iteration to iteration and even differs be-
tween examples on the same iteration. Therefore, it is diffi-
cult to determine if a particular base regressor is appropriate
for AdaBoost.R.

Breiman used a gradient descent approach to the regres-
sion problem to prove asymptotic convergence results for his
arc-gv algorithm [5, 4, 6]. More recently, Friedman has ex-
plored regression using the gradient descent approach [15].
Each iteration, Friedman’s master algorithm constructs~y

i

-
values for each data-pointx

i

equal to the (negative) gradi-
ent of the loss of its current master hypothesis onx

i

. The
base learner then finds a function in a classF minimizing
the squared error on this constructed sample. Friedman ap-
plies this technique to several loss functions, and has per-
formed experiments demonstrating its usefulness, but does
not present analytical bounds.

Friedman’s algorithm for the square-loss is closely re-
lated to Lee, Bartlett and Williamson’s earlier Constructive
Algorithm for regression [17]. Bartlettet al. prove that the
Constructive algorithm is an efficient and effective learn-
ing technique when the base learner returns a function in
F approximately minimizing the squared error on the mod-
ified sample. These algorithms are very similar to both our
SQUARELEV.R and SQUARELEV.C algorithms.

In work parallel to ours, Rätschet al. [21] relate boost-
ing algorithms to barrier methods from linear programming

and use that viewpoint to derive new leveraging algorithms.
They prove a general asymptotic convergence result for such
algorithms applied to a finite base hypothesis class. One of
their algorithms�-boost is similar to our EXPLEV algorithm.

AdaBoost and AdaBoost.R only require that the base hy-
potheses have a slight edge. In contrast, almost all of the
work on leveraging for regression assumes that the function
returned by the base regressor approximately minimizes the
error over its function class. Here, we analyze the effective-
ness of gradient descent procedures when the base regressor
returns hypotheses that are only slightly correlated with the
labels on the sample. In particular, we consider natural po-
tential functions and determine sufficient properties of the
base regressor so that the resulting gradient descent proce-
dure produces good master regression functions.

When attempting to derive and analyze leveraging algo-
rithms for regression, several issues arise that do not appear
in the classification setting.

In the classification setting, leveraging algorithms are
able to extract useful functions from the base learner by ma-
nipulating the distribution over the sample, and do not need
to modify the sample itself. If the base learner returns func-
tions with small loss (classification error rate on the weight-
ed sample less than 1/2), then several [23, 10, 13, 14, 11, 8]
leveraging algorithms can rapidly produce a master function
that correctly classifies the entire sample.

A key difference between leveraging for regression and
leveraging for classification is the following observation:

Unlike leveraging classifiers, leveraging regressors
cannot always force the base regressor to output a
useful function by simply modifying the distribu-
tion over the sample.

To see this, consider the regression problem with a con-
tinuous loss functionL mapping prediction-label pairs to the
non-negative reals. Letf be a function having the same mod-
est loss on every instance. Since changing the distributionon
the sample does not change the expected loss off , the base
learner can return this samef each iteration. Of course iff
consistently underestimates (or overestimates) they-values
in the sample, then the master can shift or scalef and de-
crease the average loss. However, for many losses (such as
the square loss) it is easy to construct (sample,f ) pairs where
neither shifting nor scaling reduces the loss.

The confidence rated prediction setting of Schapire and
Singer [25] (where eachy

i

2 f�1g andf(x) 2 [�1;+1℄)
does not have this problem: if the “average loss”(1 �

P

D(x
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)y

i

f(x
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))=2 is less than 1/2, and the loss on each
example(1�y

i

f(x

i

))=2 is the same, then eachy
i

f(x

i

) > 0

and thresholdingf gives a perfect classifier on the sample.
It is this thresholding property of classification that makes
manipulating the distribution sufficient for boosting.

In the PAC setting, it is assumed that the sample is la-
beled consistently with some hypothesis in a base hypoth-
esis class. When the base learners are PAC weak learners,
they return hypotheses with average classification error on
the sample less than1=2 regardless of the distribution given.
Note that random guessing has average classification error
1/2, so it is plausible to assume that the base learner can do
slightly better (when the labeling function comes from the
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known class). However, if the sample is modified, it is no
longer clear that the labels are consistent with any hypothe-
sis in the class, and the weak learner may not have any edge.

In general, no useful function class contains hypotheses
consistent with every arbitrary relabeling of a large sample.
To justify modification of the samples, therefore, we need to
show that there are consistent functions in some reasonable
function class. In Section 3 we discuss properties of the base
hypothesis class and target function that ensure the relabel-
ings our algorithms use are consistent with a hypothesis in
the target class.

We have identified three approaches to modifying the
sample for gradient descent leveraging algorithms. Which
approach is best depends on the properties of the base re-
gressor and the potential function. The AdaBoost.R algo-
rithm manipulates the loss function as well as the distribution
over the sample, but leaves the labels unchanged. Friedman’s
Gradient Boost algorithm modifies the sample (by setting the
labels to the negative gradient) while keeping the distribution
constant. A third approach is used by two of the algorithms
presented here. Each modified label is the sign of the cor-
responding component of the (negative) gradient while the
distribution is proportional to the magnitudes of the gradien-
t. This third approach uses�1 labels, and is suitable for base
regressors that solve classification problems.

In the next section we discuss our main results.

3 Algorithms and Main Results

Several issues arise when examining leveraging in the con-
text of regression. First, we must consider the loss function
with which we measure the generalization error of the master
function – this will motivate the choice of potential function.
Second, we must choose a base learner appropriate for the
choice of potential. The choice of base learner has two part-
s: should the base learner be a regression algorithm itself or
should it be a classification algorithm? What criteria should
the base learner be attempting to optimize?

In this section we explore these issues by examining
three algorithms. We prove that each of these algorithms ef-
ficiently produces a regression function with low generaliza-
tion error, measured with respect to an appropriate loss func-
tion. These proofs require assumptions on the base learner
that seem intuitively reasonable, and we provide some justi-
fication for them. However, the base learners must perform
well with respect to a modified sample. Although this may
not be possible in general, we conclude this section by de-
scribing situations for which it is.

The results bounding our algorithms proceed like other
amortized analyses of leveraging algorithms [13, 8]. First,
we bound the change in potential for a single iteration. Sec-
ond, this bound is used to derive a bound on the sample er-
ror. Third, bounds on the size of the resulting combined hy-
pothesis are used to obtain generalization error bounds. For
classification this “size” can be measured just in terms of
the number of base hypotheses combined. In particular, for
classification we may take a hypothesis class and rescale it
without changing its complexity, but this is not the case for
classes of regression functions. In the regression settingwe
must be more careful about the complexity of the combined
hypothesis, as the “size” of a linear combination depends on

the magnitude of the coefficients in the combination. There-
fore we must show that our algorithms are not only compu-
tationally efficient but are also efficient with respect to the
size of the linear combinations produced. Letting the algo-
rithm take a full gradient step might produce a coefficient
that is prohibitively large. Varying the size of the gradient
steps taken can lead to a trade off between the time taken to
obtain a good regressor and the complexity of that regressor.
This trade off is difficult to optimize, and our results do not
require such an optimization.

It is interesting to note that the magnitude of the coef-
ficients in the linear combination also appear in the margin
analyses of boosting algorithms [24, 8] for classification,so
a similar trade off also appears in the classification setting.

In this section we state our main results, PAC-style
bounds on the probability that the algorithm fails to obtain
a good master function. The proofs are postponed to Sec-
tion 4. We will assume that the base function classF is
closed under negation, sof 2 F ) �f 2 F , and thatF
contains the zero function.

3.1 Regression with Squared Error

A standard approach to regression involves choosing a re-
gression functionf from some classF that minimizes the
squared error on a sample.

Definition 3.1 [1] Given a real-valued function f and a
sample S = f(x
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� f(x
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This is done in the hope that achieving small sample error
will imply small error on unseen examples. In fact, this is the
case if the complexity of the function classF is low enough
(see e.g. Anthony and Bartlett [1]).

Definition 3.2 [1] Let P be a probability distribution on
X � <. The (generalization) errorof a function f : X ! <

with respect to P is

er
P

(f) = E(y � f(x))

2

where the expectation is with respect to a random (x; y)

drawn according to P .

Here we describe SQUARELEV.R and SQUARELEV.C,
two gradient descent leveraging algorithms for regression
that produce hypotheses with low expected squared error.
SQUARELEV.R uses a regression algorithm as its base learn-
er while SQUARELEV.C may use a classification algorithm.
These algorithms modify the sample and distribution in dif-
ferent ways. Despite this, the convergence bounds we give
are similar for both algorithms. We analyze the behavior
of SQUARELEV.R in detail and show that, using appropri-
ate base learners, it can efficiently achieve arbitrarily small
squared error on the sample. We also show that the resulting
hypothesis is simple enough that, with high probability, it
achieves small expected squared error on the entire domain.
To show this we require a bound on the complexity of the
function classM in which the master functions lie. Since
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Input: A sampleS = f(x
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Figure 1: The SQUARELEV.R algorithm.

the master function is a linear combination of base function-
s, its complexity will depend on the complexity of the base
function classF and the size of the coefficients in the lin-
ear combination. Bounding the size of the coefficients in the
linear combination is a key step in the analysis of these algo-
rithms.

SQUARELEV.R
Rather than attempting to minimize the mean squared error
over the sample directly, SQUARELEV.R uses the variance
of the residuals as the potential,

P
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Algorithm SQUARELEV.R (stated formally in Figure 1)
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toF), and the uniform distribution over the modified sample.
For this algorithm we define theedge of the returned base
functionf as
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where�
r

and�
f

are the standard deviations of the respective
vectors. Note that the edge is just the correlation coefficient
betweenf andr (or ~y). The value� is chosen to minimize
the potential of the new master function.

The following theorem shows how the potential (2) de-
creases each iteration.

Theorem 4.1 If � is the edge (3) of the base function f in an
iteration of SQUARELEV.R then the potential P

var
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es by a factor of (1� �

2

) during the iteration.

Given the relationship between the potentialP
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F ), Theorem 4.1 proves that each iteration the mean
squared error of~F decreases by a multiplicative factor that
depends on the edge of the base learner. Using this result and
assuming a lower bound�
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on the edge of the base learner
allows us to prove the following theorem.
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This bounds the number of iterations beforeer
S

(

~

F ) � �

and also the size of the coefficients in the linear combination
produced. The bound is independent of the number of exam-
plesm becauseer

S

(

~

F ) is the potential/m, and the potential
decreases by at least a constant factor each iteration.

Using these bounds onT and bounds on the complexity
of the master function produced (derived from the bounds on
T and

P

T
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�

t

) we obtain the following PAC-style result.

Corollary 3.3 Assume that data is drawn IID from a distri-
bution P on X �

�

�B

2

;

B

2

�

, that the base regression func-

tions f 2 F returned by the base learner map to [�1;+1℄

and satisfy � > �

min

, and
jjr�

�
rjj

2

jjf�

�

f jj

2

� , that the base learn-

er runs in time polynomial in m; 1=�, and that Pdim(F) is
finite. Then 9m(�; Æ) polynomial in 1=�; 1=Æ such that for
all �; Æ 2 (0; 1), with probability 1� Æ, SQUARELEV.R pro-
duces a hypothesis F , in time polynomial in 1=�; 1=Æ, with
er
P

< � when trained on a sample of size m(�; Æ).

This result shows that SQUARELEV.R is an efficient re-
gression algorithm for obtaining functions with arbitrarily s-
mall squared error. The result follows from the results in
Section 4, which are more precise in nature.

The conditions placed on the base learner are worth ex-
amining further. The lower bound on the edge of the base
learner�

min

is similar that used in the GeoLev [9] algorithm
and is analogous to that used by AdaBoost. Since the edge
of the base learner is simply the correlation coefficient be-
tween the residuals and the predictions of the base function,
it seems reasonable to assume that this is bounded away from
zero. One cannot expect to model the residuals using a func-
tion that is totally uncorrelated with them. In addition we
require the condition that

jjr�
�
rjj

2

jjf �

�

f jj

2

�  , or
�

r

�

f

�  :

This condition requires that the base function does not have
much smaller variance over the sample than the residuals.
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Given that we are trying to model the residuals using the
base function, this seems like a reasonable assumption. In
the extreme case where the base function has�

f

= 0, no
progress can be made asf is constant and the residuals would
all be modified by exactly the same amount.

SQUARELEV.C
We define SQUARELEV.C to be the gradient descent lever-
aging algorithm using the potential

P

sq

= jjy � Fjj

2

2

= jjrjj

2

2

: (4)

Note that the gradient ofP
sq

w.r.t.F is 2r.
For SQUARELEV.C, we define the edge of the base re-

gressor as:

� =

P

m

i=1

D(x

i

)~y

i

f(x

i

)

jjDjj

2

jjf jj

2

=

(r � f)

jjrjj

2

jjf jj

2

: (5)

SQUARELEV.C mimics SQUARELEV.R with the follow-
ing exceptions. SQUARELEV.C uses�1-valued labels and
modifies the distribution each iteration. The modified labels
are ~y

i

= sign(r
i

). The distributionD(x

i

) sent to the base
regressor is recomputed each iteration and is proportionalto
jr

i

j (and thus proportional to the magnitude of the gradient
with respect toF). The edge�

t

is computed as above. The
value�

t

=

�

t

jjrjj

2

jjf jj

2

=

(r�f)

jjf jj

2

2

.

Note that since SQUARELEV.C uses�1-valued labels, it
may work well when the base functions are classifiers with
rangef�1;+1g. The following theorem provides a progress
bound for SQUARELEV.C that is similar to that given for
SQUARELEV.R in Theorem 4.1.

Theorem 4.4 If � is the edge (5) of the base function f in an
iteration of SQUARELEV.C then the potential P

sq

decreases

by a factor of (1� �

2

) during the iteration.

The potential and suitable base learners for
SQUARELEV.C are closely related to those used by
the GeoLev [9] algorithm. In particular, base hypotheses
which tend to “abstain” on a large portion of the sample
seem appropriate for these algorithms as the edge (5)
tends to increase if the base learner effectively trades off
abstentions for decreased error.

Due to its similarity to SQUARELEV.R, we omit further
analysis of SQUARELEV.C.

3.2 An AdaBoost-like algorithm

An alternative goal for regression is to have almost-
uniformly good approximation to the true regression func-
tion. One way to achieve this is to obtain a simple function
that has small residuals at almost every point in a sufficient-
ly large sample, in other words the goal may be to find a
function that interpolates or approximately interpolatesthe
sample. This approach is known as generalization from ap-
proximate interpolation [1].

Definition 3.4 [1] Suppose that F is a class of function-
s mapping from a set X to the interval [0; 1℄. Then
F generalizes from approximate interpolationif for any
�; Æ; �;  2 (0; 1), there is m

0

(�; Æ; �; ) such that for m �

m

0

(�; Æ; �; ), for any probability distribution P on X and
any function g : X ! [0; 1℄, the following holds: with

probability at least 1 � Æ, if x = (x

1

; x

2

; : : : ; x

m

) 2 P

m,
then for any f 2 F satisfying jf(x

i

) � g(x

i

)j < � for
i = 1; 2; : : : ;m, we have

Pfx : jf(x)� g(x)j < � + g > 1� � : (6)

This property provides a uniform bound on almost all of the
input domain and is therefore considerably stronger in nature
than a bound on the expected squared error.

The notion of approximate interpolation is closely relat-
ed to the�-insensitive loss used in support vector machine
regression [26].

In this section we examine a third algorithm EXPLEV
which uses an exponential potential related to the one used
by AdaBoost [13]. The AdaBoost algorithm pushes all ex-
amples to have positive margin. In the regression setting,
the EXPLEV algorithm pushes the examples to have small
residuals. We show that this is possible and, given certain
assumptions on the class of base hypotheses, that the residu-
als are also small on a large portion of unseen examples.

To obtain a uniformly good approximation it is desirable
to decrease the magnitude of the largest residual, so one pos-
sible potential ismax

i

jr

i

j. However, a gradient descent al-
gorithm for this potential would be difficult to analyze. The
EXPLEV algorithm instead uses the two-sided potential

P

exp

=

m

X

i=1

�

e

sr

i

+ e

�sr

i

� 2

�

; (7)

wheres is a scaling factor. Whensr is largeP
exp

behaves
like exp(smax

i

jr

i

j). P

exp

is also non-negative, and zero
only when eachF (x

i

) = y

i

.
P

exp

is essentially exponential except for a flat region
around 0. The scalars is chosen so that this flat region corre-
sponds to the region of acceptable approximation. The expo-
nential regions have a similar effect to the exponential poten-
tial used by AdaBoost: the example with the largest potential
tends to have its potential decreased the most.

The components of the gradient (wrt.F) are

r

i

P

exp

=

�P

exp

�F (x

i

)

= �s exp(sr

i

) + s exp(�sr

i

) : (8)

For EXPLEV we assume that the base hypotheses have
range[�1;+1℄, and that the goal is to find a master hypoth-
esisF (x) =

P

�

t

f

t

(x) such thatjr
i

j = jy

i

� F (x

i

)j � �

for some given� and each of them examples in the sample.
The scaling factor we find most convenient iss = ln(m)=�.

Like SQUARELEV.C each iteration the distributionD
and the modified labels that EXPLEV gives to the base re-
gressor are

D(x

i

) =

jr

i

P j

jjrP jj

1

(9)

~y

i

= sign(r
i

) : (10)

The base regressor could be either a classifier (returning a
f�1; 1g-valuedf ) or a regressor (where the returnedf gives
values in[�1;+1℄). In either case, we define theedge � of a
base hypothesisf as

� =

m

X

i=1

D(x

i

)~y

i

f(x

i

) : (11)
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Input: A sampleS = f(x
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Figure 2: The EXPLEV algorithm.

This is the same definition of edge used in the confidence rat-
ed version of AdaBoost [25]. The main difference between
the base learners used here and those used by AdaBoost is
that here the base learner must perform well with respect to
a relabeled sample. Although, this may not be possible in
general it seems reasonable in many situations (see the dis-
cussion in Section 3.3).

In addition to the parameters, EXPLEV also takes a sec-
ond parameter,�

max

. This second parameter is used to regu-
larize the algorithm by bounding the size of the steps taken.
The algorithm is stated formally in Figure 2.

In the following theorem we bound the progress that
EXPLEV makes each iteration. The algorithm sets�̂ to the
minimum of� and�

max

.

Theorem 4.8 If m � 3,P
exp

� m +

1

m

� 2 at the start of
an iteration of EXPLEV and � is the edge of the base func-

tion at that iteration then the stepsize � <

1

2s

ln

�

1+�̂

1��̂

�

�

1

2s

ln

�

1+�

max

1��

max

�

and potential P
exp

decreases by at least a

factor of (1� �̂

2

6

) during the iteration.

Using this bound and assuming a lower bound�

min

on
the edge of the base hypotheses we can prove that EXPLEV
obtains a functionF such that all of the residuals are small
within a number of iterations that is logarithmic in the sam-
ple size and linear in1=�. These results are stated in the
following theorem.

Theorem 4.9 If �
min

is a lower bound on the edges of the
base functions and each y
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It is worth examining this result in a little more detail.
Despite the linear dependence on1=� in the bound onT , the
� term is negligible in the bound on the�’s. As the required
accuracy is increased the bound on the length of the total
path traversed by the algorithm (the sum of the step sizes)
does not change, however, the individual step sizes shrink.
The algorithm approximates the steepest descent path more
and more closely as the required accuracy increases. This
illustrates an interesting tradeoff between the number of iter-
ations and the size of the individual coefficients. To obtaina
simple enough hypothesis the coefficients must be kept small
at the expense of increased computational cost.

To show that all the residuals on unseen data are also
small we require a bound on the complexity of the master
function classM from whichF is drawn. SinceM consists
of functions which are linear combinations of functions from
F , the complexity ofM will depend on the size of the linear
combination and the complexity ofF .

Once again we can obtain a PAC-style result using these
bounds.

Corollary 3.5 Assume that data is drawn IID from a dis-
tribution P on X with y = g(x) for some function g :

X !

�

�B

2

;

B

2

�

, that the base regression functions f 2 F

returned by the base learner map to [�1;+1℄ and satisfy
� > �

min

, that the base learner runs in time polynomial
in m; 1=�, and that Pdim(F) is finite. Then 9m(�; Æ; �; )

a polynomial in 1=�; 1=Æ; 1=�; 1= such that the following
holds for all �; Æ; �;  2 (0; 1): with probability at least
1 � Æ, if trained on a sample x = (x

1

; x

2

; : : : ; x

m

) 2 P

m,
then EXPLEV produces a hypothesis F , in time polynomial
in 1=�; 1=Æ; 1=�; 1=, satisfying

Pfx : jF (x) � g(x)j < � + g > 1� �

for all m > m(�; Æ; �; ).

This result shows that EXPLEV is an efficient regression
algorithm for obtaining functions that interpolate a target to
arbitrarily high accuracy. The result follows from resultsin
Section 4 which are somewhat more precise.

3.3 Some Re-Labelings are Benign

All of the results discussed in this section require assump-
tions on the base learners. Although we consider our defini-
tions of the edge to be reasonable and our assumptions lower
bounding these edges essential, a substantial weakness re-
mains. The samples we supply to the base learner are mod-
ified, and it may appear that we are creating an impossible
task. In general, no useful base learner can perform well
with respect to arbitrarily relabeled examples. Here we dis-
cuss a special case which illustrates that the relabelings we
use are not completely general. This special case shows that
the relabelings we use can actually be quite benign.

In the PAC literature it is common to assume that the
samples are labeled according to a function in the hypothesis
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class. Under this assumption many hypothesis classes will
allow our algorithms to use benign relabelings. We restric-
t our attention to base regression functions here, although
a somewhat more involved argument may be used for base
classifiers.

Theorem 3.6 Assume that the data are labeled by a linear
combination of functions from a class F that is closed under
negation and has finite pseudo-dimension Pdim(F). Then all
the modified samples used by SQUARELEV.R are consistent
with some linear combination of functions in F .

Proof: Let g be the function labeling the data. The master
hypothesisF is a linear combination of functions inF by
definition. The residualsr(x

i

) = g(x

i

) � F (x

i

) are there-
fore consistent with the functiong � F , which is a linear
combination of functions inF . 2

A simple example of such a class is the finite class of
monomials of degree up tok with coefficients inf�1; 1g.
The class of linear combinations of these functions has finite
pseudo-dimensionk+1. Therefore, Theorem 3.6 shows that
with a base learner using this finite base hypothesis class,
SQUARELEV.R creates samples that are consistent with the
original target class. A relatively trivial argument can be
used to show that, while any residuals are larger than zero,
there always exists a monomial with an edge relative to such
a relabeling.

Theorem 3.6 is quite general and provides some evidence
that the assumptions we place on the base learner are not
overly strong.

4 Proofs of Main Results

In this section we prove the main results described in the
previous section. These proofs proceed similarly the origi-
nal proofs for AdaBoost [13]. We begin by using an amor-
tized analysis on the potential to bound the time required to
achieve low error on the sample. This is done in two steps,
the first bounds the decrease in the potential in a single it-
eration, the second iterates this bound. We then bound the
size of the coefficients of the final hypothesis. Using these
bounds we can bound the generalization error using standard
results from statistical learning theory [1].

4.1 Performance of SQUARELEV.R

The following theorem shows how the potential (2) decreas-
es each iteration. The value of� in the theorem minimizes
the potential ofF+ �f .

Theorem 4.1 If � is the edge (3) of the base function f in an
iteration of SQUARELEV.R then the potential P

var

decreas-
es by a factor of (1� �

2

) during the iteration.

Proof: LetP
var

, F , andr be the potential, master function,
and residual vector at the start of the iteration andP

0
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,F 0 =
F + �f , andr0 = r� �f be the corresponding quantities at
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The next theorem iterates this result to bound the number
of iterations beforeer
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Proof: Let P
var;T

(andr
T

, �r
T

, F
T

) be the potential (and
residuals, average residual, master function) at the end of
iterationT . If P
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proving the first part of the theorem. On each iteration:

� = �
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�
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2

jjf �

�

f jj

2

�  :

Multiplying this bound byT gives the second part of the
theorem. 2

This result shows that SQUARELEV.R takes only polyno-
mial time to obtain a rule with small error on the sample, and
low complexity. We now use these facts to derive a bound on
the generalization error of the final hypothesis in the follow-
ing theorem.
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Theorem 4.3 Assume that data is drawn IID from a dis-
tribution P on X �
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Where the first inequality follows from Theorem 17.1 in An-
thony and Bartlett [1] and the second from Lemma 4.11 and
the fact thatN

1

(�;F ; k) < N
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(�;F ; k). This probability
will be less thanÆ if
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Sinceln(a) � ab + ln(1=b) � 1 8a; b > 0, we haveab �
ln(a) + ln(b) + 1 and so
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Subtracting 13 from 12 shows thatm is large enough if
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as required. 2

4.2 Performance of SQUARELEV.C

SQUARELEV.C is very similar to SQUARELEV.R, therefore
we only derive a single iteration bound on the reduction in
potential obtained. This result may be used in the same way
as Theorem 4.1 to obtain generalization error results.

Theorem 4.4 If � is the edge (5) of the base function f in an
iteration of SQUARELEV.C then the potential P

sq

decreases

by a factor of (1� �

2

) during the iteration.

Proof: Consider the change in potential for a single iter-
ation, with primes indicating the modified quantities at the
end of the iteration. Recall thatr = y�F, P
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= jjrjj

2

2

, and
� = (r � f)=jjrjj
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4.3 Performance of EXPLEV

We now turn to the results on EXPLEV. We overload the no-
tation and defineP

exp

() = exp()+exp(�)�2 for scalar
, and useP�1

exp

(�) for this function’s (non-negative) inverse.
Since the residuals depend on the master functionF , so does
the potentialP

exp

(r) =

P

m

i=1

(e

sr

i

+ e

�sr

i

� 2). Recall
thatrP

exp

(r) = �s exp(sr

i

) + s exp(�sr

i

), the gradient
of the potential with respect toF.

To start we need to bound the progress obtained by EXP-
LEV in a single iteration. Our proof bounding this progress
uses certain extreme residual vectors, those having a fixed
P

exp

(r) and minimizingjjrP
exp

(r)jj

1

. As shown in Lem-
ma 4.6 these vectors are ther() in following definition.
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, for
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Proof: The proof appears in the full version of this paper [7].
2

To bound the rate of decrease for this worst case vector
of residuals we require the following technical Lemma.
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Proof: The proof appears in the full version of this paper [7].
2

We are now ready to prove the main invariant for EXP-
LEV. The proof of Theorem 4.8 shows that the choice of�

used by EXPLEV minimizes an upper bound on the potential,
and thus EXPLEV is not exactly maximizing the decrease in
potential each iteration.

Theorem 4.8 If m � 3, P
exp
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an iteration of EXPLEV, and � is the edge of the base func-
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SinceQ = P

exp

�2m, this is exactly the� used by EXPLEV.
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We continue by substituting (16) into (15) , simplifying,
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P

0

exp

�

q

Q

2

� (jjrP

exp

jj

1

�̂=s)

2

� 2m :

To obtain the factor by which the potential decreases we di-
vide both sides byP

exp

.

P

0

exp

P

exp

�

q

Q

2

� (jjrP

exp

jj

1

�̂=s)

2

� 2m

P

exp

=

q

(P

exp

+ 2m)

2

� (jjrP

exp

jj

1

�̂=s)

2

� 2m

P

exp

Now Lemmas 4.6 and 4.7 show that ifP
exp

� m +

1

m

� 2

then
P

0

exp

P

exp

� 1�

�̂

2

6

:

Thus the potential decreases by a factor of1� �̂

2

=6 per iter-
ation as required. 2

We iterate this bound to obtain the following bound on
the number of iterations required to achieve small error on
the sample, and to bound the size of the�’s.
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Theorem 4.9 If �
min

is a lower bound on the edges of
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=6 each iteration. Since the initial potential is
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as required. 2

These results show that EXPLEV will produce a com-
bined function in polynomial time that approximately inter-
polates the sample to arbitrarily high accuracy. This together
with the bound on the�’s can be used to obtain the follow-
ing bound on the generalization error of the final hypothesis
produced by EXPLEV.

Theorem 4.10 Assume that the data is drawn IID from a
distribution P on X with y = g(x) for some function g :

X !
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2

;
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2
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, that the base regression functions f 2 F

returned by the base learner map to [�1;+1℄ and have edges
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Proof: The proof appears in the full version of this paper [7].
2

The following key Lemma relates the complexity of the
master function class to the complexity of the base hypothe-
sis class and the size of the coefficients used.

Lemma 4.11 Suppose F is a class of [�1; 1℄-valued func-
tions defined on a set X , and the covering number
N

2

(�;F ;m) is finite for all m 2 � and � > 0. Suppose
in addition that F = �F and F contains the zero function.
For V � 1 define
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Then, for m � fat
M

(16�),

fat
M

(16�) � 8 lnN

2

(�;M;m)

� 8

�

4V

2

�

2

�

lnN

2

�

�

2V

;F ;m

�

� 8

�

4V

2

�

2

�

Pdim(F) ln

�

em4V

2

�Pdim(F)

�

:

Proof: The lemma follows from Theorems 12.10, 14.14 and
12.2 in Anthony and Bartlett [1]. 2

5 Conclusions

In this paper we present three leveraging algorithms for the
regression setting. We give progress guarantees and general-
ization bounds that depend on the good behavior of the base
regressors. The only regression algorithms that we are aware
of with similar bounds are AdaBoost.R [13] and Lee, Bartlett
and Williamson’s Construct algorithm [1]. The bounds giv-
en for AdaBoost.R require the base learner to perform well
with respect to a changing loss. The bounds for the Construct
algorithm are agnostic in flavor and appear stronger than the
bounds we are so far able to show, however, they assume that
the base learner returns an almost optimalf 2 F . Although,
our bounds also rely on assumptions on the base learners, we
feel that these assumptions may be more reasonable. In par-
ticular, the base regression functions only need to be slightly
better than random guessing (in some sense). However, even
these assumptions seem strong when the sample fed to the
base learner is modified. Perhaps future research will be able
to weaken our assumptions and identify conditions ensuring
that the constructed samples fall into the base regressors area
of competence. In the meantime, it appears that empirical
work is needed to determine how well base learners respond
to the modified data.
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The generalization bounds we derive for SQUARELEV.R
and EXPLEV are of very different flavors. In particular, the
bound on EXPLEV has a considerably stronger form than
that for SQUARELEV.R. The key to obtaining these bounds
is bounding

P

T

t=1

�

t

. We found it surprising that for EXP-
LEV, with the appropriate scale factor, the sum of�s de-
pends weakly on the desired accuracy�, while the number
of iterations grows as1=�.
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[20] Gunnar Rätsch, Takashi Onoda, and Klaus-R. Müller.
Soft margins for adaboost. Technical Report NC-TR-
1998-021, NeuroCOLT2, 1998.
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