
220

Boosting Using Branching Programs

Yishay Mansour

Dept. of Computer Science

Tel-Aviv University

mansour@cs.tau.ac.il

David McAllester

AT&T Research

dmac@research.att.com

Abstract

It is known that decision tree learning can be

viewed as a form of boosting. Given a weak

learning hypothesis one can show that the train-

ing error of a decision tree declines as jT j

��

where jT j is the size of the decision tree and �

is a constant determined by the weak learning

hypothesis. Here we consider the case of deci-

sion DAGs | decision trees in which a given

node can be shared by di�erent branches of

the tree, also called branching programs (BP).

Node sharing allows a branching programs to

be exponentially more compact than the cor-

responding decision tree. We show that un-

der the same weak learning assumption used

for decision tree learning there exists a greedy

BP-growth algorithm whose training error is

guaranteed to decline as 2

��

p

jT j

, where jT j is

the size of the branching program and � is a

constant determined by the weak learning hy-

pothesis. Therefore, from the perspective of

boosting theory, branching programs are ex-

ponentially more e�cient than decision trees.

1 Introduction

Boosting algorithms have proven to be very powerful

in computational learning theory. They are based on

the assumption that natural sets of \base predicates"

have the property that for any sample there exists a

base predicate performing better than random guessing

on that sample. This apparently modest assumption

is quite powerful. It implies the ability to construct

highly accurate decision rules built from the base pred-

icates, e.g., decision trees or weighted threshold func-

tions. In practice, the boosting algorithms, such as Ad-

aBoost [FS95], have proven to be very successful, and

are widely used by practitioners in the Machine Learn-

ing community. One can also show that the popular

decision tree algorithms, such as CART and C4.5, can

be view as boosting algorithms [KM96].

For the case of decision tree learning, tree learn-

ing requires a tree size that grows exponentially in 1=�,

where � is the bias of the weak learning hypothesis. This

exponential growth can be shown to be inherent to using

a decision tree representation (for example, in the case

of majority functions). In this work we attempt to over-

come this obstacle by using a di�erent representation,

branching programs rather than decision trees.

A branching program is a directed acyclic graph,

where each non-terminal node has a predicate and each

terminal node has a label. Similar to decision trees,

given an input we traverse a path in the graph; in each

non-terminal node we select an outgoing edge using its

predicate, and when we reach a terminal node its label

classi�es the input.

Branching programs are very powerful. Even if one

restricts them to constant width, still one can repre-

sent any polynomial size formula by a width 5 polyno-

mial depth branching program [Bar86]. Very few and

limited positive results are known for learning branch-

ing programs [RW93, EKR95, BTW96, BBTV97]. This

should be of no surprise since branching programs are a

generalization of decision trees and with the same num-

ber of nodes can represent signi�cantly more powerful

functions.

Here we develop boosting algorithms based on branch-

ing programs. The basic technique of building the branch-

ing program is very similar to the one used in decision

trees | a greedy algorithm based on an index function.

Similar to decision trees, we use the index function to

select how to split a node. Unlike in decision trees, we

need to also merge nodes together. We perform the

merging based on the fraction of examples labeled one

in each node. Namely, nodes with similar fraction of

ones are likely to be merged. (At �rst this may look un-

natural, but one can view this as an attempt to purify

the nodes and drive the index function down to zero.)

We show that our simple greedy algorithm has very

interesting theoretical properties. The training error of

our branching program T is bounded by exp(�
(
jT j)),

where jT j is the number of nodes in the branching pro-

gram and 
 is a parameter that depends quadratically

on the bias � of the weak learning hypothesis. This is

a great improvement over the decision tree results, and

the bound is only quadratic in the lower bounds.

One should take the theoretical results with a gain

of salt when applying them to real problems. Although

the theoretical results for decision trees are exponen-

tially weaker than for AdaBoost, in practice they ex-



221

hibit very similar performance [DKM96]. One explana-

tion, studied in [DKM96], is that while in the decision

tree the bias � remain relatively stable as we grow the

tree, the bias in AdaBoost is driven down very rapidly.

Although we did not do any experiments, we believe it

would be interesting to compare the branching program

techniques presented in this work to existing decision

tree and boosting algorithms.

The paper is organized as follows. In Section 2

we de�ne the learning model, branching programs, the

weak learning hypothesis and the weak index reduction

hypothesis. We describe the algorithm and analyze it

in Section 3. Section 4 concludes with a summary and

open problems.

2 Preliminaries

2.1 Learning Model

We assume a set X of instances. A \training set" is a

�nite set S of pairs hx; yi with x 2 X and y 2 f0; 1g.

Given a training set S and a function f fromX to f0; 1g

we de�ne the training error of f , denoted �̂(f), to be the

fraction of pairs hx; yi 2 S such that f(x) 6= y.

In this paper we will not attempt to analyze the

generalization error of the rules learned by our algo-

rithm. Rather, we address the question of how rapidly

the training error can be driven down as a function of

the size of the branching program. Over �tting can be

avoided in various ways, e.g., by bounding the allowed

size of the branching program or by using holdout data

to measure the generalization error of branching pro-

grams of various sizes. For a given size limit, smaller

training error seems preferable. Hence we are interested

in minimizing training error as a function of program

size.

2.2 Branching Programs

We let H be a set of predicates on X . An H-BP is a

directed acyclic graph whose nodes are divided into leaf

nodes and internal nodes. Leaf nodes have no outgoing

edges and each internal node is labeled with a predicate

in H and has exactly two outgoing edges correspond-

ing to the two possible truth values of the predicate. A

given instance x 2 X determines a unique directed path

through an H-BP T starting at the root of T and fol-

lowing the outgoing arc from internal nodes indicated

by the value of the predicate at that node on x. (Note

that a decision tree is a special case of a branching pro-

gram where all the nodes, except the root, have only one

incoming edge.) For any H-BP T we let N (T ) denote

the set of all nodes of T (both internal and leaf) and we

let L(T ) denote the set of leaf nodes of T .

We say x reaches n 2 N (T ) if n is on the path

through T de�ned by x. For a given H-BP T , node

n 2 N (T ), and sample S, we write S

n

to denote the

set of pairs hx; f(x)i in S such that x reaches n. For

n 2 N (T ) we de�ne p̂

n

to be the fraction of the sample

reaching node n, i.e., jS

n

j=jSj. For any sampleW , where

typically W is a subset of S, we de�ne q̂(W ) to be the

fraction of the pairs hx; f(x)i in W for which f(x) = 1.

For n 2 N (T ) we de�ne q̂(n) to be q̂(S

n

). The training

error of T , denoted �̂(T ), is de�ned as follows.

�̂(T ) �

X

`2L(T )

p̂

`

min(q̂

`

; 1� q̂

`

)

We de�ne jT j to be the number of nodes of T , i.e.

jT j = jN (T )j.

2.3 The Weak Learning Hypothesis and

Boosting

Here, as in [KM96], we view top-down decision tree

learning as a form of Boosting [Sch90, Fre95]. Boosting

describes a general class of iterative algorithms based on

a weak learning hypothesis [Kea88, Sch90, Fre95] . The

weak learning hypothesis applies to classes of Boolean

functions. For � > 0 the �-weak learning hypothesis for

H states that for any distribution on X there exists an

h 2 H with Pr

D

(h(x) 6= f(x)) � 1=2 � �. Algorithms

designed to exploit this particular hypothesis for classes

of Boolean functions have proved to be quite useful in

practice [FS95].

Kearns and Mansour [KM96] show that the key to

using the weak learning hypothesis for decision tree learn-

ing is the use of a continuous index function I : [0; 1]!

[0; 1] such that I(0) = I(1) = 0, I(q) � min(q; (1� q)),

I(q) is monotonically increasing on the interval [0;

1

2

]

and monotonically decreasing on the interval [

1

2

; 1]. For

any branching program T , we de�ne I(T ) to be

X

`2L(T )

p̂

`

I(q̂(`)):

Note that these conditions imply that �̂(T ) � I(T ). For

any h 2 H let T

h

be the decision tree consisting of a

single internal node labeled with h and two leaves cor-

responding to the possible values of h. Let I

W

(T

h

) de-

note the value of I(T

h

) as measured with respect to the

sample W . Let �(W;h) denote I(q̂(W )) � I

W

(T

h

) (re-

call that q̂(W ) is the fraction of pairs hx; f(x)i 2 W

such that f(x) = 1). The quantity �(W;h) is the re-

duction in the index for sample W achieved by intro-

ducing a single branch into a decision tree. Also note

that p̂

`

�(S

`

; h) is the reduction in I(T ) when the leaf `

of a decision tree is replaced by the branch h. Kearns

and Mansour [KM96] prove the following lemma.

Lemma 1 (Kearns & Mansour) Assuming the �-weak

learning hypothesis forH, and taking I(q) to be 2

p

q(1� q),

we have that for any sample W there exists an h 2 H

such that �(W;h) �

�

2

16

I(q̂(W )).

This lemma motivates the following de�nition.

De�nition 2 We say that H and I satis�es the 
-weak

index reduction hypothesis if for any sample W from X

there exists an h 2 H such that �(W;h) � 
I(q̂(W )).

Note that in the above de�nition the parameter 


is proportional to �

2

, of the �-weak learning hypothe-

sis. The 
-weak index reduction hypothesis was used

in [MM99] to study the e�ects of di�erent split size for

decision trees.



222

3 A Boosting Algorithm using

Branching Programs

The nodes of the constructed branching program form

a two dimensional grid of depth d and of varying width

| for each depth j we have a width w

j

. Each node

has the form n

i;j

where i and j are integers such that

0 � j � d and 1 � i � w

j

. The graph is leveled,

i.e., all arcs are from a node of the form n

i;j

to a node

of the form n

i

0

;j+1

. The �rst level has only a single

node n

0;1

which we take to be the root node of the

branching program. Nodes at depth less than d are

internal nodes and all nodes at depth d are leaf nodes.

Given a branching program of depth d, and 1 � j � d,

we de�ne T

j

to be the branching program that results

from deleting all nodes n

i;k

with k > j so that the nodes

n

i;j

become leaves. Our algorithm constructs T

j+1

from

T

j

. Some nodes may be unreachable from the root and

unreachable nodes can be discarded. We write S

i;j

, p̂

i;j

and q̂(i; j) for S

n

i;j

, p̂

n

i;j

, and q̂(n

i;j

) respectively.

For each j > 1 we assume a sequence of values u

0;j

,

: : :, u

w

j

;j

with u

0;j

= 0, u

w;j

= 1 and u

i;j

< u

i+1;j

.

For any q̂ 2 [0; 1] we de�ne i(q̂; j) to be 1 if q̂ = 0 and

otherwise the least i such that u

i;j

� q̂. This gives 1 �

i(q̂; j) � w

j

and q̂ 2 [u

i(q̂;j)�1

; u

i(q̂;j)

]. The algorithm

maintains the following \bucket invariant" for all values

of j.

Bucket Invariant: q̂(i; j) 2 [u

i�1;j

; u

i;j

]

The algorithm is de�ned as follows.

Algorithm:

1. De�ne T

0

to consist of the single node n

1;0

.

2. For j from 0 to d� 1 de�ne T

j+1

as follows.

(a) Set w

j+1

= (9=
)(ln 1=I(T

j

)) + c, where the

constant c will be speci�ed latter.

(b) Select values u

0;j+1

; : : : ; u

w

j+1

;j+1

as a func-

tion of w

j+1

in a manner speci�ed below.

(c) For each node n

i;j

reachable from the root

i. select a predicate h such that �(S

i;j

; h) �


I(q̂(i; j));

ii. let S

1

i;j

and S

0

i;j

be the subsets of S

i;j

on

which h is true and false respectively;

iii. and install edges fromn

i;j

to n

i(q̂(S

1

i;j

);j+1); j+1

and n

i(q̂(S

0

i;j

);j+1));j+1

for the true and false

cases of h respectively.

We �rst note some basic invariants. Since we select a

predicate with a strict reduction in the index function,

the sets S

1

i;j

and S

0

i;j

must both be non-empty. This

implies that if node n

i;j

is reachable from the root then

S

i;j

6= ;, and vice versa.

We will write n

k;j

b

! n

i;j+1

to indicate that there is

a branch from nodes n

k;j

to node n

i;j+1

corresponding

to the truth value b. We now have the following.

S

i;j+1

= [

n

k;j

b

!n

i;j+1

S

b

k;j

By construction, for n

k;j

b

! n

i;j+1

we have q̂(S

b

k;j

) 2

[u

i�1;j+1

; u

i;j+1

]. So we get q̂(i; j + 1) 2 [u

i�1;j+1

; u

i;j+1

]

and the bucket invariant holds.

To ensure that I(T

j

) decreases on each iteration of

the algorithm, it is important to select su�ciently �nely

space values u

0;j+1

, : : :, u

w

j+1

;j+1

. For a given value w

and set of values u

0

; : : : ; u

w

, and q̂ 2 [0; 1], we de�ne

i(q̂) as before and de�ne I

+

(q̂) as follows.

I

+

(q̂) � max

x2[u

i(q̂)�1

; u

i(q̂)

]

I(x)

The basic idea is that I

+

(q̂) \forgets" where q̂ is in the

interval [u

i(q̂)�1

; u

i(q̂)

] and then assumes the worst case.

Note that I

+

(q̂) � I(q̂). To ensure a su�ciently �ne

space of the values u

0

, : : :, u

w

we use the following def-

inition.

De�nition 3 An (�; �)-net is a sequence of values u

0

; : : :

; u

w

with u

0

= 0, u

w

= 1, and such that for all q̂ 2 [0; 1]

we have I

+

(q̂) � max(�; (1 + �)I(q̂)).

Lemma 4 For any index function I, and any � > 0 and

� 2 (0;

1

2

], there exists an (�; �)-net with w � 4 +

3 ln

1

�

�

.

Proof: We use the fact that an index function is

a continuous function on the interval [0; 1] such that

I(0) = I(1) = 0, I(q) � 1, and I(q) is monotoni-

cally increasing on [0;

1

2

] and monotonically decreasing

on [

1

2

; 1]. De�ne w to be the integer 2 + 2

l

ln

1

�

ln(1+�)

m

.

Note that w is even so that w=2 bisects the possible

values of i with 0 � i � w. We de�ne u

w=2

to be

1

2

.

Now for I � I(

1

2

) we de�ne I

�1

L

(I) to be the unique

value of q̂ 2 [0; 1=2] such that I(q̂) = I. For 1 � k �

dln(1=�)= ln(1 + �)e we de�ne u

w

2

�k

as follows.

u

w

2

�k

� I

�1

L

�

I(1=2)

(1 + �)

k

�

Values of u

w

2

+k

are de�ned analogously. This gives an

(�; 
)-net with with w = 2+ 2

l

ln

1

�

ln(1+�)

m

.

Finally we show that w � 4 +

3 ln(1=�)

�

. By the con-

cavity of the ln function we have ln(1+�) �

�

z

ln(1+ z)

provided � � z. For � �

1

2

this gives the following.

w = 2 + 2

�

ln

1

�

ln(1 + �)

�

� 4 + 2

ln

1

�

ln(1 + �)

� 4 +

ln

1

�

� ln(

3

2

)

� 4 +

3 ln

1

�

�

2

Lemma 5 If the u

0;j+1

; : : :u

w

j+1

;j+1

is an (�; �)-net then

I(T

j+1

) � (1 + �)(1 � 
)I(T

j

) + �.

Proof: Let i(q̂) abbreviate i(q̂; j + 1) let u

i

abbre-

viate u

i;j+1

. Let I

+

(q̂) be de�ned in terms of the val-

ues u

0

, : : :, u

w

j+1

. The bucket invariant implies that



223

I

+

(q̂

i;j

) = I

+

(u

i

). This implies I(q̂

i;j

) � I

+

(u

i

) and we

get the following.

I(T

j+1

) �

w

j+1

X

i=1

p̂

i;j+1

I

+

(u

i

)

=

w

j

X

k=1

p̂

k;j

X

b2f0;1g

p̂

b

k;j

I

+

(u

i(q̂(S

b

k;j

))

)

�

w

j

X

k=1

p̂

i;j

X

b2f0;1g

p̂

b

k;j

max(�; (1 + �)I(q̂(S

b

i;j

))

�

w

j

X

k=1

p̂

i;j

X

b2f0;1g

p̂

b

k;j

(�+ (1 + �)I(q̂(S

b

i;j

))

� �+ (1 + �)

w

j

X

k=1

p̂

i;j

X

b2f0;1g

p̂

b

k;j

I(q̂(S

b

i;j

))

� �+ (1 + �)

w

j

X

k=1

p̂

i;j

(1� 
)I(q̂(k; j))

� �+ (1 + �)(1 � 
)I(T

j

);

where p̂

b

k;j

= jS

b

k;j

j=jS

k;j

j. 2

Finally, lemmas 4 and 5 imply the following.

Lemma 6 Assuming the 
-weak index reduction hypoth-

esis, the width w

j+1

and values u

0;j+1

, : : :, u

w

j+1

;j+1

can be selected in such a way that we have the follow-

ing,

w

j+1

�

9




ln(

1

I(T

j

)

) + c

I(T

j+1

) � (1�




2

)I(T

j

);

where c is a constant depending on 
 but not on j.

Proof: Select � to be

1

6


I(T

j

) and select � to be




3

.

Then let u

0;j+1

, : : :, u

w

j+1

;j+1

be an (�; �)-net, as guar-

anteed to exist by lemma 4, with w

j+1

� 4 +

3 ln(1=�)

�

.

This gives the speci�ed value for w

j+1

and by lemma 5

we have the following.

I(T

j+1

) � (1+




3

)(1� 
)I(T

j

)+




6

I(T

j

) � (1�




2

)I(T

j

)

2

This implies the following.

Lemma 7 Assuming the 
-weak index reduction hypoth-

esis, the algorithm can be run in such a way that,

jT

j

j �

9




2

L

2

j

+ bL

j

+ 1

where b is a constant depending on 
 but not j, and

L

j

� ln(1=I(T

j

)):

Proof: Lemma 6 states that w

j+1

�

9




L

j

+ c and

that L

j+1

� L

j

+




2

. The proof is now by induction on

j. The lemma is immediate for j = 0. Assuming the

lemma for j we have the following.

jT

j+1

j � jT

j

j+w

j+1

�

9




L

2

j

+ bL

j

+ 1 +

9




L

j

+ c

�

9




(L

j+1

�




2

)

2

+ b(L

j+1

�




2

) + 1 +

9




L

j

+ c

=

9




L

2

j+1

+ bL

j+1

+ 1 +

9

2


 + c�




2

b

The result follows by setting b =

2




(

9

2


 + c). 2

Lemma 7 implies the following theorem.

Theorem 8 Assuming the 
-weak index reduction hy-

pothesis, the algorithm can be run in a way that satis�es

the following.

I(T

j

) � e

�
(


p

jT

j

j)

:

4 Summary and Open problems

This work developed boosting algorithms using branch-

ing programs. The algorithms themselves are fairly nat-

ural greedy algorithms based on an index function. Us-

ing a weak index reduction hypothesis we are able to

bound the error of the branching program as a function

of its size. The training error drops exponentially in

the square root of the size of the branching program.

This is in contrast to decision trees, where the error

drops only polynomially in the size of the decision tree.

Hence there is an exponential gap in boosting between

decision trees and branching program.

The algorithm that we proposed is not adaptive in

the sense that it assumes a �xed 
. One can modify the

algorithm fairly simply to be adaptive. We can de�ne

I

j+1

to be the index function applied to the sets S

b

i;j

,

i.e. I

j+1

=

P

p̂

k;j

p̂

b

k;j

q̂(S

b

k;j

). Now we can de�ne the

average reduction as 


j+1

= (I(T

j

) � I

j

)=I(T

j

) and set

the width as w

j+1

= O(1=


j

ln 1=I(T

j

)). This will allow

us to have smaller width if we have a larger reduction,

and thus has the potential of an improved bound in

some cases.

There are many challenging open problems for future

research. First, in this work we concentrate on binary

branching, namely, an internal node has at most two

children. The understanding of how to perform splits of

various size is left as a challenge to the future. For de-

cision trees the understanding of how to compare splits

of di�erent sizes was done using a weak index reduction

hypothesis [MM99]. One can hope that the techniques

developed in [MM99] can be extended to branching pro-

grams, and address the issue of di�erent split size in a

branching program.

Second, it is not clear at if the upper bound we de-

rive for boosting using branching programs is the best

possible. It would be interesting either to derive an

improved upper bound or to exhibit a lower bound for

boosting using branching programs.



224

Finally, there is the experimental aspect. It would

be interesting to derive experimental results for our al-

gorithms, and compare it with existing decision tree and

boosting algorithms.

References

[Bar86] David A. Mix Barrington. Bounded-width

polynomial-size branching programs recog-

nize exactly those languages in nc

1

. In

Proceedings of the 18

th

Annual ACM Sym-

posium on Theory of Computing, Berkeley,

California, pages 1{5, 1986.

[BBTV97] Francesco Bergadano, Nader H. Bshouty,

Christino Tamon, and Stefano Varricchio.

On learning branching programs and small

depth circuits. In Computational Learn-

ing Theory: Eurocolt '97, pages 150{161.

Springer-Verlag, 1997.

[BTW96] Nader H. Bshouty, Christino Tamon, and

David K. Wilson. On learning width two

branching programs. In Proc. 9th Annu.

Conf. on Comput. Learning Theory, pages

224{227. ACM Press, New York, NY, 1996.

[DKM96] TomDietterich, Michael Kearns, and Yishay

Mansour. Applying the weak learning frame-

work to understand and improve c4.5. In

ICML, 1996.

[EKR95] Funda Erg�un, Ravi S. Kumar, and Ronitt

Rubinfeld. On learning bounded-width

branching programs. In Proc. 8th Annu.

Conf. on Comput. Learning Theory, pages

361{368. ACM Press, New York, NY, 1995.

[Fre95] Yoav Freund. Boosting a weak learning al-

gorithm by majority. Information and Com-

putation, 121(2):256{285, 1995.

[FS95] Yoav Freund and Robert E. Schapire. A

decision-theoretic generalization of on-line

learning and an application to boosting. In

Proceedings of the Second European Con-

ference on Computational Learning Theory,

pages 23{37, 1995.

[Kea88] Michael Kearns. Thoughts on hypothesis

boosting. (Unpublished), December 1988.

[KM96] Michael Kearns and Yishay Mansour. On

the boosting ability of top-down decision

tree learning algorithms. In STOC, 1996.

Also, in JCSS, 58(1):109-128 (1999).

[MM99] Y. Mansour and D. McAllester Boosting

with Multi-Way Branching in Decision Trees

In NIPS, 1999.

[RW93] V. Raghavan and D. Wilkins. Learning �-

branching programs with queries. In Proc.

6th Annu. Workshop on Comput. Learning

Theory, pages 27{36. ACM Press, New York,

NY, 1993.

[Sch90] Robert E. Schapire. The strength of weak

learnability. Machine Learning, 5(2):197{

227, 1990.


