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Abstract

We provide small sample size bounds on the

generalisation error of linear classi�ers that

take advantage of large observed margins on

the training set and sparsity in the data de-

pendent expansion coe�cients. It is already

known from results in the luckiness frame-

work that both criteria independently have

a large impact on the generalisation error.

Our new results show that they can be com-

bined which theoretically justi�es learning al-

gorithms like the Support Vector Machine [4]

or the Relevance Vector Machine [12]. In

contrast to previous studies we avoid using

the classical technique of symmetrisation by

a ghost sample but directly using the sparsity

for the estimation of the generalisation er-

ror. We demonstrate that our result leads to

practical useful results even in case of small

sample size if the training set witnesses our

prior belief in sparsity and large margins.

1 Introduction

In this paper we present a bound on the generalisa-

tion error of linear classi�ers that takes advantage of

the sparsity in terms of data dependent expansion co-

e�cients and the margin attained at the given train-

ing set. It is already known that both criteria inde-

pendently have an impact on the generalisation error

of linear classi�ers (see [13, 10]). We show that com-

bining both criteria results in a bound that is tighter

by orders of magnitudes and thus for the �rst time a

practically useful bound for linear classi�ers. Usually,

bounds in the PAC framework are derived using a tech-

nique known as symmetrisation by a ghost sample [14],

i.e. the probability over the random draw of the training

set Z that there exists a classi�er f with high generali-

sation error (larger than ") but zero training error is up-

per bounded by twice the probability that there exists a

classi�er with zero training error on m iid examples but

training error larger than

"

2

on a second ghost sample

of size m drawn iid. This analysis then naturally leads

to covering numbers for the function class because on a

double sample of size 2m the number of di�erent func-

tions (in terms of training errors or attained margins) is

�nite (see [3, Lemma 4] or [11, Theorem 6.8]). For linear

classi�ers, a direct application of a lemma due to Alon

et. al. [1] �nally gives the margin bound in [10] having

an additional log

2

(m) factor. For comparison purposes

we quote the bound here but using the slightly tighter

bound on the fat shattering dimension contained in [2].

The result states that with probability at least 1�� over

m randomly drawn samples Z, the generalisation error

(see equation (2.4)) of a hyperplane with margin (see

equation (2.2)) at least  on the training set is bounded

by
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A

; (1.1)

where & is the radius of a ball containing the support

of the distribution. Better results can be obtained by

using tighter bounds on the covering numbers for linear

function classes, in particular avoiding the double log

factor, but even with these improvements the result will

still give trivial bounds for most practical applications.

We will demonstrate albeit arti�cial examples, where

our new bound is non trivial with training set sizes as

small as 300.

Curiously, we shall totally avoid using the ghost

sample technique. Conceptually, however, we in fact

will make use of a ghost sample but from within the

training set Z of size m. This can be accomplished by

exploiting the sparseness of the classi�er. If the clas-

si�er is determined by just d training points, we use

the remaining m � d points for testing the generalisa-

tion error of the classi�er. This strategy was �rst pro-

posed by Littlestone and Warmuth [6] for compression

schemes. The novelty of the current paper is to combine

their compression scheme argument with the large mar-

gin bounds on the growth function, resulting in bounds

that are tighter than can be obtained by one or other

approach on its own.

The paper is structured as follows: in the following

section we will introduce the learning scenario we con-

sider. In Section 3 we present our main result together

with some experiments. For the sake of readability the

main proof is delegated to Appendix A. We denote
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vectors by bold letters, whereas scalars are typeset in

roman letters. Random variables are typeset in sans

serif font; vector spaces are denoted by calligraphic cap-

italised letters. The symbols P;E and I denote a prob-

ability measure, the expectation of a random variable

and the indicator function, respectively.

2 Preliminaries

Suppose we are given a �xed domain X of objects to-

gether with a �xed set Y = f�1;+1g of classes �1 and

+1 abbreviated by Z = X � Y. Furthermore let us

assume that there exists a stationary distribution P

Z

from which we generate iid training sets Z = (X;Y ) of

size m. Given a �xed mapping � : X ! K we know

that there exists a function k : X � X ! R such that

k (x; z) = h� (x) ;� (z)i

K

where k is known as the ker-

nel for the �xed feature space K. Alternatively, we could

choose a symmetric positive de�nite function k so as to

assure that there exists a �xed space K by Mercer's the-

orem [8]. For a given training set Z we de�ne the set of

classi�ers considered for learning as

H (Z) = fsign (f) : f 2 F (Z)g ; (2.1)

F (Z) =

(

x 7!

m

X

i=1

�

i

y

i

k (x;x

i

) + b : � 2 A; b 2 R

)

:

Though this is a data dependent set of classi�ers we

know by Mercer's theorem that each f is a linear classi-

�er in the space K. As we often bound the probability

that a subset Z

0

� Z of size exactly d 2 f1; : : : ;mg has

a certain property we introduce the following notation:

the symbol i denotes the index vector i = (i

1

; : : : ; i

d

) 2

f1; : : : ;mg

d

of d distinct indices i

1

< i

2

< � � � < i

d

from

the set f1; : : : ;mg. We use I

d

to denote the set of all in-

dex vectors i of f1; : : : ;mg of size d. Given a training set

Z of sizem we denote by Z

i

= f(x

i

1

; y

i

1

) ; : : : ; (x

i

d

; y

i

d

)g �

Z the subset of size d obtained by selecting the i

1

{th

to i

d

{th element from Z. A learning algorithm L :

S

1

m=1

Z

m

7! A assigns a training set Z to a vector

� of coe�cients L (Z) in A � R

m

and is assumed to be

invariant under permutation of the sample. We assume

that the setting of the threshold b can then be inferred

by a �xed rule from the examples. We denote by i

L(Z)

the set of indices for which the coe�cients are non zero,

and by f

L(Z)

= f

b

L(Z)

the corresponding function with

appropriately chosen threshold b. If a learning algo-

rithm L is applied to a subset Z

0

� Z of the training

set Z of size m we assume that L assigns all correspond-

ing coe�cients �

i

not present in Z

0

to zero, i.e.

8i 2 f1; : : : ;mg : (x

i

; y

i

) 2 (Z n Z

0

)) (L (Z

0

))

i

= 0 :

Furthermore we assume that if the learning algorithmL

is applied to Z

i

L(Z)

the result obtained is L (Z), that is

the same function (and threshold) is reconstructed from

the subsample. Note that this implies that the function

f

L(Z)

is determined by the subsample Z

i

L(Z)

. Hence two

distinct dichotomies of the same inputs must give rise

to distinct sets of indices. Given a training set Z, the

margin 

Z

(�; b) is de�ned by



Z

(�; b) = min

(x

i

;y

i

)2Z

�

y

i

f

b

�

(x

i

)

kf

b

�

k

�

(2.2)
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) :

Normally, the threshold b will be chosen to maximise



Z

(�; b) for the set of training examples. We de�ne

the training error R

emp

[f; Z] of a classi�er f on a given

training set Z by

R

emp

[f; Z] =

1

m

jf(x

i

; y

i

) 2 Z : y

i

f (x

i

) � 0gj : (2.3)

Accordingly, the generalisation error R [f ] of a classi�er

f is de�ned by

R [f ] = P

XY

(Y � f (X) � 0) : (2.4)

We will also be interested in the following conditional

generalisation error R



[f ] given that a margin  is ob-

served on a test example

R



[f ] = P

XYj jf(X)j�

(Y � f (X) � 0) : (2.5)

Our ultimate interest is to obtain bounds on R [f ] given

only the observable training error R

emp

[f; Z] and some

easy{to{determine complexity measure of f , e.g. the

margin or the sparsity in terms of kL (Z)k

0

. In course

of derivation of such bounds we often proceed as fol-

lows: assuming a �xed value of the complexity measure

shall allow us to determine that with high probability

(at least 1��) the generalisation error will be small (not

more than " (�)). In order to plug in the observed value

of the complexity measure we stratify over all s possi-

ble values of the complexity measure using the following

strati�cation lemma.

Lemma 1 (Strati�cation Lemma). Suppose we are

given s logical formulas �

i

: Z

m

� R 7! ftrue; falseg

such that

8i 2 f1; : : : ; sg8� 2 [0; 1] : P

Z

m

(�

i

(Z; �)) � 1� � :

Then for any set p

1

; : : : ; p

s

of s positive numbers whose

sum is upper bounded by one

8� 2 [0; 1] : P

Z

m

(�

1

(Z; �p

1

) ^ : : :^�

s

(Z; �p

s

)) � 1� � :

Note that for the strati�cation we can encode some prior

belief which complexity value we expect to observe us-

ing positive real numbers p

i

that sum up to at most

one. This idea allows to combine Bayesian priors (the

numbers p

i

) with PAC bounds �nally leading to PAC{

Bayesian theorems (see [7] for details).

3 A Sparse Margin Bound

The core idea to obtain a generalisation error bound for

a �xed learning algorithm is to exploit the (assumed)

sparseness of a the returned linear classi�er f

L(Z)

be-

cause if the learned classi�er uses d training points,
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i.e. kL (Z)k

0

= d, but has also large margins with cor-

rect classi�cation on the remainingm�d points, the lat-

ter can e�ectively be used as iid test points. The number

of equivalence classes is then determined by the margin



Z

(L (Z) ; b) �  attained on the whole training set Z.

Note that the condition of a margin  on the correctly

classi�ed m � d points forces us to consider the con-

ditional generalisation error R



[f

b

L(Z)

] rather than the

more usual quantity| the generalisation error R[f

b

L(Z)

].

Lemma 2 (Margin Compression Lemma). Fix  2

(0; &), d 2 f1; : : : ;mg and a learning algorithm L. For

any measure P

Z

such that P

X

(fx : k� (x)k

K

� &g) = 1

the probability that m examples Z drawn iid according

to P

Z

contain a subset Z

d

� Z of exactly d exam-

ples and the linear classi�er f

b

L(Z

d

)

achieves a margin



Z

(L (Z

d

) ; b) =  and has conditional generalisation

error R



[f

b

L(Z

d

)

] larger than " is less than

�

em

�

�

�

exp f�" (m � d)g ;

where � =

�

�

&



�

2

+ 1

�

< m.

The lemma implies the following statement that holds

with probability at least 1� � over the random draw of

the training set Z:

8Z

d

� Z : (jZ

d

j 6= d) _

 &

�

&



�

2

+ 1

'

6= �

!

_

(

Z

(L (Z

d

) ; b) 6= ) _

 

R



h

f

b

L(Z

d

)

i

�

� ln

�

em

�

�

+ ln

�

1

�

�

m � d

!

: (3.1)

Using a double strati�cation over possible values of d

and � gives the following theorem.

Theorem 3 (Sparse margin conditional bound).

Fix a learning algorithm L. For any measure P

Z

such

that P

X

(fx : k� (x)k

K

� &g) = 1, with probability at

least 1 � � over the random draw of the training set Z

of size m for all linear classi�er f

b

L(Z)

that have margin



Z

(L (Z) ; b) =  the conditional generalisation error

R



[f

b

L(Z)

] is bounded from above by

�

�

&



�

2

+ 1

�

ln

�

em

l

(

&



)

2

+1

m

�

+ 2 ln (m) + ln

�

1

�

�

m� d

; (3.2)

provided d = kL (Z)k

0

> 0 and  >

&

p

m

.

Proof. The proof is obtained by an application of Lemma

1 to equation (3.1) using the sequence p

d

=

1

m

and

p

�

=

1

m

. Note that � is by de�nition always strictly

positive.

The two results given above only cover the conditional

generalisation error. These are useful if we are willing

to discard test points falling within  of the margin.

�

2

eqn. (3.2)

b

R



[f

b

L(Z)

]

b

R[f

b

L(Z)

]

0:1 0:29 0:00 0:00

1 0:34 0:00 0:00

10 1:00 0:07 0:07

Table 1: Bound values of Theorem 3 (m = 100) over 100

random draws of the training set with � = 0:05. Small

values of �

2

lead to training sets that can be separated

with a large margin.

In order to check the practical usefulness of the

bound (3.2) we generated training sets on the unit sphere

inR

50

using normalised points x drawn according to two

multidimensional Gaussian with mean vectors �

+1

=

(1; : : : ; 1)

0

and �

�1

= (�1; : : : ;�1)

0

and the same co-

variance matrix�

2

I. For the determination of the classes

we applied the �xed rule y = sign

�

P

50

i=1

x

i

�

. Our

learning algorithmmaximises the margin using only 0:25�

m training points. In Table 1 we see that even for very

small training set sizes, e.g. m = 100, our bound pro-

vides non trivial values if �

2

was such that with high

probability the margin as well as the sparsity is large.

Note that the sparsity of 75% alone does not su�ce

to give non trivial generalisation error bounds (see [2]).

Similarly, in order to achieve a bound value of 0:29 for

maximally large margins 

Z

(L (Z) ; b) = & with the clas-

sical margin bound given by equation (1.1) we would

need the astronomical number of m = 153 892 as the

minimal training set size.

4 Conclusion

In this paper we have proven a conditional generalisa-

tion error bound for linear classi�ers both in terms of

margins and sparsity. The novelty with the approach

is the avoidance of moving to a ghost sample by us-

ing the points not appearing in the sparse represen-

tation as test points. By using this technique we are

able to avoid using covering number bounds working

instead with the VC dimension of large margin hyper-

planes together with Sauer's Lemma. The result is a

bound which is signi�cantly tighter than previous large

margin bounds and indeed many standard PAC results.

The question of whether the proof techniques de-

veloped here can be used to give a bound on the (un-

conditional) generalisation error remains open. The re-

sult has, however, shown that at least for conditional

error the two luckiness functions of margin and spar-

sity can be combined to give a composite bound that is

tighter than either gives individually. As such we be-

lieve it opens up the prospect of combining the bene�ts

obtained when two di�erent prior beliefs are both wit-

nessed in a particular training set.
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A Proofs

A.1 Proof of Lemma 1

Proof. The proof is a simple union bound argument. By

de�nition

8� 2 [0; 1] : P

Z

m

(�

1

(Z; �p

1

) ^ : : :^�

s

(Z; �p

s

))

= 1� P

Z

m

(:�

1

(Z; �p

1

) _ : : :_ :�

s

(Z; �p

s

))

� 1�

s

X

i=1

P

Z

m

(:�

i

(Z; �p

i

)) > 1�

s

X

i=1

�p

i

� 1� � :

A.2 Proof of Lemma 2

Before proving the lemmawe recall the following bound

on the number of dichotomies realisable with hyper-

planes having margin  (see [13, p. 128] and [2, 5, 9] for

details).

Lemma 4 (VC dimension of hyperplanes). For any

measure P

Z

such that P

X

(fx : k� (x)k

K

� &g) = 1 the

number of di�erent classi�cations Y realisable on m

randomly drawn points X by a linear classi�er f

b

�

of

the form (2.1) with 

(X;Y )

(�; b) �  is bounded from

above by

�

em

�

�

�

;

where � =

�

�

&



�

2

+ 1

�

< m.

Proof of Lemma 2. We exploit the idea that for a �xed

value of d there are stillm�d points drawn iid according

to P

Z

on which the classi�er f

b

L(Z

d

)

has to succeed. For

a �xed index set i 2 I

d

and margin  we de�ne the

propositions

A

c

i

(Z) �

�

i

L(Z)

= i

�

^ (

Z

(L (Z

i

) ; b) = ) ^

�

R



h

f

b

L(Z

i

)

i

> "

�

;

A

i

(Z) �

�

i

L(Z

0

)

= i

�

^ (

Z

0

(L (Z

i

) ; b) = ) ^

�

R



h

f

b

L(Z

i

)

i

> "

�

;

where with examples Z

0

= Z[f

L(Z

i

)

] we denote the set of

training examples Z relabelled using the function f

L(Z

i

)

.

The idea behind these de�nition is that we use the ex-

amples indexed by i to �nd a hypothesis. For the �rst

proposition this is the hypothesis for the whole train-

ing set (the exponent c indicates consistency). For the

second proposition it is the hypothesis for the whole

training set when appropriately relabelled. We wish to

bound the probability

P

Z

m

(9i 2 I

d

: A

c

i

(Z)) �

X

i2I

d

P

Z

m

(A

c

i

(Z))

=

�

m

d

�

P

Z

m

�

A

c

i

0

(Z)

�

;

where i

0

= f1; : : : ; dg which follows from the union

bound. The event A

c

i

0

(Z) can be decomposed as fol-

lows

A

c

i

0

(Z) � A

i

0

(Z)

m

^

j=d+1

�

y

j

f

b

L(Z

i

0

)

(x

j

) � 

�

:

Hence, we can now write P

Z

m

�

A

c

i

0

(Z)

�

as

P

Z

m

(A

i

0

(Z))P

Z

m

jA

i

0

(Z)

0

@

m

^

j=d+1

Y

j

f

b

L(Z

i

0

)

(X

j

) � 

1

A

= P

Z

m

(A

i

0

(Z))

m

Y

j=d+1

P

Z

m

jA

i

0

(Z)

�

Y

j

f

b

L(Z

i

0

)

(X

j

) � 

�

:

By the independence assumption and the fact that the

e�ect of the conditional probability is the same as the

conditional generalisation error R



[f

b

L

(

Z

i

0

)

] > ", each

factor in the product is less than (1 � ") so that we

obtain

P

Z

m

�

A

c

i

0

(Z)

�

< P

Z

m

(A

i

0

(Z)) (1� ")

m�d

� P

Z

m

(A

i

0

(Z)) exp f�" (m� d)g ;

where we have used 8" 2 [0; 1] : (1� ") � exp f�"g. Let

� be the set of permutations U of the m examples. By

the invariance of the probability under permutations of

the sample, we can now write the probability P

Z

m

(A

i

0

)

as follows

P

Z

m

(A

i

0

(Z)) = E

U

h

E

Z

m

jU=U

h

I

A

i

0

(U(Z))

ii

= E

Z

m

h

E

UjZ

m

=Z

h

I

A

i

0

(U(Z))

ii

= E

Z

m

"

1

m!

X

U2�

I

A

i

0

(U(Z))

#

;

where we have used the uniform measure P

U

over the

m! possible permutations. We now bound the number of

non zero summands for a �xed set Z. First observe that

if the summand is non zero for some U 2 �, then all the

d!(m�d)! permutations U

0

realising the same split, that

is with U

0

(Z)

i

0

= U (Z)

i

0

, have non zero summands.

We must therefore bound the number of index vectors

i 2 I

d

of d examples that when placed in the �rst d

positions give a non zero summand. For each such set i

we have 

Z

0

(L (Z

i

) ; b) �  and i

L(Z

0

)

= i, where Z

0

=

Z[f

b

L(Z

i

)

]. Since the set i

L(Z

0

)

is uniquely determined by

Z

0

, distinct sets must correspond to distinct dichotomies

of the examples in Z, each of which is realised with

margin at least . Thus, by Lemma 4 the number of

non zero summands cannot exceed

�

em

�

�

�

d! (m � d)! :
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Putting together the partial results we obtain

P

Z

m

(9i 2 I

d

: A

c

i

(Z)) �

�

m

d

�

P

Z

m

�

A

c

i

0

(Z)

�

<

�

m

d

�

P

Z

m

(A

i

0

(Z)) exp f�" (m� d)g

�

�

m

d

�

�

em

�

�

�

d! (m� d)!

m!

exp f�" (m� d)g

=

�

em

�

�

�

exp f�" (m� d)g :
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