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Abstract

We derive a new bound on the error rate for deci-
sion trees. The bound depends both on the struc-
ture of the tree and the specific sample (not just the
size of the sample). This bound is tighter than tra-
ditional bounds for unbalanced trees and justifies
“compositional” algorithms for constructing deci-
sion trees.

1 Introduction

The problem of over-fitting is central to both the theory and
practice of machine learning. Intuitively, one over-fits byus-
ing too many parameters in the concept, e.g, fitting annth or-
der polynomial ton data points. One under-fits by using too
few parameters, e.g., fitting a linear curve to clearly quadratic
data. The fundamental question is how many parameters, or
what concept size, should one allow for a given amount of
training data. A standard theoretical approach is to prove a
bound on generalization error as a function of the training
error and the concept size (or VC dimension). One can then
select a concept minimizing this bound, i.e., optimizing a
certain tradeoff, as expressed in the bound, between training
error and concept size.

Bounds on generalization error that express a tradeoff be-
tween the training error and the size of the concept are of-
ten called structural risk minimization (SRM) formulas. A
variety of SRM bounds have been proved in the literature
[Vap82]. The following SRM bound was proved in [McA98]
and, for completeness, is proved again in Section 2. It states
that with probability1 � � over the sampleS we have the
following.

8T �(T ) � �̂(T ) +

s

(ln 2)jT j+ ln(1=�)

2jSj

(1)

This formula says that, for an arbitrary concept classC where
each conceptT is encoded by some bit string of lengthjT j,
we have that with probability at least1 � � over the choice
a sampleS of sizejSj i.i.d. instances, all concepts have the
property that their true error rate is no larger than their error
rate on the training data plus a penalty that depends onjT j,
jSj, and�. A similar statement holds if we use the VC dimen-
sion ofC rather than the encoding size of concepts [Vap82].

The right hand side of formula (1) defines a particular trade-
off between the empirical error rate�̂(T ) and the concept size
jT j and we can selectT so as to optimize this tradeoff.

Here we are interested in deriving bounds that are tighter
than the “naive bound” expressed in (1). Note that (1) ex-
presses a bound on�(T ) � �̂(T ) than depends only on the
size ofS, and not on the actual examples. To improve on (1)
we construct a bound on�(T ) � �̂(T ) that depends both on
the conceptT and the sample.

Several approaches to the construction of tighter bounds
have been taken in the literature. The most notable example
is the margin bound for linear threshold functions [Vap98,
AB99]. This bound depends on the threshold function cho-
sen and the sampleS, where the margin is the “separation”
between positive and negative examples in the sampleS.

A second approach to improving (1), more closely re-
lated to the approach taken here, is taken by Golea et. al.
[GBLM97]. They give a bound for decision trees in terms
of the “effective number of leaves” where unbalanced trees
have a smaller number of effective leaves than balanced trees.
Their proof techniques involve a margin analysis for decision
trees. While their main theorem handles well the case when
almost all training data reaches a single leaf, it is far lessuse-
ful when a significant fraction of the training data reaches
two or more leaves.

Our approach is somewhat related to the tree pruning
methods developed by Kearns and Mansour [KM98]. They
give an algorithm for pruning decision trees which implic-
itly uses a bound for subtrees of a given tree. The results in
this work can be used in conjunction with the techniques of
[KM98] to derive improved pruning algorithms.

Another approach that has been taken to improving (1) is
to consider not only the conceptT and the sampleS, but also
the learning algorithm that is used to generateT . This in-
cludes Freund’s “self-bounding algorithms” [Fre98] and the
related bounds by Langford and Blum [LB99]. The basic
idea in these bounds is to measure, at each choice point in
the learning algorithm, the number of alternatives that might
be taken if we based the decision on a second fresh sample.

To motivate our new bound letIF(A; T
l

; T

r

) denote a
decision tree with root predicateA and left and right subtrees
T

l

andT
r

respectively. Leth be a function taking a decision
tree and a sample and returning a real number. Ultimately
we are interested in those functionsh such thath(T; S) is
an upper bound on the error rate ofT . Now consider, for
a fixed predicateA, the problem of selectingT

l

andT
r

so
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as to minimizeh(IF(A; T
l

; T

r

); S). The functionh will
be calledcompositional if this minimization can be done by
solving independent optimization problems forT

l

andT
r

.
More specifically,h is compositional if there exist functions
h

l

andh
r

such that, for a given predicateA and sampleS, se-
lectingT

l

andT
r

so as to minimizeh(IF(A; T
l

; T

r

); S) is
equivalent to selectingT

l

so as to minimizeh
l

(T

l

; S

A

) and
selectingT

r

so as to minimizeh
r

(T

r

; S

:A

) whereS
A

and
S

:A

are the subsets ofS satisfyingA and:A respectively.
The naive bound is not compositional — when selectingT

l

andT
r

so as to minimize the bound we have thatjT

l

j influ-
ences the optimal choice ofT

r

.
To give an example of a compositional expression we

first leth
0

(T; S) abbreviate the naive bound.

h

0

(T; S) � �̂(T ) +

p

((ln 2)jT j+ ln(1=�))=(2jSj)

Now define the functionh
1

(T; S) by the followingequation.

h

1

(IF(A; T
r

; T

l

); S) �

jS

A

j

jSj

h

0

(T

r

; S

A

)+

jS

:A

j

jSj

h

0

(T

l

; S

:A

)

By construction the functionh
1

is compositional — opti-
mizing the choice ofT

l

andT
r

can be done by optimizing
T

l

andT
r

independently. It seems intuitively clear that if the
sample is large then error rate ofT can not be much larger
thanh

1

(T; S).
Our new bound is stated in terms of a “root fragment” of

the tree, i.e., a set of nodes containing the root and having the
property that, for any node in the set, the parent and siblings
of that node must also be in the set. LetR be a root fragment
and letL(R) denote the leaves ofR. The setL(R) defines a
cut of possibly varying depth through the treeT . For a node
v 2 L(R) let T

v

be the subtree ofT rooted atv and letS
v

be the subset of the sample reaching nodev. The new bound
states that, with probability at least1� � over the choice of
the sample, we have the following for all treesT and root
fragmentsR of T .

�(T )� �̂(T ) �

X

v2L(R)

jS

v

j

jSj

s

(ln 2)jT

v

j

2jS

v

j

+ (S; R; �)

The expression(S; R; �) is given in section 3 and is
negligible whenR andln(1=�) are small (as defined in sec-
tion 3). Jensen’s inequality implies that forg(v) � 0we have
P

(jS

v

j=jSj)

p

g(v) �

p

P

(jS

v

j=jSj)g(v). This implies
that the above bound is never larger than

p

(ln 2)jT j=(2jSj)+

(S; R; �). So, whenR and ln(1=�) are small, the new
bound is not significantly larger than the old bound. How-
ever, the new bound can be smaller by the slack in Jensen’s
inequality. Section 3 shows under that, under conditions ex-
pected to hold in practice, the new bound on�(T ) � �̂(T )

will not be smaller than(ln 2)jT j=(2jSj). In summary, the
new bound is compositional near the root of the tree and
can potentially improve the penalty for the size ofT from
p

(ln 2)jT j=(2jSj) to (ln 2)jT j=(2jSj). For a fixed treeT ,
section 5 gives an efficient algorithm for exactly computing
the root fragmentR minimizing the new bound.

2 Model and Preliminaries

Let X be a set of “instances”. We assume some fixed but
unknown distributionD onX � f0; 1g. Let S be a sample

of m pairshx; yi drawn independently from the distribution
D. The notation8�S �[S] is used as an abbreviation for the
statement that with probabilityat least1�� over the selection
of S we have that�[S] holds. Note that8x 8

�

S �[S; x]

does not imply8�S 8x �[S; x].
Let H be a set of “base predicates” each of which maps

X to f0; 1g. Let T (H) be the set of decision trees overH,
i.e., binary trees where each leaf is labeled with either 1 or0
and each non-leaf is labeled with a predicate fromH. Each
decision tree also defines a predicate onX .

For any predicateA onX we define the (true) error rate
of A, denoted�(A), to be the probability over drawing a ran-
dom pairhx; yi according toD thatA(x) 6= y. When the
sampleS is clear from context we define the empirical er-
ror rate ofA, denoted,̂�(A) to be jfhx; yi 2 S : y 6=

A(x)gj=jSj.
We assume a prefix-free code for the predicates inH,

i.e., each predicate is named by a code string where no code
string is proper prefix of any other code string. We letjBj be
number of bits in the code for predicateB. Prefix-free codes
satisfy the Kraft inequality:

P

B2H

2

�jBj

� 1. One can
devise a prefix-free code for the trees inT (H) such that for
a treeT with n internal nodes labeled with branch predicates
B

1

, : : :, B
n

we havejT j = 2+ 3n+

P

n

i=1

jB

i

j.
We now letC(H) be the set of conjunctions of the form

(B

1

= b

1

)^ : : :^ (B

d

= b

d

) whereB
i

2 H andb
i

2 f0; 1g.
Each elementA 2 C(H) is viewed as a predicate onX in
the obvious way. For any nodev in T we defineA

v

to be the
predicate inC(H) corresponding to the path from the root to
nodev. Note thatA

v

(x) = 1 if and only if x reaches node
v. One can devise a prefix-free coding for the elements of
C(H) such that ifA is the conjunction of the form(B

1

=

b

1

) ^ : : :^ (B

n

= b

n

) thenjAj = 1 + 2n+

P

n

i=1

jB

i

j. For
any predicateA 2 C(H) and sampleS we defineS

A

to be
fhx; yi 2 S : A(x) = 1g. We useS

v

as an abbreviation
for S

A

v

. Let T
v

be the subtree ofT consisting of all nodes
at or belowv. We defineT (H; S) to be the set of decision
treesT 2 T (H) such that for every nodev of T we have that
S

v

is nonempty.

The additive Chernoff bound can be expressed as follows.

Lemma 1 Let X
1

, : : :, X
m

be i.i.d. random Boolean vari-
ables, and p = Pr[X

i

= 1].

Pr[(1=m)

m

X

i=1

X

i

� p+ ] � e

�2m

2

The naive error bound can be expressed as follows.

Lemma 2

8

�

S 8T 2 T (H) �(T ) � �̂(T ) +

s

(ln 2)jT j+ ln(1=�)

2jSj

Proof: Consider a fixed treeT . It follows from the Cher-
noff bound (Lemma 1) that the probability over the choice
of S that the particular treeT violates the above lemma is at
most�2�jT j. By the union bound the probability that some
tree violates the lemma is no larger than

P

T2T (H)

�2

�jT j

�

�. 2
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3 Main Theorem

We now consider an arbitrary division of the nodes of a given
treeT into shallow and deep nodes. We letR be an arbitrary
set of “shallow” nodes satisfying the condition thatR forms
a subtree ofT containing the root and such that all nodes in
R are either leaves ofR or have both their children inR. We
denote byL(R) the set of leaves of the subtreeR. Our main
theorem is the following.

Theorem 3

8

�

S 8T 2 T (H; S) �(T ) � �̂(T ) + min

R

f(T; S;R; �)

where

f(T; S;R; �) =

X

v2L(R)

jS

v

j

jSj

0

B

B

B

B

B

B

B

@

q

(ln 2)jT

v

j

2jS

v

j

+2

�

q

jA

v

j

jS

v

j

+

jA

v

j

jS

v

j

�

+2

�

q

ln(2=�)

jS

v

j

+

ln(2=�)

jS

v

j

�

1

C

C

C

C

C

C

C

A

Before giving the proof in section 4, we try to clarify the
bound by noting that it satisfies four rather simple properties.
First, for a fixed root fragmentR the bound is compositional
with respect to optimizing subtrees rooted inR. In particular
we have the following equation where�̂(T

v

; S

v

) is the error
rate ofT

v

on the sampleS
v

androot(T
v

) denotes the root
fragment ofT

v

consisting of just the root node ofT
v

.

�̂(T ) + f(T; S; R; �) =

X

v2L(R)

jS

v

j

jSj

�

�̂(T

v

; S

v

)

+f(T

v

; S

v

; root(T

v

); �)

�

So to select the treesT
v

to minimize�̂(T ) + f(T; S; R; �)

we can optimize each subtreeT
v

independently.
We will call the bound on�(T ) � �̂(T ) given in formula

(1) the naive penalty and we will callmin

R

f(T; S; R; �)

the new penalty. Our second observation is that the new
penalty it is not significantly larger than the naive penalty.
By settingR to be the tree consisting only of the root node
we get the following.

min

R

f(T; S;R; �) �

0

B

B

B

B

B

B

B

@

q

(ln 2)jT j

2jSj

+2

�
q

1

jSj

+

1

jSj

�

+2

�
q

ln(2=�)

jSj

+

ln(2=�)

jSj

�

1

C

C

C

C

C

C

C

A

In cases wherejT j is large compared to both 1 andln(1=�),
a common occurrence in practice, both the above expres-
sion and the naive penalty will be approximately equal to
p

(ln 2)jT j=(2jSj).
It is also possible to show that the new penalty is not sig-

nificantly smaller than the naive penalty for any “small” root
fragmentR. By Jensen’s inequality we have the following.

f(T; S; R; �) �

0

B

B

B

B

B

B

B

B

@

q

(ln 2)jT j

2jSj

+2

 
r

P

v2L(R)

jA

v

j

jSj

+

P

v2L(R)

jA

v

j

jSj

!

+2

�

q

jL(R)j ln(2=�)

jSj

+

jL(R)j ln(2=�)

jSj

�

1

C

C

C

C

C

C

C

C

A

For  > 0, a root fragmentR and will be called-small if
jL(R)j � jT j and for allv 2 L(R) we that havejA

v

j �

jT

v

j. For -small R and reasonably prunedT , and as-
suming that(ln 2)jT j=(2jSj) is no larger than 1, the above
inequality implies the following.

f(T; S; R; �) �

0

B

B

B

B

@

1

+2

�

p

2

ln 2

+

2

ln 2

�

+2

�

p

2 ln(2=�)

ln 2

+

2 ln(2=�)

ln 2

�

1

C

C

C

C

A

r

(ln 2)jT j

2jSj

We say that a tree isreasonably pruned if for every node
v in T we have(ln 2)jT

v

j=(2jS

v

j) � 1. Intuitively this
condition would hold due to properties of the learning al-
gorithm that constructed the tree. For example if each leaf
has a minimal number of examples reaching it, say3, then
the tree would be reasonable pruned. Our third observa-
tion is that, for reasonably pruned trees, the new penalty is
never smaller than(ln 2)jT j=(2jSj). Note that the quantity
(ln 2)jT j=(2jSj) can be much smaller than

p

(ln 2)jT j=(2jSj).
For x 2 [0; 1] we have

p

x � x so forT reasonably
pruned we have the following where the third line follows
from the fact that(ln 2)=2 < 1.

f(T; S; R; �) �

X

v2L(R)

jS

v

j

jSj

"

s

(ln 2)jT

v

j

2jS

v

j

+

jA

v

j

jS

v

j

#

�

X

v2L(R)

jS

v

j

jSj

�

(ln 2)jT

v

j

2jS

v

j

+

jA

v

j

jS

v

j

�

�

ln 2

2jSj

X

v2L(R)

(jT

v

j+ jA

v

j)

�

(ln 2)jT j

2jSj

Finally we note that even for reasonably prunedT we
can havef(T; S;R; �) arbitrarily close to(ln 2)jT j=(2jSj).
TakeT to beIF(A; T

l

; T

r

) and takeR to consist of the
root plus its two children. LetS

l

andS
r

be the subsets of
the sample reachingT

l

andT
r

respectively. By makingjSj,
jT

l

j and jT
r

j sufficiently large we can arrange thatjAj and
ln(1=�) are both small compared tojT

l

j and both
p

jAj=jS

l

j

and
p

ln(1=�)=jS

l

j are small compared with
p

jT

l

j=jS

l

j, and
similarly for T

r

. Under these conditionsf(T; S; R; �) can
be written as follows.

f(T; S; R; �) �

jS

l

j

jSj

s

(ln 2)jT

l

j

2jS

l

j

+

jS

r

j

jSj

s

(ln 2)jT

r

j

2jS

r

j

We now formulate all other quantities to be proportional to
jSj so that we can scale the size of the sample to be arbitrarily
large. We fix a small number� > 0. We takejS

l

j = �jSj

and jT
l

j = (2=(ln 2))�jSj. Note that this allowsT to be
reasonably pruned. In particular,(ln 2)jT

l

j=(2jS

l

j) = 1. We
now takejT

r

j to be�4jSj. This impliesjT j � jT

l

j and� =

jS

l

j=jSj = (ln2)jT

l

j=(2jSj) � (ln 2)jT j=(2jSj). Up to first
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order terms in� we have the following.

f(T; S;R; �) � �

s

(ln 2)jT

l

j

2jS

l

j

+ (1� �)

s

(ln 2)jT

r

j

2jS

r

j

� �+ �

2

r

ln 2

2

� � �

(ln 2)jT j

2jSj

4 Proof of Main Theorem

To prove the main theorem we start with a couple prelimi-
nary lemmas. Throughout this section we letm bejSj. Note
that we takem to be given before we selectS. Now for any
A 2 C(H) we definep

A

to bePr
hx; yi�D

[A(x) = 1]. For

anyA 2 C(H) andT 2 T (H) we define the error rate of
T on the distribution induced byA, denoted�

A

(T ), to be
Pr

hx; yi�D

(T (x) = y j A(x) = 1). For a given sample

S we define the empirical error rate ofT on the distribu-
tion induced byA, denoted̂�

A

(T ), to bejfhx; yi 2 S

A

:

T (x) 6= ygj=jS

A

j. We now have the following lemma. (A
similar lemma appears in [KM98].)

Lemma 4 8

�

S 8A 2 C(H) 8T 2 T (H)

�

A

(T ) � �̂

A

(T ) +

s

(jAj+ jT j) ln 2 + ln(1=�)

2jS

A

j

Proof: Consider a particular fixed predicateP in C(H)

and treeT in T (H). We can bound the probability over the
selection ofS that the particular predicatesA andT violate
the lemma as follows.

Pr

h

�

A

(T ) � �̂

A

(T ) +

q

(jAj+jT j) ln 2+ln(1=�)

jS

A

j

i

=

1

X

n=0

0

B

@

Pr[jS

A

j = n]

�Pr

"

�

A

(T ) � �̂

A

(T ) +

p

(jAj+jTj) ln 2+ln(1=�)

2n

j jS

A

j = n

#

1

C

A

�

1

X

n=0

Pr[jS

A

j = n]�2

�jAj

2

�jTj

= �2

�jAj

2

�jTj

By the union bound the probability that some choice ofA

andT violates the lemma is now bounded by the following.

�

X

A2C(H)

2

�jAj

X

T2T (H)

2

�jT j

� �

2

Our second preliminary lemma is a form of the relative
Chernoff bound that is particularly well suited to machine
learning applications. The relative Chernoff bound is usually
stated as follows.

Lemma 5 Let X
1

, : : :, X
m

be i.i.d. random Boolean vari-
ables and p = Pr[X

i

= 1]. For  2 [0; 1] we have the
following.

Pr[

m

X

i=1

X

i

� (1� )pm] � e

�mp

2

=2

By setting equal to
q

2 ln(1=�)

pm

we can rephrase the rel-
ative Chernoff bound as follows,

8

�

S p � p̂+

r

2p ln(1=�)

m

;

wherep̂ = (1=m)

P

m

i=1

X

i

. This bound onp is not directly
useful in machine learning applications because the bound
uses the unknown quantityp. We need a bound that is purely
a function of the observed quantitŷp. Such a bound is pro-
vided by the following lemma.

Lemma 6

8

�

S p � p̂+

r

2p̂ ln(1=�)

m

+

2 ln(1=�)

m

Proof: By the relative Chernoff bound (Lemma 5) we
have the following with probability at least1 � � over the
choice of the sample.

p� p̂ �

r

2p ln(1=�)

m

This implies the following.

m(p� p̂)

2

� 2p ln(1=�)

or alternatively,

mp

2

� (2mp̂+ 2 ln(1=�))p+mp̂

2

� 0:

This gives us a restrictions on the possible values ofp,
therefore,

p �

(2mp̂+ 2 ln(1=�)) +

p

(2mp̂ + 2 ln(1=�))

2

� 4m

2

p̂

2

2m

= p̂+

ln(1=�)

m

+

s

8mp̂ ln(1=�) + 4 ln

2

(1=�)

4m

2

= p̂+

ln(1=�)

m

+

s

2p̂ ln(1=�)

m

+

ln

2

(1=�)

m

2

� p̂+

2 ln(1=�)

m

+

r

2p̂ ln(1=�)

m

2

Lemma 6 can now be used to prove the following. (Re-
call thatS

A

is the subset of the sample satisfying the predi-
cateA.)

Corollary 7 For any predicate A we have

8

�

S

0

B

@

(S

A

= ;)

_

�

p� p̂ � p̂

h
q

2 ln(1=�)

jS

A

j

+

2 ln(1=�)

jS

A

j

i�

1

C

A

where p̂ = jS

A

j=jSj.
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Proof: It follows from Lemma 6 that with probability at
least1� � we have the following.

p� p̂ �

r

2p̂ ln(1=�)

m

+

2 ln(1=�)

m

:

We simply show that this implies the desired result. IfjS

A

j =

0 then by definition the lemma holds, so we can assume
that jS

A

j > 0. Under this assumption, and recalling that
p̂ = jS

A

j=jSj, we have that,

p� p̂ � p̂

"

s

2 ln(1=�)

jS

A

j

+

2 ln(1=�)

jS

A

j

#

:

2

The following Corollary generalizes the result to a set of
predicatesC(H).

Corollary 8 8

�

S 8A 2 C(H)
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� p̂
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2(jAj ln 2+ln(1=�))
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A

j

+

2(jAj ln 2+ln(1=�))
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j
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5

1

C

C

C

C

C

A

Proof: Consider a fixed predicateA. Corollary 7 implies
that the probability thatA violates the lemma is bounded by
�2

�jAj. The union bound then implies that the probability
that there exists aA 2 C(H) violating the lemma is no larger
than�. 2

Now we are ready to prove our main theorem.

Proof of Theorem 3: By Lemma 4 we have that with
probability at least1� �=2 we have the following.

8A 2 C(H) 8T 2 T (H)

�

A

(T ) � �̂

A

(T ) +

s

(jAj+ jT j) ln2 + ln(2=�)

2jS

A

j

(2)

By Corollary 8 we have that with probability at least1� �=2

we have the following.

8A 2 C(H)
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(3)

By the union bound, with probability at least1 � � both of
these conditions hold simultaneously. Letp

v

be the proba-
bility of reaching nodev and p̂

v

be jS
v

j=jSj. Let q
v

be the
error probability at nodev, i.e. �

A

v

(T

v

), andq̂
v

be �̂
A

v

(T

v

).
We now rewrite the error bound as follows.

�(T )� �̂(T ) =

X

v2L(R)
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v

q
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v2L(R)
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v
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[(p

v

� p̂

v

)q

v

+ p̂

v

(q

v

� q̂

v

)]

The desired result now follows by bounding the first term in
the sum with formula (3) and the second formula in the sum
with formula (2). This gives the following.
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Sinceq
v

� 1, and using
p

x+ y �

p

x +

p

y, we get the
following.
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This implies the theorem. 2

5 Computing the optimal bound

Theorem 3 gives a bound which is a function of the best root
fragment that can be found. In this section we show how,
given a treeT and a sampleS, one can compute the best root
fragmentR in an efficient way. The basic idea behind the
algorithm is to use the compositional property of the bound
we derive.

The main observation is that given a treeT , the best root
fragmentR is either the best root fragment of the right sub-
tree combined with the best root fragment of the left subtree,
or simply includes only the root. This observation will give
us a simple bottom-up procedure to compute the optimal root
fragment.

We define a procedurecompute R(T
v

; S; jA

v

j; �) that
computes the best root segment of a subtreeT

v

. We define
a simple procedureeval(T

v

; S

v

; jA

v

j; �) that evaluates the
penalty of terminating the root fragment at the root ofT as
follows.

eval(T; S; d; �) =
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A

We now definecompute R(T; S; d; �) with the follow-
ing equations.

compute R(1; S; d; �) = eval(1; S; d; �)

compute R(0; S; d; �) = eval(0; S; d; �)
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compute R(IF(B; T
l

; T

r

); S; d; �)

= min

8

>

>

<

>

>

:

eval(IF(B; T
l

; T

r

); S; d; �);
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j

jSj

compute R(T
l

; S
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; d+ jBj+ 2; �)

+
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:B

j

jSj

compute R(T
r

; S

:B

; d+ jBj+ 2; �)

9

>

>

=

>

>

;

Assuming that each predicate inT can be evaluated on a
given instance in unit time, a direct implementation of these
equations as a recursive procedure runs in time proportional
to the sum over all nodes of the number of instances in the
sample reaching that node.

Theorem 9 For any subtree T
v

of T we have

compute R(T

v

; S

v

; jA

v

j; �) = min

R

f(v; R)

where R ranges over root fragments of T
v

and f(v; R) is
defined as follows.
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Proof: Let root(T
v

) denote the root fragment ofT
v

containing onlyv. For the root fragment we have the follow-
ing.

f(v; root(T
v

)) = eval(T
v

; S

v

; jA

v

j; �) (4)

Let fR
l

; R

r

g be any root fragment ofT
v

consisting of the
root plus non-empty left and right subtreesR

l

andR
r

. For
root fragments of this form we have the following.

f(v; fR

l

; R

r

g) =

jS

l

j

jS

v

j

f(l; R

l

) +

jS

r

j

jS

v

j

f(r; R

r

) (5)

Given equations 4 and 5 the proof is straightforward induc-
tion on the size ofT

v

. If v is a leaf ofT then the only choice
for R is the root fragment containing onlyv and the result
follows from equation 4. Now assumeT

v

is IF(B; T
l

; T

r

)

wherel andr denote the left and right children ofv respec-
tively and where the result holds forT

l

andT
r

. Equation 5
and the induction hypothesis implies that the minimum over
all trees of the formfR

l

; R

r

g of f(T
v

; fR

l

; R

r

g) equals the
second argument of themin expression in the definition of
compute R. Equation 4 implies that the first argument of
the min expression handles the possibility that the minimum
is just the root fragment, and the result follows. 2

The above theorem immediately implies the following
wheref is defined as in section 3.

compute R(T; S; 1; �) = min

R

f(T; S; R; �)

The algorithm for computingcompute R can easily be con-
verted to an algorithm for computing the optimal subtreeR.

6 Conclusions

We have derive a new bound on the error rate for decision
trees. The bounds depends both on the structure of the tree
and the specific sample (and not only on the size of the sam-
ple). This bound is tighter than traditional bounds for un-
balanced trees and justifies “compositional” algorithms for
constructing decision trees.
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