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Abstract

Haussler, Kearns, Seung and Tishby introduced
the notion of a shell decomposition of the union
bound as a means of understanding certain em-
pirical phenomena in learning curves such as
phase transitions. Here we use a variant of
their ideas to derive an upper bound on the
generalization error of a hypothesis computable
from its training error and the histogram of
training errors for the hypotheses in the class.
In most cases this new bound is significantly
tighter than traditional bounds computed from
the training error and the cardinality or VC
dimension of the class. Our results can also
be viewed as providing PAC theoretical foun-
dations for a model selection algorithm pro-
posed by Scheffer and Joachims.

1 Introduction

For an arbitrary finite hypothesis class we consider the
hypothesis of minimal training error. We give a new
upper bound on the generalization error of this hypoth-
esis computable from the training error of the hypothe-
sis and the histogram of the training errors of the other
hypotheses in the class. This new bound is typically
much tighter than more traditional upper bounds com-
puted from the training error and cardinality or VC di-
mension of the class.

As a simple example, suppose that we observe that
all but one empirical error in a hypothesis space is1=2

and one empirical error is0. Furthermore, suppose that
the sample size is large enough (relative to the size of the
hypothesis class) that with high confidence we have that,
for all hypotheses in the class, the true (generalization)
error of a hypothesis is within1=5 of its training error.
This implies, that with high confidence, hypotheses with
training error near1=2 have true error in[3=10; 7=10].
Intuitively, we would expect that the true error of the hy-
pothesis with minimum empirical error to be very near

to0 rather than simply less than1=5 because none of the
hypotheses which produced an empirical error of1=2

could have a true error close enough to0 that there exists
a significant probability of producing0 empirical error.
The bound presented here validates this intuition. We
show that you can ignore hypotheses with training error
near1=2 in calculating an “effective size” of the class for
hypotheses with training error near0. This new effective
class size allows us to calculate a tighter bound on the
difference between training error and true error for hy-
potheses with training error near0. The new bound is
proved using a distribution-dependent application of the
union bound similar in spirit to the shell decomposition
introduced by Haussler, Kearns, Seung and Tishby [1].

We actually give two upper bounds on generaliza-
tion error — an uncomputable bound and a computable
bound. The uncomputable bound is a function of the un-
known distribution of true error rates of the hypotheses
in the class. The computable bound is, essentially, the
uncomputable bound with the unknown distribution of
true errors replaced by the known histogram of training
errors. Our main contribution is that this replacement is
sound, i.e., the computable version remains, with high
confidence, an upper bound on generalization error.

When considering asymptotic properties of learning
theory bounds it is important to take limits in which the
cardinality (or VC dimension) of the hypothesis class is
allowed to grow with the size of the sample. In practice
more data typically justifies a larger hypothesis class.
For example, the size of a decision tree is generally pro-
portional the amount of training data available. Here
we analyze the asymptotic properties of our bounds by
considering an infinite sequence of hypothesis classes
H

m

, one for each sample sizem, such thatln jHm

j

m

ap-
proaches a limit larger than zero. This kind of asymp-
totic analysis provides a clear account of the improve-
ment achieved by bounds that are functions of error rate
distributions rather than simply the size (or VC dimen-
sion) of the class.

We give a lower bound on generalization error show-
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ing that the uncomputable upper bound is asymptoti-
cally as tight as possible — any upper bound on gener-
alization error given as a function of the unknown distri-
bution of true error rates must asymptotically be greater
than or equal to our uncomputable upper bound. Our
lower bound on generalization error also shows that there
is essentially no loss in working with an upper bound
computed from the true error distribution rather than ex-
pectations computed from this distribution as used by
Scheffer and Joachims [4].

Asymptotically, the computable bound is simply the
uncomputable bound with the unknown distribution of
true errors replaced with observed histogram of train-
ing errors. Unfortunately, we can show that in limits
where ln jH

m

j

m

converges to a value greater than zero,
the histogram of training errors need not converge to
the distribution of true errors — the histogram of train-
ing errors is a “smeared out” version of the distribution
of true errors. This smearing loosens the bound even
in the large-sample asymptotic limit. We give a pre-
cise asymptotic characterization of this smearing effect
for the case where distinct hypotheses have independent
training errors. In spite of the divergence between the
uncomputable and computable bounds, the computable
bound is still significantly tighter than classical bounds
not involving error distributions.

The computable bound can be used for model selec-
tion. In the case of model selection we can assume an in-
finite sequence of finite model classesH

0

;H

1

; :::where
eachH

j

is a finite class withln jH
j

j growing linearly
in j. To perform model selection we find the hypothe-
sis of minimal training error in each class and use the
computable bound to bound its generalization error. We
can then select, among these, the model with the small-
est upper bound on generalization error. Scheffer and
Joachims propose (without formal justification) replac-
ing the distribution of true errors with the histogram of
training errors. Under this replacement, the model se-
lection algorithm based on our computable upper bound
is asymptotically identical to the algorithm proposed by
Scheffer and Joachims.

The shell decomposition is a distribution-dependent
use of the union bound. Distribution-dependent uses of
the union bound have been previously exploited in so-
called self-bounding algorithms. Freund [5] defines, for
a given learning algorithmand data distribution, a set
S of hypotheses such that with high probability over the
sample, the algorithm will always return a hypothesis in
that set. AlthoughS is defined in terms of the unknown
data distribution, Freund gives a way of computing a set
S

0 from the given algorithm and the sample such that,
with high confidence,S0 containsS and hence the “ef-
fective size” of the hypothesis class is bounded byjS

0

j.
Langford and Blum [7] give a more practical version
of this algorithm. Given an algorithm and data distribu-

tion they conceptually define a weighting over the possi-
ble executions of the algorithm. Although the data dis-
tribution is unknown, they give a way of computing a
lower bound on the weight of the particular execution of
the algorithm generated by the sample at hand. In this
paper we consider distribution dependent union bounds
defined independently of any particular learning algo-
rithm.

2 Mathematical Preliminaries

For an arbitrary measure on an arbitrary sample space
we use the notation8�S �[S; �] to mean that with prob-
ability at least1� � over the choice of the sampleS we
have that�[S; �] holds. In practiceS is the training sam-
ple of a learning algorithm. Note that8x 8�S �[x; S; �]

does not imply8�S 8x �[x; S; �]. If X is a finite
set, and for allx 2 X we have the assertion8� >

0 8

�

S �[S; x; �] then by a standard application of the
union bound we have the assertion8� > 0 8

�

S 8x 2

X �[S; x;

�

jXj

]. We will call this the quantification rule.

If 8� > 0 8

�

S �[S; �] and8� > 0 8

�

S 	[S; �] then
by a standard application of the union bound we have
8� > 0 8

�

S �[S;

�

2

] ^ 	[S;

�

2

]. We will call this the
conjunction rule.

The KL-divergence of p from q, denotedD(qjjp), is
q ln(

q

p

)+(1�q) ln(

1�q

1�p

)with 0 ln(

0

p

) = 0 andq ln( q
0

) =

1. Let p̂ be the fraction of heads in a sequenceS of m
tosses of a biased coin where the probability of heads is
p. For p̂ � p we have the following inequality given by
Chernoff in 1952 [3].

8q 2 [p; 1] : Pr(p̂ � q) � e

�mD(qjjp) (1)

This bound can be rewritten as follows.

8� > 0 8

�

S D(max(p̂; p)jjp) �

ln(

1

�

)

m

(2)

To derive (2) from (1) note thatPr(D(max(p̂; p)jjp) �

ln(

1

�

)

m

) equalsPr(p̂ � q) whereq � p andD(qjjp) =

ln(

1

�

)

m

. By (1) we then have that this probability is no
larger thane�mD(qjjp)

= �. It is just as easy to derive
(1) from (2) so the two statements are equivalent. By
duality, i.e., by considering the problem defined by re-
placingp by 1� p, we get the following.

8� > 0 8

�

S D(min(p̂; p)jjp) �

ln(

1

�

)

m

(3)

Conjoining (2) and (3) yields the following corollary of
(1).

8� > 0 8

�

S D(p̂jjp) �

ln(

2

�

)

m

(4)

Using the inequalityD(qjjp) � 2(q� p)

2 one can show
that (4) implies the following better known form of the
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Chernoff bound.

8� > 0 8

�

S jp� p̂j �

s

ln(

2

�

)

2m

(5)

Using the inequalityD(qjjp) �

(p�q)

2

2q

, which holds for

q � p, we can show that (3) implies the following.1

8� > 0 8

�

S p � p̂ +

s

2p̂ ln(

1

�

)

m

+

2 ln(

1

�

)

m

(6)

Note that for small values of̂p formula (6) gives a tighter
upper bound onp than does (5). The upper bound onp
implicit in (4) is somewhat tighter than the minimum of
the bounds given by (5) and (6).

We now consider a formal setting for hypothesis learn-
ing. We assume a finite setH of hypotheses and a space
X of instances. We assume that each hypothesis repre-
sents a function fromX to f0; 1g where we writeh(x)
for the value of the function represented by hypothesish

when applied to instancex. We also assume a distribu-
tionD on pairshx; yi with x 2 X andy 2 f0; 1g. For
any hypothesish we define the error rate ofh, denoted
e(h), to beP

hx; yi�D

(h(x) 6= y). For a given sample

S of m pairs drawn fromD we writeê(h) to denote the
fraction of the pairshx; yi in S such thath(x) 6= y.
Quantifying overh 2 H in (4) yields the following sec-
ond corollary of (1).

8

�

S 8h 2 H D(ê(h)jje(h)) �

ln jHj+ ln(

2

�

)

m

(7)

By consider bounds onD(qjjp) we can derive the fol-
lowing more well known corollary of (7).

8

�

S 8h 2 H je(h)� ê(h)j �

s

ln jHj+ ln(

2

�

)

2m

(8)

These two formulas both limit the distance betweenê(h)

ande(h). In this paper we will work with (7) rather than
(8) because it yields an (uncomputable) upper bound
on generalization error that is optimal up to asymptotic
equality.

3 The Upper Bound

Our goal now is to improve on (7). Our first step is to
divide the hypotheses inH into m disjoint sets based
on their true error rates. More specifically, forp 2

[0; 1] defineddpee to be max(1;dmpe)

m

. Note thatddpee
is of the form k

m

where eitherp = 0 and k = 1 or
p > 0 and p 2 (

k�1

m

;

k

m

]. In either case we have
ddpee 2 f

1

m

; : : : ;

m

m

g and if ddpee =

k

m

thenp 2

1A derivation of this formula can be found in [8] or [9]. To
see the need for the last term consider the case wherep̂ = 0.

[

k�1

m

;

k

m

]. Now we defineH(

k

m

) to be the set ofh 2

H such thatdde(h)ee =

k

m

. We defines( k
m

) to be
ln(max(1; jH(

k

m

)j)). We now have the following lemma.

Lemma 3.1 8� > 0 8

�

S 8h 2 H

D(ê(h)jje(h)) �

s(dde(h)ee) + ln(

2m

�

)

m

Proof: Quantifying overp 2 f

1

m

; : : : ;

m

m

g andh 2
H(p) in (4) gives8� > 0, 8�S, 8p 2 f

1

m

; : : : ;

m

m

g,
8h 2 H(p),

D(ê(h)jje(h)) �

ln jH(p)j+ ln(

2m

�

)

m

But this implies the lemma. 2
Lemma 3.1 imposes a constraint, and hence a bound,

one(h). More specifically, we have the following where
lub fx : �[x]g denotes the least upper bound (the
maximum) of the setfx : �[x]g.

e(h) � lub fq : D(ê(h)jjq) �

s(ddqee) + ln(

2m

�

)

m

g (9)

This is our uncomputable bound. It is uncomputable be-
cause them numberss( 1

m

), : : :, s(m
m

) are unknown. Ig-
noring this problem, however, we can see that this bound
is typically significantly tighter than (7). More specifi-
cally, we can rewrite (7) as follows.

e(h) � lub fq : D(ê(h)jjq) �

ln jHj+ ln(

2

�

)

m

g (10)

Sinces( k
m

) � ln jHj, and sincelnm
m

is small for large
m, we have that (9) is never significantly looser than
(10). Now consider a hypothesish such that the bound
on e(h) given by (7), or equivalently, (10), is signifi-
cantly less than 1/2. Assumingm is large, the bound
given by (9) must also be significantly less than 1/2. But
for q significantly less than 1/2 we will typically have
that s(ddqee) is significantly smaller thanln jHj. For
example, supposeH is the set of all decision trees of
sizem=10. For largem, a random decision tree of this
size will have error rate near 1/2. The set of decision
trees with error rate significantly smaller than 1/2 will
be an exponentially small faction of the set of all pos-
sible trees. So forq small compared to 1/2 we get that
s(ddqee) is significantly smaller thanln jHj. This will
make the bound given by (9) significantly tighter than
the bound given by (10).

We now show that the distribution of true errors can
be replaced, essentially, by the histogram of training er-
rors. We first introduce the following definitions.

^

H

�

k

m

; �

�

�

(

h 2 H :

�

�

�

ê(h) �

k

m

�

�

�

�

1

m

+

r

ln(

16m

2

�

)

2m� 1

)

ŝ

�

k

m

; �

�

� ln

�

max

�

1; 2

�

�

�

^

H

�

k

m

; �

�

�

�

�

��
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The definition of̂s
�

k

m

; �

�

is motivated by the follow-
ing lemma.

Lemma 3.2 8� > 0, 8�S, 8q 2 f

1

m

; : : : ;

m

m

g,

s(q) � ŝ(q; 2�)

Before proving lemma 3.2 we note that by conjoin-
ing (9) and lemma 3.2 we get the following. This is our
main result.

Theorem 3.3 8� > 0, 8�S, 8h 2 H,

e(h) � lub

�

q : D(ê(h)jjq) �

ŝ(ddqee; �) + ln(

4m

�

)

m

�

As for lemma 3.1, the bound implicit in theorem 3.3
is typically significantly tighter than the bound in (7) or
its equivalent form (10). The argument for the improved
tightness of theorem 3.3 over (10) is similar to the ar-
gument for (9). More specifically, consider a hypothesis
h for which the bound in (10) is significantly less than
1/2. Sinceŝ(ddqee; �) � ln jHj, the set of values ofq
satisfying the condition in theorem 3.3 must all be sig-
nificantly less than 1/2. But for largem we have that
q

ln(16m

2

=�)

2m�1

is small. So ifq is significantly less than

1/2 then all hypotheses in^H(ddqee; �) have empirical
error rates significantly less than 1/2. But for most hy-
pothesis classes, e.g., decision trees, the set of hypothe-
ses with empirical error rates far from 1/2 should be an
exponentially small fraction of the class. Hence we get
thatŝ(ddqee; �) is significantly less thanln jHj and the-
orem 3.3 is tighter than (10).

The remainder of this section is a proof of lemma 3.2.
Our departure point for the proof is the following lemma
from [6].

Lemma 3.4 (McAllester 99) For any measure on any
hypothesis class we have the following where E

h

f(h)

denotes the expectation of f(h) under the given measure
on h.

8� > 0 8

�

S E
h

e

(2m�1)(ê(h)�e(h))

2

�

4m

�

Intuitively, this lemma states that with high confi-
dence over the choice of the sample most hypotheses
have empirical error near their true error. This will al-
low us to prove that̂s(ddqee; �) boundss(ddqee). More
specifically, by considering the uniform distribution on
H(

k

m

), lemma 3.4 implies the following.

E
h�H

�

k

m

�

�

e

(2m�1)(ê(h)�e(h))

2

�

�

4m

�

Pr

h�H

�

k

m

�

�

e

(2m�1)(ê(h)�e(h))

2

�

8m

�

�

�

1

2

Pr

h�H

�

k

m

�

�

e

(2m�1)(ê(h)�e(h))

2

�

8m

�

�

�

1

2

�

�

�

�

�

(

h 2 H(

k

m

) : jê(h) � e(h)j �

r

ln(

8m

�

)

2m� 1

)
�

�

�

�

�

�

1

2

jH(

k

m

)j

�

�

�

�

�

(

h 2 H(

k

m

) : jê(h) �

k

m

j �

1

m

+

r

ln(

8m

�

)

2m� 1

)

�

�

�

�

�

�

1

2

jH(

k

m

)j

�

�

�

H(

k

m

)

�

�

�

� 2

�

�

�

^

H

�

k

m

; 2m�

�
�

�

�

Lemma 3.2 now follows by quantification overq 2

f

1

m

; : : : ;

m

m

g. 2

4 Asymptotic Analysis and Phase

Transitions

The bounds given in (9) and theorem 3.3 exhibit phase
transitions. More specifically, the bounding expression
can be discontinuous in� andm, e.g., arbitrarily small
changes in� can cause large changes in the bound. To
see how this happens consider the following constraint
on the quantityq.

D(ê(h)jjq) �

s(ddqee) + ln(

2m

�

)

m

(11)

The bound given by (9) is the least upper bound of the
values ofq satisfying (11). Assume thatm is sufficiently
large that we can think ofs(ddqee)

m

as a continuous func-
tion of q which we will write as�s(q). We can then
rewrite (11) as follows where� is a quantity not depend-
ing onq and�s(q) does not depend on�.

D(ê(h)jjq) � �s(q) + � (12)

Forq � ê(h) we thatD(ê(h)jjq) is a monotonically in-
creasing function ofq. It is reasonable to assume that
for q � 1=2 we also have that�s(q) is a monotonically
increasing function ofq. But even under these con-
ditions it is possible that the feasible values ofq, i.e.,
those satisfying (12), can be divided into separated re-
gions. Furthermore, increasing� can cause a new fea-
sible region to come into existence. When this happens
the bound, which is the least upper bound of the feasible
values, can increase discontinuously. At a more intu-
itive level, consider a large number of high error con-
cepts and smaller number of lower error concepts. At a
certain confidence level the high error concepts can be
ruled out. But as the confidence requirement becomes
more stringent suddenly (and discontinuously) the high
error concepts must be considered. A similar disconti-
nuity can occur in sample size. Phase transitions in shell
decomposition bounds are discussed in more detail by
Haussler et al. [1].
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Phase transition complicate asymptotic analysis. But
asymptotic analysis illuminates the nature of phase tran-
sitions. As mentioned in the introduction, in the asymp-
totic analysis of learning theorem bounds it is important
that one not holdH fixed as the sample size increases.
If we holdH fixed thenlim

m!1

ln jHj

m

= 0. But this
is not what one expects for large samples in practice.
As the sample size increases one typically uses larger
hypothesis classes. Intuitively, we expect that even for
very largem we have thatln jHj

m

is far from zero.
For the asymptotic analysis of the bound in (9) we

assume an infinite sequence of hypothesis classesH

1

,
H

2

,H
3

: : : and an infinite sequence of data distributions
D

1

,D
2

,D
3

, : : :. Let s
m

(

k

m

) bes( k
m

) defined relative to
H

m

andD
m

. In the asymptotic analysis we assume that
the sequence of functionssm(ddqee)

m

, viewed as functions
of q 2 [0; 1], converge uniformly to a continuous func-
tion �s(q). This means that for any� > 0 there exists ak
such that for allm > k we have the following.

8q 2 [0; 1] j

s

m

(ddqee)

m

� �s(q)j � �

Given the functionssm(ddpee)

m

and their limit function
�s(p), we define the following functions of an empirical
error ratêe.

B

m

(ê) � lub

�

q : D(êjjq) �

s

m

(ddqee) + ln(

2m

�

)

m

�

B(ê) � lub fq : D(êjjq) � �s(q)g

The functionB
m

(ê) corresponds directly to the upper
bound in (9). The functionB(ê) is intended to be the
largem asymptotic limit ofB

m

(ê). However, phase
transitions complicate asymptotic analysis. The bound
B(ê) need not be a continuous function ofê. A value of
ê where the boundB(ê) is discontinuous corresponds to
a phase transition in the bound. At a phase transition the
sequenceB

m

(ê) need not converge. Away from phase
transitions, however, we have the following theorem.

Theorem 4.1 If the bound B(ê) is continuous at the
point ê (so we are not at a phase transition), and the

functions
s

m

(ddqee)

m

, viewed as functions of q 2 [0; 1],
converge uniformly to a continuous function �s(q), then
we have the following.

lim

m!1

B

m

(ê) = B(ê)

Proof: Define the setF
m

(ê) as follows.

F

m

(ê) �

�

q : D(êjjq) �

s

m

(ddqee) + ln(

2m

�

)

m

�

This gives the following.

B

m

(ê) = lub F
m

(ê)

Similarly, defineF (ê; �) andB(ê; �) as follows.

F (ê; �) � fq 2 [0; 1] : D(êjjq) � �s(q) + �g

B(ê; �) � lub F (ê; �)

We first show that the continuity ofB(ê) at the point
ê implies the continuity ofB(ê; �) at the pointhê; 0i.
We note that there exists a continuous functionf(ê; �)

with f(ê; 0) = ê and such that for any� sufficiently
near 0 we have the following.

D(f(ê; �)jjq) = D(êjjq)� �

We then get the following equation.

B(ê; �) = B(f(x; �))

Sincef is continuous, andB(ê) is continuous at the
point ê, we get thatB(ê; �) is continuous at the point
hê; 0i.

We now prove the lemma. The functions of the form
s

m

(ddqee)+ln

2m

�

m

converge uniformly to the function�s(q).
This implies that for any� > 0 there exists ak such that
for all m > k we have the following.

F (ê; ��) � F

m

(ê) � F (ê; �)

But this in turn implies the following.

B(ê; ��) � B

m

(ê) � B(ê; �) (13)

The lemma now follows from the continuity of the func-
tionB(ê; �) at the pointhê; 0i. 2

Theorem 4.1 can be interpreted as saying that for
large sample sizes, and for values ofê other than the
special phase transition values, the bound has a well de-
fined value independent of the confidence parameter�

and determined only by a smooth function�s(q). A sim-
ilar statement can be made for the bound in theorem 3.3
— for largem, and at points other than phase transi-
tions, the bound is independent of� and is determined
by a smooth limit curve.

For the asymptotic analysis of theorem 3.3 we as-
sume an infinite sequenceH

1

,H
2

,H
3

, : : : of hypothesis
classes and an infinite sequenceS

1

, S
2

, S
3

, : : : of sam-
ples such that sampleS

m

has sizem. Let H
m

(

k

m

; �)

and ŝ
m

(

k

m

; �) beH(

k

m

; �) and ŝ( k
m

; �) respectively
defined relative to hypothesis classH

m

and sampleS
m

.
Let U

m

(

k

m

) be the set of hypotheses inH
m

having an
empirical error of exactlyk

m

in the sampleS
m

. Let
u

m

(

k

m

) be ln(max(1; jU

m

(

k

m

)j). In the analysis of

theorem 3.3 we allow that the functionsum(ddqee)

m

are
only locally uniformly convergent to a continuous func-
tion �u(q), i.e., for anyq 2 [0; 1] and any� > 0 there
exists an integerk and real number > 0 satisfying the
following.

8m > k; 8p 2 (q� ; q+ ) j

u

m

(ddpee)

m

� �u(p)j � �

Locally uniform convergence plays a role in the analysis
in section 6.
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Theorem 4.2 If the functions
u

m

(ddqee)

m

converge locally
uniformly to a continuous function �u(q) then, for any

fixed value of �, the functions
ŝ

m

(ddqee; �)

m

also converge

locally uniformly to �u(q). If the convergence of
u

m

(ddqee)

m

is uniform, then so is the convergence of
ŝ

m

(ddqee; �)

m

.

Proof: Consider an arbitrary valueq 2 [0; 1] and
� > 0. We will construct the desiredk and. More
specifically, selectk sufficiently large and sufficiently
small that we have the following properties.

8m > k; 8p 2 (q� 2; q+2)

�

�

�

�

u

m

(ddpee)

m

� �u(p)

�

�

�

�

<

�

3

8p 2 (q � 2; q + 2) j�u(p)� �u(q)j �

�

3

1

k

+

s

ln(

16k

2

�

)

2k � 1

< 

lnk

k

�

�

3

Consider anm > k andp 2 (q � ; q + ). It now
suffices to show the following.

�

�

�

�

ŝ

m

(ddpee; �)

m

� �u(p)

�

�

�

�

� �

BecauseU
m

(ddpee) is a subset ofH
m

(ddpee; �) we
have the following.

ŝ

m

(ddpee; �)

m

�

u

m

(ddpee)

m

� �u(p)�

�

3

We can also upper boundŝm(ddpee; �)

m

as follows.

jH

m

(ddpee; �)j �

X

j

k

m

�pj�

�

�

�

�

U

m

�

k

m

�

�

�

�

�

�

X

j

k

m

�pj�

e

u

m

(

k

m

)

�

X

j

k

m

�pj�

e

m(�u(

k

m

)+

�

3

)

�

X

j

k

m

�pj�

e

m(�u(p)+

2�

3

)

� me

m(�u(p)+

2�

3

)

ŝ(ddpee; �)

m

� �u(p) +

2�

3

+

lnm

m

� �u(p) + �

A similar argument shows that ifum(ddqee)

m

converges

uniformly to �u(q) then so doesum(ddqee)

m

. 2

Given quantitiesŝi(ddqee; �)
m

that converge uniformly
to �u(q) the remainder of the analysis is identical to that
for the asymptotic analysis of (9). We define the follow-
ing upper bounds.

^

B

m

(ê) � lub

(

q : D(êjjq) �

ŝ

m

(ddqee; �) + ln

�

4m

�

�

m

)

^

B(ê) � lub fq : D(êjjq) � �u(q)g

Again we say that̂e is at a phase transition if the func-
tion ^

B(ê) is discontinuous at the valuêe. We then get
the following whose proof is identical to that of theo-
rem 4.1.

Theorem 4.3 If the bound ^

B(ê) is continuous at the
point ê (so we are not at a phase transition), and the

functions
u

m

(ddqee)

m

converge uniformly to �u(q), then we
have the following.

lim

m!1

^

B

m

(ê) =

^

B(ê)

5 Asymptotic Optimality of (9)

Formula (9) can be viewed as providing an upper bound
one(h) as a function of̂e(h) and the functions. In this
section we show that for any entropy curves and valuêe
there exists a hypothesis class and data distribution such
that the upper bound in (9) is realized up to asymptotic
equality. Up to asymptotic equality, (9) is the tightest
possible bound computable from̂e(h) and them num-
berss( 1

m

), : : :, s(m
m

).
The classical VC dimensions bounds are nearly op-

timal over bounds computable from̂e(h�) and the class
H. Them numberss( 1

m

), : : :, s(m
m

) depend on bothH
and the data distribution. Hence the bound in (9) uses in-
formation about the distributionand hence can be tighter
than classical VC bounds. A similar statement applies
to the bound in theorem (3.3) computed from the em-
pirically observable numberŝs( 1

m

), : : :, ŝ(m
m

). In this
case, the bound uses more information from the sample
than justê(h). The optimality theorem given here also
differs from the traditional lower bound results for VC
dimension in that here the lower bounds match the upper
bounds up to asymptotic equality.

The departure point for our optimality analysis is the
following lemma from [2].

Lemma 5.1 (Cover and Thomas) If p̂ is the fraction of
heads out of m tosses of a coin where the true probabil-
ity of heads is p then for q � p we have the following.

Pr(p̂ � q) �

1

m + 1

e

�mD(qjjp)
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This lower bound onPr(p̂ � q) is very close to
Chernoff’s 1952 upper bound (1). The tightness of (9)
is a direct reflection of the tightness (1). To exploit
Lemma 5.1 we need to construct hypothesis classes and
data distributions where distinct hypotheses have inde-
pendent training errors. More specifically, we say that a
set of hypothesesfh

1

; : : : ; h

n

g has independent train-
ing errors if the random variableŝe(h

1

), : : :, ê(h
n

) are
independent.

By an argument similar to the derivation of (3) from
(1) we can prove the following from Lemma 5.1.

Pr

�

D(min(p̂; p)jjp) �

ln(

1

�

) � ln(m+ 1)

m

�

� � (14)

Lemma 5.2 Let X be any finite set, S a random vari-
able, and �[S; x; �] a formula such that for every x 2 X

and � > 0 we have Pr(�[S; x; �]) � �, and Pr(8x 2

X �[S; x; �]) =

Q

x2X

Pr(�[S; x; �]). We then

have 8� > 0 8

�

S 9x 2 X �[S; x;

ln(

1

�

)

jXj

].

Proof:

Pr(�[S; x;

ln(

1

�

)

jXj

]) �

ln(

1

�

)

jXj

Pr(:�[S; x;

ln(

1

�

)

jXj

]) � 1�

ln(

1

�

)

jXj

� e

�

ln(

1

�

)

jXj

Pr(8x 2 X:�[S; x;

ln(

1

�

)

jXj

]) � e

� ln(

1

�

)

= �

2

Now defineh�( k
m

) to be the hypothesis of minimal
training error in the setH(

k

m

). Let glb fx : �[x]g

denote the greatest lower bound (the minimum) of the
setfx : �[x]g. We now have the following lemma.

Lemma 5.3 If the hypotheses in the class H(ddqee) are

independent then 8� > 0, 8�S, 8q 2 f

1

m

; : : : ;

m

m

g,

ê(h

�

(q)) � glb

(

ê :

D(min(ê; q �

1

m

)jjq)

�

s(q)�ln(m+1)�ln(ln(

m

�

))

m

)

Proof: To prove lemma 5.3 letq be a fixed rational
number of the formk

m

. Assuming independent hypothe-
ses we can applying Lemma 5.2 to (14) to get8� > 0,
8

�

S, 9h 2 H(

k

m

),

D(min(ê(h); e(h))jje(h)) �

s(q)� ln(m + 1)� ln(ln(

1

�

))

m

Letw be the hypothesis inH(q) satisfying this formula.
We now havêe(h�(q)) � ê(w) andq� 1

m

� e(w) � q.
These two conditions imply8� > 0, 8�S,

D(min(ê(h

�

(q)); q �

1

m

)jjq)

�

s(q)�ln(m+1)�ln(ln

1

�

)

m

This implies the following.

ê(h

�

(q)) � glb

8

<

:

ê :

D(min(ê; q �

1

m

)jjq)

�

s(q)�ln(m+1)�ln(ln(

1

�

))

m

9

=

;

Lemma 5.3 now follows by quantification overq 2
f

1

m

; : : : ;

m

m

g.
2

For q 2 [0; 1] we have that lemma 3.1 implies the
following.

ê(h

�

(ddqee)) � glb

8

<

:

ê :

D

�

êjjddqee �

1

m

�

�

s(ddqee)+ln

�

2m

�

�

m

9

=

;

We now have upper and lower bounds on the quan-
tity ê(h�(ddqee)) which agree up to asymptotic equality
— in a largem limit where s

m

(ddqee)

m

converges (point-
wise) to a continuous function�s(q) we have that the
upper and lower bound on̂e(h�(ddqee)) both converge
(pointwise) to the following.

ê(h

�

(q)) = glb fê : D(êjjq) � �s(q)g

This asymptotic value of̂e(h�(q)) is a continuous func-
tion of q. Sinceq is held fixed in calculating the bounds
on ê(ddqee), phase transitions are not an issue and uni-
form convergence of the functionssm(ddqee)

m

is not re-
quired. Note that for largem and independent hypothe-
ses we get that̂e(h�(q)) is determined as a function of
the true error rateq and s(ddqee)

m

.
The following lemma states that any limit function

�s(p) is consistent with the possibility that hypotheses
are independent. This, together with lemma 5.3 implies
that no uniform bound one(h) as a function of̂e(h) and
jH(

1

m

)j, : : :, jH(

m

m

)j can be asymptotically tighter than
(9).

Theorem 5.4 Let �s(p) be any continuous function of
p 2 [0; 1]. There exists an infinite sequence of hypoth-
esis spaces H

1

, H
2

, H
3

, : : :, and sequence of data dis-
tributionsD

1

, D
2

, D
3

, : : : such that each class H
m

has
independent hypotheses for data distribution D

m

and

such that
s

m

(ddpee)

m

converges (pointwise) to �s(p).

Proof: First we show that ifjH
m

(

i

m

)j = e

m�s(

i

m

)

then the functionssm(ddpee)

m

converge (pointwise) to�s(p).

AssumejH
m

(

i

m

)j = e

m�s(

i

m

). In this case we have the
following.

s

m

(ddpee)

m

= �s(ddpee)

Since�s(p) is continuous, for any fixed value ofp we get
that sm(ddpee)

m

converges to�s(p).
Recall thatD

m

is a probability distribution on pairs
hx; yi with y 2 f0; 1g andx 2 X

m

for some setX
m

.
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We takeH
m

to be a disjoint union of setsH
m

(

k

m

)where
jH

m

(

k

m

)j is selected as above. Letf
1

, : : :, f
N

be the el-
ements ofH

m

withN = jH

m

j. LetX
m

be the set of all
N -bit bit strings and definef

i

(x) to be the value ofith
bit of the bit vectorx. Now define the distributionD

m

on pairshx; yi by selectingy to be 1 with probability
1/2 and then selecting each bit ofx independently where
theith bit is selected to disagree withy with probability
k

m

wherek is such thatf
i

2 H

m

(

k

m

). 2

6 Relating ŝ and s

In this section we show that in largem limits of the type
discussed in section 4 the histogram of empirical errors
need not converge to the histogram of true errors. So
even in the largem asymptotic limit, the bound given
by theorem 3.3 is significantly weaker than the bound
given by (9).

To show that̂s(ddqee; �) can be asymptotically dif-
ferent froms(ddqee) we consider the case of indepen-
dent hypotheses. More specifically, given a continu-
ous function�s(p) we construct an infinite sequence of
hypothesis spacesH

1

, H
2

, H
3

, : : : and an infinite se-
quence of data distributionsD

1

, D
2

, D
3

, : : : using the
construction in the proof of theorem 5.4. We note that
if �s(p) is differentiable with bounded derivative then the
functionssm(ddpee)

m

converge uniformly to�s(p).
For a given infinite sequence data distributions we

generate an infinite sample sequenceS

1

, S
2

, S
3

, : : :, by
selectingS

m

to consists ofm pairs hx; yi drawn IID
from distributionD

m

. For a given sample sequence and
h 2 H

m

we defineê
m

(h) and ŝ
m

(

k

m

; �) in a manner
similar to ê(h) and ŝ( k

m

; �) but for sampleS
m

. The
main result of this section is the following.

Statement 6.1 If each H
m

has independent hypotheses

under data distributionD
m

, and the functions
s

m

(ddpee)

m

converge uniformly to a continuous function �s(p), then
for any � > 0 and p 2 [0; 1], we have the following
with probability 1 over the generation of the sample se-
quence.

lim

m!1

ŝ

m

(ddpee; �)

m

= sup

q2[0;1]

�s(q)�D(pjjq)

We call this a statement rather than a theorem be-
cause the proof has not been worked out to a high level
of rigor. Nonetheless, we believe the proof sketch given
below can be expanded to a fully rigorous argument.

Before giving the proof sketch we note that the lim-
iting value of ŝm(ddpee; �)

m

is independent of�. This is
consistent with theorem 4.2. Define�ŝ(p) as follows.

�

ŝ(p) � sup

q2[0;1]

�s(q) �D(pjjq)

Note that�ŝ(p) � �s(p). This gives an asymptotic ver-
sion of lemma 3.2. But sinceD(pjjq) can be locally
approximated asc(p�q)

2 (up to its second order Taylor
expansion), if�s(p) is increasing at the pointp then we
also get that�ŝ(p) is strictly larger than�s(p).

Proof Outline: To prove statement 6.1 we first de-
fineH

m

(p; q) for p; q 2 f

1

m

; : : : ;

m

m

g to be the set
of all h 2 H

m

(q) such that̂e
m

(h) = p. Intuitively,
H

m

(p; q) is the set of concepts with true error rate
nearq that have empirical error ratep. Ignoring fac-
tors that are only polynomial inm, the probability of
a hypothesis with true error rateq having empirical er-
ror ratep can be written as (approximately)e�mD(pjjq).
So the expected size ofH

m

(p; q) can be written as
jH

m

(q)je

�mD(pjjq), or alternatively, (approximately) as
e

m�s(q)

e

�mD(pjjq) or em(�s(q)�D(pjjq)). More formally,
we have the following for any fixed value ofp andq.

lim

m!1

ln(max(1; E(jH
m

(ddpee; ddqee)j)))

m

= max(0; �s(q) �D(pjjq))

We now show that the expectation can be eliminated
from the above limit. First, consider distinct values of
p and q such that�s(q) � D(pjjq) > 0. Sincep and
q are distinct, the probability that a fixed hypothesis in
H

m

(ddqee) is inH
m

(ddpee; ddqee) declines exponen-
tially in m. Since�s(q) �D(pjjq) > 0 the expected size
of H

m

(ddpee; ddqee) grows exponentially inm. Since
the hypotheses are independent, the distribution of pos-
sible values ofjH

m

(ddpee; ddqee)j becomes essentially
a Poisson mass distribution with an expected number of
arrivals growing exponentially inm. The probability
that jH

m

(ddpee; ddqee)j deviates from its expectation
by as much as a factor of 2 declines exponentially inm.
We say that a sample sequence is safe afterk if for all
m > k we have thatjH

m

(ddpee; ddqee)j is within a
factor of 2 of its expectation. Since the probability of
being unsafe atm declines exponentially inm, for any
� there exists ak such that with probability at least1��

the sample sequence is safe afterk. So for any� > 0

we have that with probability at least1� � the sequence
is safe after somek. But since this holds for all� > 0,
with probability 1 such ak must exist.

lim

m!1

ln(max(1; jH

m

(ddpee; ddqee)j))

m

= �s(q) �D(pjjq)

We now defines
m

(ddpee; ddqee) as follows.

s

m

(ddpee; ddqee) � ln(max(1; jH

m

(ddpee; ddqee)j))

It is also possible to show forp = q we have that with
probability 1 we have thatsm(ddpee; ddqee)

m

approaches
�s(p) and that for distinctp andq with �s(q)�D(pjjq) �
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0 we have thatsm(ddqee; ddqee)

m

approaches 0. Putting
these together yields that with probability 1 we have the
following.

lim

m!1

s

m

(ddpee; ddqee)

m

= max(0; �s(q)�D(pjjq)) (15)

DefineU
m

(

k

m

) andu
m

(

k

m

) as in section 4. We now
have the following equality.

U

m

(p) = [

q2f

1

m

; :::;

m

m

g

H

m

(p; q)

We will now show that with probability 1 we have that
u

m

(p)

m

approaches�ŝ(p). First, consider ap 2 [0; 1] such
that�ŝ(p) > 0. Let Since�s(q)�D(qjjp) is a continuous
function, and[0; 1] is a compact set,sup

q2[0;1]

�s(q) �

D(pjjq) must be realized at some valueq� 2 [0; 1]. Let
q

� be such that�s(q�) �D(pjjq

�

) equals�ŝ(p). We have
thatu

m

(ddpee) � s

m

(ddpee; ddq

�

ee). This, together
with (15), implies the following.

lim inf

m!1

u

m

(ddpee)

m

�

�

ŝ(p)

We will now say that the sample sequence is safe atm

and k

m

if jH
m

(ddpee; dd

k

m

ee)j does not exceed twice
the expectation ofjH

m

(ddpee; ddq

�

ee)j. Assuming uni-
form convergence ofsm(ddpee)

m

, the probability of not
being safe atm and k

m

declines exponentially inm at a
rate at least as fast as the rate of decline of the probabil-
ity of not being safe atm and ddq�ee. By the union
bound this implies that for a givenm the probability
that there exists an unsafek

m

also declines exponen-
tially. We say that the sequence is safe afterN if it
is safe for allm and k

m

with m > N . The probabil-
ity of not being being safe afterN also declines ex-
ponentially withN . By an argument similar to that
given above, this implies that with probability 1 over
the choice of the sequence there exists aN such that the
sequence is safe afterN . But if we are safe atm then
jU

m

(ddpee)j � 2mEjH

m

(p; ddq

�

ee)j. This implies
the following.

lim sup

m!1

u

m

(ddpee)

m

�

�

ŝ(p)

Putting the two bounds together we get the following.

lim

m!1

u

m

(ddpee)

m

=

�

ŝ(p)

The above argument establishes (to some level of
rigor) pointwise convergence ofum(dd)ee

m

to �

ŝ(p). It is
also possible to establish a convergence rate that is a
continuous function ofp. This implies that the conver-
gence ofum(ddpee)

m

can be made locally uniform. Theo-
rem 4.2 then implies the desired result.2

7 Future Work

A practical difficulty with the bound implicit in theo-
rem 3.3 is that it is usually impossible to enumerate the
elements of an exponentially large hypothesis class and
hence impractical to compute the histogram of training
errors for the hypotheses in the class. In practice the
values ofs( k

m

) might be estimated using some form of
Monte-Carlo Markov chain sampling over the hypothe-
ses. For certain hypothesis spaces it might also be possi-
ble to directly calculate the empirical error distribution
without evaluating every hypothesis.

Here we have emphasized asymptotic properties of
our bound but we have not addressed rates of conver-
gence. For finite sample sizes the rate at which the bound
converges to its asymptotic behavior can be important.
Before mentioning some ways that the convergence rate
might be improved, however, we note that near phase
transitions standard notions of convergence rate are in-
appropriate. Near a phase transition the bound is “un-
stable” — replacing� by �=2 can alter the bound sig-
nificantly. In fact, near a phase transition it is likely
that e(h�) is significantly different for different sam-
ples even thougĥe(h�) is highly predictable. Intuitively,
we would like a notion of convergence rate that mea-
sures the size of the “region of instability” around a
phase transition. As the sample size increases the phrase
transition becomes sharper and the region of instability
smaller. It would be nice to have a formal definition for
the region of instability and the rate at which the size
of this region goes to zero, i.e., the rate at which phase
transitions in the bound become sharp.

The rate of convergence of our bound might be im-
proved in various ways:

� Removing the discretization of true errors.

� Using one-sided bounds.

� Using nonuniform union bounds over discrete val-
ues of the formk

m

.

� Tightening the Chernoff bound using direct calcu-
lation of Binomial coefficients.

� Improving Lemma 3.4.

The above ideas may allow one to remove allln(m)

terms from the statement of the bound.

8 Conclusion

Traditional PAC bounds are stated in terms of the train-
ing error and class size or VC dimension. The com-
putable bound given here is typically much tighter be-
cause it exploits the additional information in the his-
togram of training errors. The uncomputable bound uses
the additional (unavailable) information in the distribu-
tion of true errors. Any distribution of true errors can
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be realized in a case with independent hypotheses. We
have shown that in such cases this uncomputable bound
is asymptotically equal to actual generalization error.
Hence this is the tightest possible bound, up to asymp-
totic equality, over all bounds expressed as functions of
ê(h

�

) and the distribution of true errors. We have also
shown that the use of the histogram of empirical errors
results in a bound that, while still tighter than traditional
bounds, is looser than the uncomputable bound even in
the large sample asymptotic limit.
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