
298

Generalisation Error Bounds for Sparse Linear Classi�ers

Thore Graepel

Statistics Research Group

Department of Computer Science

Technical University of Berlin

Berlin, Germany

Ralf Herbrich

Statistics Research Group

Department of Computer Science

Technical University of Berlin

Berlin, Germany

John Shawe-Taylor

Department of Computer Science

Royal Holloway

University of London

Egham, UK

Abstract

We provide small sample size bounds on the

generalisation error of linear classi�ers that are

sparse in their dual representation given by

the expansion coe�cients of the weight vec-

tor in terms of the training data. These re-

sults theoretically justify algorithms like the

Support Vector Machine, the Relevance Vec-

tor Machine and K-nearest-neighbour. The

bounds are a-posteriori bounds to be evalu-

ated after learning when the attained level of

sparsity is known. In a PAC-Bayesian style

prior knowledge about the expected sparsity

is incorporated into the bounds. The proofs

avoid the use of double sample arguments by

taking into account the sparsity that leaves un-

used training points for the evaluation of clas-

si�ers. We furthermore give a PAC-Bayesian

bound on the average generalisation error over

subsets of parameter space that may pave the

way combining sparsity in the expansion coef-

�cients and margin in a single bound. Finally,

reinterpreting a mistake bound for the classi-

cal perceptron algorithm due to Noviko� we

demonstrate that our new results put classi-

�ers found by this algorithm on a �rm theo-

retical basis.

1 Introduction

Sparseness in the representation of knowledge has long

been considered advantageous. While sparsity in the

original features is addressed in feature selection [11]

we deal with a di�erent kind of sparsity. Many learning

algorithms are based on a dual representation of linear

classi�ers: The weight vector is represented as a linear

combination of input vectors in a kernel-space whose ex-

istence can be ensured by the application of Mercer ker-

nels. Examples are the Support Vector Machine (SVM)

[2], the Relevance Vector Machine (RVM) [13] and the

K-nearest-neighbour (KNN) classi�er [3, 4], that can be

viewed as a linear classi�er in a collapsed kernel space

in the limit of vanishing kernel bandwidth.

If a classi�er is represented in terms of only a sub-

set of the training sample and succeeds on the remain-

ing training data it e�ectively compresses the sample

[5]. We derive a posteriori results to be evaluated af-

ter learning by combining bounds under prior expec-

tations, e.g. about the attained sparsity. In particular,

we consider the complexity of hypothesis classes only

w.r.t. particular learning algorithms. The sparsity al-

lows us to avoid the double sample argument of the Ba-

sic Lemma [14]. In addition, we present a PAC-Bayesian

theorem [9] about the average generalisation error over

a subset of version space.

Finally, we reinterpret Noviko�'s well known percep-

tron convergence theorem [12] as a sparsity guarantee

for the classi�er found by the well known perceptron

learning algorithm: the mere existence of large mar-

gin classi�ers implies the existence of sparse consistent

classi�ers. By combining the perceptron mistake bound

with a compression bound that originated from the work

of Littlestone and Warmuth [8] we are able to provide

a PAC like generalisation error bound for the classi�er

found by the perceptron algorithm whose size is deter-

mined by the magnitude of the maximally achievable

margin on the dataset.

The paper is structured as follows: In Section 2 we

introduce the basic learning setting and provide the

strati�cation lemma that will enable us later to com-

bine bounds using prior knowledge. In Section 3 we give

sparsity bounds for the zero-error case and the agnos-

tic case. In Section 4 we give the PAC-Bayesian subset

bound for sparse classi�ers. Finally, we present an ap-

plication of the sparsity result for the zero-error case for

classi�ers found by the perceptron learning algorithm.

Most of the proofs have been delegated to the appendix.

2 Preliminaries

We assume a �xed domain X of objects together with

a �xed set Y = f�1;+1g and Z = X � Y from which

we draw a training sample Z = (X;Y ) of size m iid

according to P

Z

� P

XY

. Given a �xed mapping � : X !

K we know that there exists a function k : X �X ! R

such that k (x; z) = h� (x) ;� (z)i

K

where k is known as

the kernel for the �xed feature space K [10]. For a given



299

training set Z we de�ne the set of classi�ers considered

H (Z) = fsign (f) : f 2 F (Z)g ;

F (Z) =

(

x 7!

m

X

i=1

�

i

y

i

k (x;x

i

) : � 2 A

)

:

A learning algorithm L :

S

1

m=1

Z

m

! A maps from a

training set Z to a vector � of coe�cients in A � R

m

,

where the resulting hypothesis is assumed invariant un-

der the permutation of the training set. If a learning

algorithm L is applied to a subset Z

0

� Z of the train-

ing set Z of size m we assume that L assigns zero to

all corresponding coe�cients �

i

not present in Z

0

. We

de�ne the training error R

emp

[f; Z] of a classi�er f on

a given training sample Z by

R

emp

[f; Z] =

1

m

jf(x

i

; y

i

) 2 Z : y

i

f (x

i

) � 0gj ;

and the generalisation error R [f ] of a classi�er f by

R [f ] = P

XY

(Y � f (X) � 0) :

Finally, the version space V (Z) for a given training set

Z is

V (Z) = f� 2 A : R

emp

[f

�

; Z] = 0g :

Our goal is a bound on R [f ] given only R

emp

[f; Z] and

some easy-to-determine complexity measure of f . As-

suming a �xed value of the complexity measure we prove

that with high probability (at least 1� �) the generali-

sation error will be small (not more than � (�)). In order

to plug in the observed value of the complexity measure

we stratify over all r possible values of the complex-

ity measure thereby encoding prior belief about which

complexity value we expect to observe using probabili-

ties p

i

. Thus we combine a Bayesian prior (the numbers

p

i

) with PAC bounds leading to PAC-Bayesian theorems

(see [9]).

Lemma 1 (Strati�cation Lemma). Suppose we are

given r logical formulas �

i

: Z

m

� R 7! ftrue; falseg

such that

8i 2 f1; : : : ; rg 8� 2 [0; 1] : P

Z

m

(�

i

(Z; �)) � 1� � :

Then for any set p

1

; : : : ; p

r

of positive numbers whose

sum is upper bounded by one

8� 2 [0; 1] : P

Z

m

(�

1

(Z; �p

1

) ^ : : : ^�

r

(Z; �p

r

)) � 1� � :

3 Sparsity Bounds

3.1 The Zero Error Case

Let us start with a sparsity bound for classi�ers f with

R

emp

[f; Z] = 0 using the following lemma [5].

Lemma 2 (Compression lemma). Fix d 2 f1; : : : ;mg

and a learning algorithm L. For any measure P

Z

, the

probability that m examples Z drawn iid according to P

Z

contain a subset Z

d

� Z of exactly d examples and the

linear classi�er f

L(Z

d

)

is both consistent with Z and has

generalisation error R

�

f

L(Z

d

)

�

larger than " is at most

�

m

d

�

(1� ")

m�d

:
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Figure 3.1: Bound values of Theorem 3 vs. attained

sparsity level bs (Z) for m = 1000 and � = 0:05.

Using equation (7.1) the lemma implies that the follow-

ing statement holds with probability at least 1� � over

the random draw of the training set Z:

8Z

d

� Z : (jZ

d

j 6= d) _

�

R

emp

�

f

L(Z

d

)

; Z

�

6= 0

�

_

 

R

�

f

L(Z

d

)

�

�

ln

��

m

d

��

+ ln

�

1

�

�

m� d

!

: (3.1)

By a simple application of Lemma 1 we obtain our �rst

sparsity bound.

Theorem 3 (Sparsity bound). Fix a learning algo-

rithm L and s 2 (0; 1). For any measure P

Z

, with prob-

ability 1 � � over the random draw of the training set

Z of size m for all linear classi�er f

L(Z)

that have zero

training error R

emp

�

f

L(Z)

; Z

�

= 0, the generalisation

error R

�

f

L(Z)

�

is bounded from above by

ln

�

1

s

�

+

d � ln

�

1

1�s

�

+ ln (1� s

m

) + ln

�

1

�

�

m� d

; (3.2)

provided d = kL (Z)k

0

> 0.

Proof. Apply Lemma 1 to equation (3.1) using the se-

quence

p

d

=

�

m

d

�

s

m�d

(1� s)

d

1� s

m

; (3.3)

where s expresses our belief in sparsity.

In terms of the attained sparsity level bs (Z) = 1�

kL(Z)k

0

m

we have that with probability at least 1 � � over the

random draw of the training set Z for all linear classi�ers

f

L(Z)

with zero training error R

emp

�

f

L(Z)

; Z

�

= 0

R

�

f

L(Z)

�

� ln

�

1� s

s

�

+ ln

�

1

1� s

�

1

bs (Z)

+

ln (1� s

m

) + ln

�

1

�

�

mbs (Z)

:

A good match of s and bs (Z) leads to low bound values

as can be seen in Figure 3.1.
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3.2 The Agnostic Case

In the case of non-zero training error we use the follow-

ing analog of Lemma 2.

Lemma 4 (Agnostic compression lemma). Fix d 2

f1; : : : ;mg, q 2 f1; : : : ;m� dg and a learning algo-

rithm L. For any measure P

Z

, the probability that m

examples Z drawn iid according to P

Z

contain a subset

Z

d

� Z of exactly d examples and the linear classi�er

f

L(Z

d

)

has a training error R

emp

�

f

L(Z

d

)

; Z

�

�

q

m

on Z

and has generalisation error R

�

f

L(Z

d

)

�

larger than " is

at most

�

m

d

�

exp

(

�2 (m� d)

�

"�

q

m� d

�

2

)

:

The lemma implies the following statement that holds

with probability at least 1� � over the random draw of

the training set Z:

8Z

d

� Z : (jZ

d

j 6= d) _

�

R

emp

�

f

L(Z

d

)

; Z

�

>

q

m

�

_

0

@

R

�

f

L(Z

d

)

�

�

q

m� d

+

s

ln

��

m

d

��

+ ln

�

1

�

�

2 (m� d)

1

A

:(3.4)

By a double application of Lemma 1 and 4 we obtain

Theorem 5 (Training error sparsity bound). Fix a

learning algorithm L and s 2 (0; 1). For any measure

P

Z

, with probability 1� � over the random draw of the

training set Z of size m for all linear classi�er f

L(Z)

,

the generalisation error R

�

f

L(Z)

�

is bounded from above

by

m

m� d

R

emp

�

f

L(Z)

; Z

�

+

v

u

u

t

1

2

ln

�

1

s

�

+

d ln

�

1

1�s

�

+ ln (1� s

m

) + ln

�

m

�

�

2 (m� d)

;

provided d � kL (Z)k

0

> 0.

Proof. Apply Lemma 1 to equation (3.4) using the se-

quences (3.3) and p

q

=

1

m

.

4 A PAC-Bayesian Analysis

In the PAC-Bayesian framework [9] we aim at incor-

porating Bayesian priors P

A

over the data dependent

expansion coe�cients � into PAC generalisation error

bounds. Our �rst result bounds the generalisation error

of a single classi�ers f

�

whereas Theorem 7 is concerned

with the average generalisation error over a subset of

version space.

Theorem 6 (PAC{Bayesian folk theorem). For any

two measures P

A

and P

Z

with probability at least 1� �

over the random draw of the training set Z for all classi-

�ers f

�

that achieve zero training error R

emp

[f

�

; Z] =

0 and P

A

(�) > 0 the generalisation error is bounded

from above by

R [f

�

] �

1

m� k�k

0

�

ln

�

1

P

A

(�)

�

+ ln

�

1

�

��

:

Proof. Apply Lemma 1 to the the statement

�

�

(Z) � (R

emp

[f

�

; Z] 6= 0) _

 

R [f

�

] �

ln

�

1

�

�

m� k�k

0

!

;

that holds with probability at least 1�� over the random

draw of Z for all �. For a �xed vector � let i

�

e the in-

dices of non zero coe�cients �

i

and d = k�k

0

. By notic-

ing that R

emp

[f

�

; Z] = 0 implies R

emp

[f

�

; Z n Z

i

�

] = 0

we have

8� : P

Z

m

((R

emp

[f

�

;Z] = 0) ^ (R [f

�

] > "))

� P

Z

m

((R

emp

[f

�

;Z n Z

i

�

] = 0) ^ (R [f

�

] > "))

= P

Z

m�d ((R

emp

[f

�

;Z] = 0) ^ (R [f

�

] > "))

< (1� ")

m�d

� exp f�" (m� d)g ;

because for a �xed index vector i

�

the classi�er f

�

does

not change over the random draw of the m� d random

variables Z

j

with indices j 2 f1; : : : ;mgni

�

. The result

follows by solving for ".

Theorem 7 (PAC-Bayesian subset bound). For any

two measures P

A

and P

Z

with probability at least 1� �

over the random draw of the training set Z for all sub-

sets A 2 V (Z) of �xed sparsity d, i.e. 8� 2 A : k�k

0

=

d, and P

A

(A) > 0 the average generalisation error over

A is bounded from above by

E

A2A

[R [f

A

]] �

ln

�

1

P

A

(A)

�

+ 2 ln (m) + ln

�

1

�

�

+ 1

m� d

:

As it stands this result bounds the generalisation error

of the so-called Gibbs classi�er that draws classi�ers

randomly from A according to the prior measure P

A

. It

thus justi�es this simple Bayesian classi�cation strategy.

Furthermore, recent results [6] indicate that Theorem 7

may be useful for providing a PAC-Bayesian bound that

bene�ts from both sparseness and margin of a classi�er.

5 From Margin To Sparsity

In this section we present an application of Theorem 3 to

the perceptron learning algorithm formulated in feature

space K using kernels k. Given a �xed permutation

� : f1; : : : ;mg ! f1; : : : ;mg, the perceptron learning

algorithm L

�

is as follows:

1. Start in step zero, i.e. t = 0, with the vector�

t

= 0.

2. For all i 2 f1; : : : ;mg, if y

�(i)

f

�

�

x

�(i)

�

� 0 then

(�

t+1

)

�(i)

= (�

t

)

�(i)

+ 1 : (5.1)

and t t+ 1.

3. Stop, if there is no i 2 f1; : : : ;mg such that

y

�(i)

f

�

�

x

�(i)

�

� 0 :

In the early 60's Noviko� and Aizerman et al. [12, 1]

were able to give an upper bound on the number t

of mistakes made by this learning procedure. Given
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a training set Z, the quantity determining the upper

bound is the maximally achievable margin max

�



Z

(�)

on the training sample Z = (X;Y ) normalised by the

total extent & of the data in feature space, i.e. & =

max

x

i

2X

k� (x

i

)k

K

. This margin 

Z

(�) is given by



Z

(�) =

1

kf

�

k

min

(x

i

;y

i

)2Z

y

i

f

�

(x

i

) ;

kf

�

k

2

=

m

X

i=1

m

X

j=1

y

i

y

j

�

i

�

j

k (x

i

;x

j

) :

Theorem 8 (Mistake Bound for Perceptrons). Fix

a permutation � : f1; : : : ;mg ! f1; : : : ;mg. Let Z =

(X;Y ) be a training set of size m and let k : X �X ! R

be a Mercer kernel. Suppose that there exists a vector

�

�

2 R

m

such that 

Z

(�

�

) > 0. Then the number of

mistakes made by the perceptron learning algorithm L

�

on Z is at most

�

&



Z

(�

�

)

�

2

:

Considering the form of the update rule (5.1) we observe

that this result not only bounds the number of mistakes

made during learning but also the number k�k

0

of non-

zero coe�cients in the � vector. To be precise, it bounds

the `

1

norm k�k

1

of the coe�cient vector � which, in

turn, bounds the zero norm k�k

0

from above for all vec-

tors with integer components. Theorem 8 thus estab-

lishes a relation between the existence of a large margin

classi�er �

�

and the sparseness of any solution found

by the perceptron algorithm. Combining Theorem 8 and

Lemma 2 and 1 with p

d

=

1

m

thus gives the following

remarkable result.

Theorem 9 (Margin Bound). Fix a permutation � :

f1; : : : ;mg ! f1; : : : ;mg. For any measure P

Z

such

that P

X

(k� (X)k

K

� &) = 1, with probability at least

1� � over the random draw of the training set Z of size

m, if there exists a vector �

�

such that 

Z

(�

�

) >

&

p

m

then the generalisation error R

�

f

L

�

(Z)

�

of the classi�er

f

L

�

(Z)

found by the perceptron learning algorithm L

�

is

less than

1

m� d

�

ln

��

m

d

��

+ ln (m) + ln

�

1

�

��

; (5.2)

where d =

�

&

2



�2

Z

(�

�

)

�

.

The most intriguing feature of this result is that the

mere existence of a large margin classi�er f

�

�

is su�-

cient to guarantee a small generalisation error for the

solution f

L

�

(Z)

of the perceptron learning algorithm al-

though its attained margin 

Z

(�) is likely to be much

smaller than 

Z

(�

�

). It has long been argued that the

attained margin 

Z

(�) itself is the crucial quantity con-

trolling the generalisation error of �. In light of our new

result if there exists a consistent classi�er f

�

�

with large

margin we know that there also exists at least one clas-

si�er f

�

with high sparsity that can e�ciently be found

using the perceptron learning algorithm. In fact, when-

ever the SVM appears to be theoretically justi�ed by a

large observed margin, every solution found by the per-

ceptron algorithm has a small guaranteed generalisation

error | mostly even smaller than current bounds on

the generalisation error of SVMs. Note that for a given

training sample Z it is not unlikely that by permuta-

tion of Z via � there exist exponentially many di�erent

consistent sparse classi�ers f

�

.

6 Conclusion

In this paper we proved a series of bounds for linear

classi�ers exploiting sparsity and prior knowledge there-

about. Double sample arguments could be avoided due

to the sparseness that leaves iid samples from the train-

ing sample for witnessing the quality of the classi�er.

Thus we established proof for the common conception

that sparse classi�ers lead to good generalisation. Fu-

ture work will be concerned with a thorough explo-

ration of PAC-Bayesian results with priors on the data-

dependent expansion coe�cients in dual representations

of linear classi�ers.
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7 Proofs

For subsets Z

0

� Z of size exactly d 2 f1; : : : ;mg we de-

note by i the index vector i = (i

1

; : : : ; i

d

) 2 f1; : : : ;mg

d

of d distinct indices i

1

< : : : < i

d

from the set f1; : : : ;mg.

We use I

d

to denote the set of all subsets i of f1; : : : ;mg

of size d. Given a training set Z of size m we write

Z

i

= f(x

i

1

; y

i

1

) ; : : : ; (x

i

d

; y

i

d

)g � Z . Finally, we use

8" 2 [0; 1] : (1� ") � exp f�"g : (7.1)

7.1 Proof of Lemma 1

Proof. The proof is a simple union bound argument. By

de�nition

8� 2 [0; 1] : P

Z

m

(�

1

(Z; �p

1

) ^ : : : ^�

r

(Z; �p

r

))

= 1� P

Z

m

(:�

1

(Z; �p

1

) _ : : : _ :�

r

(Z; �p

r

))

� 1�

r

X

i=1

P

Z

m

(:�

i

(Z; �p

i

)) > 1�

r

X

i=1

�p

i

� 1� � :

7.2 Proof of Lemma 2

Proof. We exploit the idea that for a �xed value of d

there are still m � d points drawn iid according to P

Z

on which the classi�er f

L(Z

d

)

has succeeded. Thus, for

a �xed set Z

d

2 Z

d

let us de�ne the event

� (Z

d

; Z

m�d

) �

�

R

emp

�

f

L(Z

d

)

; Z

m�d

�

= 0

�

^

�

R

�

f

L(Z

d

)

�

> "

�

;
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where Z

m�d

2 Z

m�d

. By the binomial tail bound we

know that

8Z

d

2 Z

d

: P

Z

m�d

�

�

�

Z

d

;Z

m�d

��

< (1� ")

m�d

: (7.2)

Thus we conclude

P

Z

m

�

9Z

d

� Z :

�

R

emp

�

f

L(Z

d

)

;Z

�

= 0

�

^

�

R

�

f

L(Z

d

)

�

> "

��

= P

Z

m

(9i : � (Z

i

;Z n Z

i

))

�

X

i

P

Z

m

(� (Z

i

;Z n Z

i

)) ;

where the last inequality follows from the union bound.

Since the number of summands is

�

m

d

�

and the sum-

mands are bounded by equation (7.2) we �nally have

that the probability under consideration is at most

�

m

d

�

(1� ")

m�d

:

7.3 Proof of Lemma 4

Proof. For a �xed set Z

d

2 Z

d

let us de�ne the

� (Z

d

; Z

m�d

) �

�

R

emp

�

f

L(Z

d

)

; Z

m�d

�

�

q

m� d

�

^

�

R

�

f

L(Z

d

)

�

> "

�

;

where Z

m�d

2 Z

m�d

. We have chosen

q

m�d

because if

f

L(Z

d

)

commits not more than q errors on Z, the number

of errors on the subset Z

m�d

is upper bounded by q. By

Hoe�ding's inequality [7] we know that

8Z

d

2 Z

d

: P

Z

m�d (� (Z

d

;Z

m�d

))

< exp

(

�2 (m� d)

�

"�

q

m� d

�

2

)

: (7.3)

Thus we conclude

P

Z

m

�

9Z

d

� Z :

�

R

emp

�

f

L(Z

d

)

;Z

�

�

q

m

�

^

�

R

�

f

L(Z

d

)

�

> "

�

�

= P

Z

m

(9i : � (Z

i

;Z n Z

i

))

�

X

i

P

Z

m

(� (Z

i

;Z n Z

i

)) ;

where the last inequality follows from the union bound.

Since the number of summands is

�

m

d

�

and the sum-

mands are bounded by equation (7.3) we �nally have

that the probability under consideration is at most

�

m

d

�

exp

(

�2 (m� d)

�

"�

q

m� d

�

2

)

:

7.4 Proof of Theorem 7

Let us recall the quanti�er reversal lemma [9].

Lemma 10 (Quanti�er Reversal Lemma). Let X and

Y be random variables and let � range over (0; 1]. Let

� : X�Y�R 7! ftrue; falseg be any measurable formula

on the product space X �Y such that for any x 2 X and

y 2 Y we have

f� 2 (0; 1] : � (x; y; �)g = (0; �

max

]

for some �

max

. If

8x8� 2 (0; 1] : P

YjX=x

(� (x;Y; �)) � 1� �

then we have for all � 2 (0; 1) and � 2 (0; 1]

P

Y

�

8 2 (0; 1] : P

XjY=y

�

�

�

X; y; (��)

1

1��

��

� 1� 

�

� 1� � :

Proof of Theorem 7. We decompose the expectation at

some point " 2 R by

E

A2A

[R [f

A

]] � " � P

A2A

(R [f

A

] � ") + 1 � P

A2A

(R [f

A

] > ") ;

using R [f

A

] < 1 by de�nition. In the proof of Theorem

6 we have already shown that for all � 2 A and for all

� 2 (0; 1]

P

Z

m

jA=�

 

(� =2 V (Z)) _

 

R [f

�

] �

ln

�

1

�

�

m� k�k

0

!!

� 1� � :

By Lemma 10 this implies that for all � 2 (0; 1) with

probability at least 1 � � over the random draw of the

training set Z for all  2 (0; 1]

P

AjZ

m

=Z

0

B

B

B

@

(A 2 V (Z)) ^

0

B

B

B

@

R [f

A
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1

1� �

ln

�

1

��

�

m� kAk

0

| {z }

"(;�)

1

C

C

C

A

1

C

C

C

A

<  :

By assumption of the theorem P

AjZ

m

=Z

= P

A

from

which it follows that

P

A2A

(R [f

A

] > " (; �)) =

P

A

((A 2 A) ^ (R [f

A

] > " (; �)))

P

A

(A)

�



P

A

(A)

;

because A 2 V (Z). If we set  =

P

A

(A)

m

and � =

1

m

we

�nally obtain that with probability at least 1 � � over

the random draw of the training set Z

E

A2A

[R [f

A

]] �

ln

�

1

P

A

(A)

�

+ 2 ln (m) + ln

�

1

�

�

m� d

+

1

m

;

because by assumption for all � 2 A : k�k

0

= d.

Bounding

1

m

by

1

m�d

from above completes the proof.
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