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Abstract

Temporal difference (td) algorithms are used in
reinforcement learning to compute estimates of the
value of a given policy in an unknown Markov de-
cision process (policy evaluation). We give rigor-
ous upper bounds on the error of the closely re-
latedphased td algorithms (which differ from the
standard updates in their treatment of the learning
rate) as a function of the amount of experience.
These upper bounds prove exponentially fast con-
vergence, with both the rate of convergence and
the asymptote strongly dependent on the length of
the backupsk or the parameter�. Our bounds give
formal verification to the well-known intuition that
td methods are subject to a bias-variance trade-
off, and they lead to schedules fork and � that
are predicted to be better than any fixed values for
these parameters. We give preliminary experimen-
tal confirmation of our theory for a version of the
random walk problem.

1 Introduction

In the policy evaluation problem, we must predict the ex-
pected discounted return (orvalue) for a fixed policy�, given
only the ability to generate experience in an unknown Markov
decision process (MDP)M . A well-studied parameterized
family of temporal difference (or td) [3] algorithms have
been developed for this problem. These algorithms make
use of repeated trajectories under� from the state(s) of in-
terest, and perform iterative updates to the value function.
The parameters of the algorithms control how far they look
ahead in the trajectories. Thetd(k) algorithm uses the first
k rewards, and the (current) value prediction at the(k +

1)st state reached, in making its update. The more com-
monly usedtd(�) family of algorithms use exponentially
weighted sums oftd(k) updates (with decay parameter�).
The smaller the value fork or �, the less the algorithm de-
pends on the actual rewards received in the trajectory, and
the more it depends on the current predictions for the value
function. Conversely, the larger the value fork or �, the

more the algorithm depends on the actual rewards obtained,
with the current value function playing a lessened role. The
extreme cases oftd(k = 1) andtd(� = 1) become the
Monte Carlo algorithm, which updates each prediction to be
the average of the discounted returns in the trajectories.

A well-known issue is whether it is better to use large
or small values of the parametersk and�. Watkins [5] in-
formally discusses the trade-off that this decision gives rise
to: larger values for thetd parameters suffer larger variance
in the updates (since more stochastic reward terms appear),
but also enjoy lower bias (since the error in the current value
function predictions have less influence). This argument has
largely remained an intuition. However, some conclusions
arising from this intuition – for instance, that intermediate
values ofk and� often yield the best performance in the
short term – have been borne out experimentally [4, 2].

In this paper, we provide rigorous upper bounds on the
error in the value functions ofphased td algorithms as a
function of the number of trajectories used. In other words,
we give bounds on thelearning curves of phasedtdmethods
that hold for any MDP. The phasedtd algorithms capture the
spirit of the standardtd methods, but treat the learning rate
in a way that permits a simplified analysis. Our upper bounds
decay exponentially fast, and are obtained by first deriving
a one-step recurrence relating the errors before and after a
phasedtd update, and then iterating this recurrence for the
desired number of steps. Of particular interest is the form
of our bounds, since it formalizes the trade-off discussed
above — the bounds consist of terms that are monotonically
growing withk and� (corresponding to the increased vari-
ance), and terms that are monotonically shrinking withk and
� (corresponding to the decreased influence of the current er-
ror).

Overall, our bounds provide the following contributions
and predictions:

� A formal theoretical explanation of the bias-variance
trade-off in phased multi-steptd updates;

� A proof of exponentially fast rates of convergence for
any fixedk or �;

� A rigorous upper bound that predicts that larger val-
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ues ofk and� lead to fasterconvergence, but tohigher

asymptotic errror;

� Formal explanation of the superiority of intermediate
values ofk and� (U-shaped curves) for any fixed num-
ber of iterations;

� Derivation of a decreasingschedule of k and� that our
bound predicts should beat any fixed value of these pa-
rameters.

Furthermore, we provide some preliminary experimental con-
firmation of our theory for the random walk problem. We
note that some of the findings above were conjectured by
Singh and Dayan [2] through analysis of specific MDPs.

2 Technical Preliminaries

Let M = (P;R) be an MDP, consisting of thetransition

distributions P (�js; a) over next states for any state-action
pair (s; a), and thereward distributions R(�js) over scalar
rewards at each states. For any policy� (a mapping from
states to actions) inM , and any start states

0

, a trajectory

generated by� starting froms
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where0 �  < 1 is a fixeddiscount factor. One of the
central problems in reinforcement learning is that of estimat-
ing the value function of a fixed� on the basis of sample
trajectories under�.

We now define the standardtd(k) (also known ask-step

backup) andtd(�) algorithms for updating an estimate of
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Thetd(k) update based on� is simply

^

V

�

(s) td(k; �;

^

V

�

(�)):

It is implicit that the update is always applied to the estimate
at the initial state of the trajectory� , and we regard the dis-
count factor and thelearning rate � as being fixed. For any

� 2 [0; 1], thetd(�) update can now be easily expressed as
an infinite linear combination of thetd(k) updates:
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; : : :, we can simply apply either
type oftd update sequentially. In either case, as eitherk

becomes large or� approaches 1, the updates approach a
Monte Carlo method, in which we use each trajectory�

i

en-
tirely, and ignore our current estimate^V �

(�). As k becomes
small or � approaches 0, we rely heavily on the estimate
^
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(�), and effectively use only a few steps of each�
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. The
common intuition is that early in the sequence of updates,
the estimate^V �

(�) is poor, and we are better off choosingk
large or� near 1. However, since the trajectories�

i

do obey
the statistics of�, the value function estimates will eventu-
ally improve, at which point we may be better off “bootstrap-
ping” by choosing smallk or �.

In order to provide a rigorous analysis of this intuition,
we will study what we callphased td updates. These al-
gorithms are intended to capture the qualitative properties of
the standardtdmethods, while simplifying the complexities
of the moving average introduced by the learning rate�. In
each phase, we are givenn trajectories under� from every
states, wheren is a parameter of the analysis. Thus, phase
t consists of a setS(t) = f�
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all states,i ranges from1 to n, and� s
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(t) is an independent
random trajectory generated by� starting from states. In
phaset, phasedtd averages alln of the trajectories inS(t)
that start from states to obtain its update of the value func-
tion estimate fors. In other words, the phasedtd(k) updates
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Note that the phasedtd updates are subject to the same bias-
variance intuition as the standard updates. Indeed, we view
phasedtd updates with a constant value ofn as roughly
analogous to standardtd updates with a constant learning
rate� [1], with largern corresponding to smaller�. To see
this, note that we may “unroll” the standardtd(k) estimate
aftert iterations as
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). Thus, for anyfixed �, because of the exponential
damping, our estimate at any given moment is directly de-
pendent on a number of recent trajectories that is effectively
constant. We note that since it is common in practice to use a
decreasing (and not constant) learning rate, we are analyzing
here an algorithm that in at least one way is believed to be
inferior to those used experimentally.

In the ensuing sections, we provide a rigorous upper bound
on the error in the value function estimates of phasedtd

updates as a function of the number of phases. This upper
bound clearly captures the bias-variance intuitions expressed
above. We note that while the experimental and theoretical
relationship between standard and phasedtd updates needs
to be explored, the phasedtd algorithms are well-defined,
simple and easily implemented in their own right, and to the
extent that one believes the standard updates to besuperior

to the phased updates, our upper bounds are relevant to the
former.

3 Bounding the Error of Phased td Updates

Theorem 1 (Phased td(k) Error Recurrence) Let S(t) be
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standard large deviation analysis (omitted), the probability
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occurs, the total contribution to the error in the value function
estimate is bounded by((1�k)=(1�))�, giving rise to the

“variance” term in our overall bound above. The remainder
of the phasedtd(k) update is simplyk(1=n)
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contribution to the error is at mostk�
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, which is the
“bias” term of the bound. We note that a similar argument
leads to bounds in expectation rather than the PAC-style bounds
given here. 2

Let us take a brief moment to analyze the qualitative be-
havior of Equation (1) as a function ofk. For large values of
k, the quantityk becomes negligible, and the bound is ap-
proximately(1=(1 � ))

p

3 log(k=�)=n, giving almost all
the weight to the error incurred by variance in the firstk re-
wards, and negligible weight to the error in our current value
function. At the other extreme, whenk = 1 our reward vari-
ance contributes error only

p

3 log(1=�)=n, but the error in
our current value function has weight. Thus, the first term
increases withk, while the second term decreases withk, in
a manner that formalizes the intuitive trade-off that one faces
when choosing between longer or shorter backups.

Equation (1) describes the effect of a single phase of
td(k) backups, but we can iterate this recurrence over many
phases to derive an upper bound on the full learning curve
for any value ofk. Assuming that the recurrence holds for
t consecutive steps,1 and assuming�

0

= 1 without loss of
generality, solution of the recurrence (details omitted) yields

�
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This bound makes a number of predictions about the effects
of different values fork. First of all, ast approaches infinity,
the bound on�

t

approaches the value

(1=(1� ))

p

3 log(k=�)=n;

which increases withk. Thus, the bound predicts thatthe

asymptotic error of phased td(k) updates is larger for larger

k

2. On the other hand, therate of convergence to this
asymptote iskt, which is always exponentially fast, but
faster for larger k. Thus, in choosing a fixed value ofk,
we must choose between having either rapid convergence to
a worse asymptote, or slower convergence to a better asymp-
tote. This prediction is illustrated graphically in Figure1(a),
where with all of the parameters besidesk andt fixed (namely,
, �, andn), we have plotted the bound of Equation (2) as a
function oft for several different choices ofk.

Note that while the plots of Figure 1(a) were obtained
by choosingfixed values fork and iterating the recurrence
of Equation (1), at each phaset we can instead use Equa-
tion (1) to choose the value ofk that maximizes the predicted

1Formally, we can apply Theorem 1 by choosing� = �

0

=(tN),
whereN is the number of states in the MDP. Then with probability
at least1� �

0, the bound of Equation (1) will hold at every state for
t consecutive steps.

2We note that this statement is valid for the case of constantn,
which is analogous to a constant learning rate, as already discussed.
Decreasing learning rates can of course achieve zero asymptotic
error.
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Figure 1: (a) Upper bounds on the learning curves�

t

of
phasedtd(k) for several values ofk, as a function of the
number of phasest (parametersn = 3000, = 0:9, � = 0:1).
Note that larger values ofk lead to more rapid convergence,
but to higher asymptotic errors. Both the theory and the
curves suggest a (decreasing) schedule fork, intuitively ob-
tained by always “jumping” to the learning curve that enjoys
the greatest one-step decrease from the current error. This
schedule can be efficiently computed from the analytical up-
per bounds, and leads to the best (lowest) of the learning
curves plotted, which is significantly better than for any fixed
k. (b) The schedule fork derived from the theory as a func-
tion of the number of phasest. (c) For several values of
the number of phasest, the upper bound on�

t

for phased
td(k) as a function ofk. These curves show the predicted
trade-off, with a unique optimal value fork identified untilt
is sufficiently large to permit 1-step backups to converge to
their optimal asymptotes.

decrease in error�
t

��

t+1

. In other words, the recurrence
immediately yields aschedule for k, along with an upper
bound on the learning curve for this schedule that outper-
forms the upper bound on the learning curve for any fixed
value ofk. The learning curve for the schedule is also shown
in Figure 1(a), and Figure 1(b) plots the schedule itself.

Another interesting set of plots is obtained by fixing the
number of phasest, and computing for eachk the error af-
ter t phases usingtd(k) updates that is predicted by Equa-
tion (2). Such plots are given in Figure 1(c), and they clearly
predict a unique minimum — that is, an optimal value ofk

for each fixedt (this can also be verified analytically from
equation 2). For moderate values oft, values ofk that are
too small suffer from their overemphasis on a still-inaccurate
value function approximation, while values ofk that are too
large suffer from their refusal to bootstrap. Of course, ast in-
creases, the optimal value ofk decreases, since small values
of k have time to reach their superior asymptotes.

We now go on to provide a similar analysis for thetd(�)
family of updates, beginning with the analogue to Theorem 1.

Theorem 2 (Phased td(�) Error Recurrence) Let S(t) be

the set of trajectories generated by � in phase t (n trajecto-

ries from each state), let ^V �
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(�) be the value function estimate

of phased td(�) after phase t, and let
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Here the error �
t�1

after phase t� 1 is fixed, and the prob-

ability is taken over only the trajectories in S(t).

We omit the proof of this theorem, but it roughly fol-
lows that of Theorem 1. That proof exploited the fact that in
td(k) updates, we only need to apply large deviation bounds
to the rewards of a finite number (k) of averaged trajectory
steps. Intd(�), all of the rewards contribute to the update.
However, we can always choose to bound the deviations of
the firstk steps, for any value ofk, and assume maximum
variance for the remainder (whose weight diminishes rapidly
as we increasek). This logic is the source of themin

k

f�g

term of the bound. One can view Equation (3) as avaria-

tional upper bound, in the sense that it provides a family of
upper bounds, one for eachk, and then minimizes over the
variational parameterk.

The reader can verify that the terms appearing in Equa-
tion (3) exhibit a trade-off as a function of� analogous to
that exhibited by Equation (1) as a function ofk. In the in-
terest of brevity, we move directly to thetd(�) analogue
of Equation (2). It will be notationally convenient to define
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k
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= argmin
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fF (�)g, whereF (�) is the function appear-
ing inside themin
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f�g in Equation (3). (Here we regard all
parameters other than� as fixed.) It can be shown that for
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= 1, repeated iteration of Equation (3) yields thet-phase
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Figure 2: (a) Upper bounds on the learning curves�

t

of
phasedtd(�) for several values of�, as a function of the
number of phasest (parametersn = 3000, = 0:9, � = 0:1).
The predictions are analogous to those fortd(k) in Figure 1,
and we have again plotted the predicted best learning curve
obtained via a decreasing schedule of�. (b) For several val-
ues of the number of phasest, the upper bound on�

t

for
td(�) as a function of�.

While Equation (4) may be more difficult to parse than
its td(k) counterpart, the basic predictions and intuitions
remain intact. Ast approaches infinity, the bound on�

t

asymptotes ata
�

=(1 � b

�

), and the rate of approach to this
asymptote is simplyb

�

t, which is again exponentially fast.
Analysis of the derivative ofb

�

with respect to� confirms
that for all  < 1, b

�

is a decreasing function of� — that
is, the larger the�, the faster the convergence. Analytically

verifying that the asymptotea
�

=(1 � b

�

) increases with�
is more difficult due to the presence ofk

�

, which involves
a minimization operation. However, the learning curve plots
of Figure 2(a) clearly show the predicted phenomena — in-
creasing� yields faster convergence to a worse asymptote.
As we did for thetd(k) case, we use our recurrence to de-
rive a schedule for�; Figure 2(a) also shows the predicted
improvement in the learning curve by using such a sched-
ule. Finally, Figure 2(b) again shows the non-monotonicpre-
dicted error as a function of� for a fixed number of phases.

4 Some Experimental Confirmation
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Figure 3: (a) Empirical learning curves�
t

for td(k) for
several values ofk on the random walk problem (parameters
n = 40 and = 0:98). Each plot is averaged over 5000
runs oftd(k). Also shown is the learning curve (averaged
over 5000 runs) for the empirical schedule computed from
thetd(k) learning curves, which is better than any of these
curves. (b) The empirical schedule.

In order to test the various predictions made by our the-
ory, we have performed a number of experiments using phased
td(k) on a version of the so-calledrandom walk problem [4].
In this problem, we have a Markov process with 5 states ar-
ranged in a ring. At each step, there is probability 0.05 that
we remain in our current state, and probability 0.95 that we
advance one state clockwise around the ring. (Note that since
we are only concerned with the evaluation of a fixed pol-
icy, we have simply defined a Markov process rather than a
Markov decision process.) Two adjacent states on the ring
have reward+1 and�1 respectively, while the remaining
states have reward 0. The standard random walk problem
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has a chain of states, with an absorbing state at each end;
here we chose a ring structure simply to avoid asymmetries
in the states induced by the absorbing states.

To test the theory, we ran a series of simulations comput-
ing thetd(k) estimate of the value function in this Markov
process. For several different values ofk, we computed the
error�

t

in the value function estimate as a function of the
number of phasest. (�

t

is easily computed, since we can
compute the true value function for this simple problem.)
The resulting plot in Figure 3(a) is the experimental ana-
logue of the theoretical predictions in Figure 1(a). We see
that these predictions are qualitatively confirmed — largerk

leads to faster convergence to an inferior asymptote.
Given these empirical learning curves, we can then com-

pute the “empirical schedule” that they suggest. Namely, to
determine experimentally a schedule fork that should out-
perform (at least) the values ofk we tested in Figure 3(a),
we used the empirical learning curves to determine, for any
given value of�, which of the empirical curves enjoyed the
greatest one-step decrease in error when its current error was
(approximately)�. This is simply the empirical counter-
part of the schedule computation suggested by the theory de-
scribed above, and the resulting experimental learning curve
for this schedule is also shown in Figure 3(a), and the sched-
ule itself in Figure 3(b). We see that there are significant
improvements in the learning curve from using the schedule,
and that the form of the schedule is qualitatively similar to
the theoretical schedule of Figure 1(b).

5 Conclusion

We have given the first provable upper bounds on the error of
td methods for policy evaluation. These upper bounds have
exponential rates of convergence, and clearly articulate the
bias-variance trade-off that such methods obey.
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