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Abstract

We introduce and analyzeLocBoost, a new boost-
ing algorithm, which leads to the incremental
construction of a mixture of experts type ar-
chitecture. We provide upper bounds on the
expected loss of such models in terms of the
smoothness properties of the gating functions
appearing in the mixture of experts model. Fur-
thermore, an incremental algorithm is proposed
for the construction of the classifier, based on a
maximum-likelihood approach and the EM al-
gorithm. Preliminary numerical results appear
to be promising.

1 INTRODUCTION

One of the most successful recent approaches to machine
learning and pattern classification is based on the idea of
adaptively combining ‘weak’ classifiers, through a proce-
dure that has come to be termed Boosting (see Schapire
et al. [19] for a detailed exposition of the practice and
theory of this type of algorithm). Work by several au-
thors [3, 18, 7, 9, 16] has provided a rather general ap-
proach to Boosting, through the incremental greedy min-
imization of some empirical cost function. This point
of view stresses the relationship to some widely studied
algorithms in the statistics, signal processing and neu-
ral network communities. For example, the popular ap-
proach to nonlinear wavelet approximation through match-
ing pursuit [14] falls in this class of algorithms.

In this work we extend the framework for the construc-
tion of composite classifiers by allowing the weights of
the different weak classifiers to depend on the input. That
is, rather than having constant weights attached to each of
the experts (as in previous approaches), we allow weights
that are functions over the input domain. Our extension
models a scenario in which a learner may base the rel-
ative significance of each of his expert advisors on the
features of the specific input he has to classify. This ex-
tension seems to better model real-world situations where
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particularly complex tasks are split between experts, each
of whose expertise lies in a narrow field (corresponding
to a small sub-domain of the input space in our simplified
model). The structure of the final classifier produced in
our approach is related to the mixture of experts (ME) ar-
chitecture studied by Jordan and co-workers (e.g., [11]).

In this work we introduce such a “boosting with local-
ization” framework which we callLocBoost. We pro-
vide analysis of the generalization ability of LocBoost
type classifiers and show that under certain smoothness
assumptions regarding the expert coefficient functions,
uniform convergence bounds hold in our extended frame-
work. One of the most appealing features of the gener-
alization bounds for convex constant coefficients is their
independence of the number of participating experts [19].
We show that similar results can be derived for our input-
dependent expert mixtures. As far as we aware these
are the first generalization results for mixtures of experts
with non-constant expert coefficients, which possess the
desirable features of previous constant coefficient bounds.
We apply this new approach by presenting an incremental
greedy learning algorithm based on a maximum-likelihood
criterion. The resulting classifier is similar to the final
classifier obtained in boosting algorithms, except that it
has the greater flexibility of input-dependent weights. Ini-
tial experiments with the LocBoost algorithm appear to
be promising.

The remainder of the paper is organized as follows. We
begin in Section 2 by presenting some generalization bounds
for mixture of experts architectures based on recent re-
sults for convex classes. Section 3 then proceeds to in-
troduce an incremental algorithm based on maximum-
likelihood estimation. Implementation details and Pre-
liminary numerical results are presented in Section 4, and
a short discussion is concludes the paper in Section 5.

2 GENERALIZATION BOUNDS FOR

MIXTURES OF EXPERTS

We consider two-class classification problems, usingcon-
fidence rated classifiers, which produce real-valued hy-
pothesesh ∈ [−1, 1], rather than simple binary hypothe-
ses. Such classifiers have recently been shown to be very
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effective in boosting algorithms [20, 9], and in general
yield greater flexibility (e.g., [1]). Consider a compos-
ite classifier formed by linearly combining a set ofbase
classifiersht, t = 1, . . . , T , where the combination coef-
ficients depend on the input variable. Formally, we have

H(x) =

T
∑

t=1

βt(x)ht(x),

where the soft classifiersht(x) assume values in the in-
terval [−1, +1], and the input-dependent mixture coeffi-
cients obey the condition

βt(x) ≥ 1 ;

T
∑

t=1

βt(x) = 1.

In some cases it will be convenient to representH(x)
asH(x) =

∑

t αt(x)ht(x)
/
∑

t αt(x), where the nor-
malization is made explicit. We will now show that if
the functionsαt(x) are sufficiently smooth, and the class
{h} is not too large, then the estimation error does not
grow too quickly.

First, it is important to understand the need for smooth-
ness assumptions. To see this, consider an arbitrary set of
m pointsS = {(xi, yi)}m

i=1 ∈
(

R
d × {−1, +1}

)m
. Let

two constant valued classifiers be given, sayh+(x) =
1 and h−(x) = −1 for any x. Let I(E) denote the
indicator function for the eventE, and letS± be the
sub-sets ofS corresponding to the positive and nega-
tive examples, respectively. Set the weighting function
β+(x) = 1 − I(x ∈ S−), so thatβ+(x) equals0 on
all the negative examples and unity otherwise, and simi-
larly β−(x) = I(x ∈ S−). Clearly the two-component
mixtureβ+(x)h+(x)+β−(x)h−(x) achieves the correct
classification onS, andβ+(x) + β−(x) = 1. Obviously,
no generalization can be expected from such a classifier,
sinceany classification on a finite set of points can be
achieved in this fashion. Thus, it is desirable to envis-
age the complexity of the classifier being generated by
the convex combination itself, rather than by the com-
plexity of the component classifiersht(x) and mixture
coefficientsβt(x).

We begin with a few comments on notation. The proba-
bility of an eventE underD will be denoted byPD(E),
while PS(E) denotes the probability of the eventE with
respect to choosing an example uniformly at random from
a setS.

Definition 1 A function class F̂ is an ǫ-sloppyη-cover
of F w.r.t. data S if, for all f ∈ F , there exists a f̂ ∈ F̂
with PS

{

|f̂(x) − f(x)| > η
}

≤ ǫ. Let N (F, η, ǫ, m)

denote the maximum over all subsets S, |S| = m, from
the domain, of the size of the smallest ǫ-sloppy η-cover
of F w.r.t. S. Note that the standard definition of cover
holds when ǫ = 0.

We now introduce some operations that generate new
classes of functions from existing classes. As our goal

is to broaden the scope of classes that are known to be
learnable, we prove upper bounds on the covering num-
bers of the generated classes in terms of the covering
numbers of the original classes.

Definition 2 Let H and A denote classes of real-valued
functions (we assume that α ≥ 0, ∀α ∈ A). We then
define the following classes of functions:

HA = {fg : h ∈ H, g ∈ A}
constM (H) = {c · h : 0 < c ≤ M, M > 0, h ∈ H}

co(H) =

{

n
∑

i=1

aihi(x) :

n
∑

i=1

ai = 1, hi ∈ H, n ∈ N

}

coA(H) =

{∑n
i=1 αi(x)hi(x)
∑n

i=1 αi(x)
, αi ∈ A, hi ∈ H, n ∈ N

}

cok
A(H) =

{

k
∑

i=1

αi(x)hi(x), αi ∈ A, hi ∈ H
}

Definition 3 Let (F1, . . . ,Fk) be classes of functions
defined over domains (X1, . . . ,Xk) respectively. Define

a class of functions
∏k

i=1 Fi over the domainX = ∪k
i=1Xi,

by

k
∏

i=1

Fi ={f : ∃f1 ∈ F1, . . . ,∃fk ∈ Fk, ∀i ≤ k,

∀x ∈ Xi, f(x) = fi(x)}.
Let G be a partition of the domain set X . That is G =
{X1, . . . ,Xk} where the Xi’s are pairwise disjoint sub-
sets of X and ∪k

i=1Xi = X . Given a class of function
H and a partition G of its domain, the class of case-wise
defined H functions w.r.t. G is defined as

CWG(H) ={f : ∃{h1, . . . , hk} ∈ H, ∀i ≤ k,

∀x ∈ Xi, f(x) = hi(x)}.

We present a few simple claims that bound the cover-
ing numbers of the classes generated by the above oper-
ators. Unless otherwise mentioned, all the above claims
are universally quantified with respect to the parameters
that are not explicitly mentioned (e.g., unlessm is ex-
plicitly mentioned, each of the following claims should
be read with the prefix ‘for allm’). As the proofs of
these lemmas are all relatively straightforward, we skip
some of the simple proofs.

Lemma 1 For any pair of classes of functions, H, A,
|h| ≤ B, |α| ≤ B, for h ∈ H, α ∈ A, and for every
η > 0 and ǫ > 0,

N (HA, η, ǫ, m) ≤ N (H, η/2B, ǫ, m)N (A, η/2B, ǫ, m)

Proof Assume that̂H andÂ are finite sloppyη/2-covers
of H andA, respectively. We show that̂HÂ is a sloppy
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η-cover ofHA. To see this simply note that for any
h ∈ H andα ∈ A there exist̂h andα̂ such that
PS

{

|ĥ(x) − ĥ(x)| > η/2
}

≤ ǫ, and similarly forα.

The claim then follows from the observation thathα −
ĥα̂ = (h− ĥ)α + (α− α̂)ĥ, and the boundedness of the
functions.

Lemma 2 For η > 0, M > 0 and any class H,

N (constMH, η, ǫ, m) ≤ N (H, η/M, ǫ, M).

If H is closed under multiplication by constants then
constMH = H.

Lemma 3 Let (F1, . . . ,Fk) be classes of functions de-
fined over domains (X1, . . . ,Xk) respectively. Then,

N
(

k
∏

i=1

Fi, η, ǫ, m

)

≤
k
∏

i=1

N (Fi, η, ǫ, m).

Corollary 1 For every class H and every partition G of
its domain into k subsets,

N (CWG(H), η, ǫ, m) ≤ N (H, η, ǫ, m)k.

Corollary 2 Let H be a class of functions and G = {X1,
. . . ,Xk} a partition of its domain X into k subsets. Let
BG denote the class of functions from X to the unit inter-
val that are constant on each of the Xi’s in G. Then

N (coBG
(H), η, ǫ, m) ≤ N (co(H), η, ǫ, m)k.

Proof: Just note that coBG
(H) ⊆ CWG(co(H)) and

apply Corollary 1.

Lemma 4 For every A and H, the class cok
A(H) is a

subset of the class constk(co(HA)).

Lemma 5 For every real valued function f , constant k,
distribution D, sample S and accuracy parameters ǫ and
η, PD(yf(x) < 0) > PS(yf(x) ≤ η)+ ǫ if, and only if,
PD(ykf(x) < 0) > PS(ykf(x) ≤ kη) + ǫ

Proof: Just note thatyf(x) < 0 iff ykf(x) < 0 and
ykf(x) ≤ kη iff yf(x) ≤ η.

Remark 1 We can now apply the generalization bounds
for convex hulls (e.g., [19]), to obtain generalization bounds
for cok

A(H). This follows since for eachg ∈ cok
A(H)

there exist somef ∈ co(AH) such thatg = kf .

We recall the definition of the pseudo-dimension of a
class of real-valued functions.

Definition 4 Suppose H is a class of real-valued func-
tions defined over a domainX . A set of points {x1, . . . , xm}

chosen from X is pseudo-shattered by H if there are real
numbers r1, . . . , rm such that for each b ∈ {0, 1}m there
is a function hb ∈ H with sgn(hb(xi) − ri) = bi for 1 ≤
i ≤ m. The pseudo-dimension of H, denoted P-dim(H),
is the maximum cardinality of a pseudo-shattered subset
of X .

The following Lemma, from [20], relates the sloppy cov-
ering number of co(H) to the pseudo-dimension ofH.

Lemma 6 ([20], Theorem 8)For any η > 0,

N (co(H), η, 2e−Nη2/8, m) ≤ (2em/(ηd))dN ,

where d = P-dim(H).

Corollary 3 Given any pair of classes of functions, H,
A, for every ǫ > 0 and k ∈ N, the ǫ-sloppy η-covering
number of cok

A(H) is at most the result of the last lemma
applied to the product of the sloppy η/2k-covering num-
bers of H and A.

We recall an important result from the work of Schapire
et al. [19].

Lemma 7 ([19], Theorem 4)Let F be a class of real-
valued functions defined on the instance space X . Let
D be a distribution over X × {−1, 1}, and let S be a
sample of m examples drawn independently at random
according to D. Let ǫ > 0 and η > 0. Then for any
f ∈ F , the probability that

PD [Y f(X) ≤ 0] > PS [Y f(X) ≤ η] + ǫ

is smaller than

2N (F, η/2, ǫ/8, 2m) exp(−ǫ2m/32).

Using Corollary 2 the following corollary follows, upon
using similar arguments to those in Theorem 8 of [20].

Corollary 4 Let D be a distribution over X×{−1, +1},
and let S be a sample of m points chosen independently
at random according to D. Assume that m ≥ dp ≥ 1,
where dp is the pseudo-dimension of H, and assume that
A is composed of piecewise constant functions, assuming
constant values on a partition G of X . Then for any f ∈
coA(F)

PD [Y f(X) ≤ 0] ≤ PS [Y f(X) ≤ η]

+ O

(

1√
m

( |G|dp log2(m/dp)

η2
+ log

(

1

δ

))1/2
)

.

Observe that Corollary 4 extends the results of [20] to
functions formed by mixtures, where the mixing coeffi-
cients are themselves piece-wise constant functions. Note
also that only difference between this result and Theorem
8 in [20] is the additional factor of|G|, accounting for the
number of regions. An essential feature of this bound, as
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of its precursors in [19], is that it doesnot depend on the
number of terms in the convex combination.

We next extend the results of Corollary 4 to smooth func-
tions. The smoothness constraints are enforced through a
Lipschitz condition, guaranteeing that the mixture coef-
ficient functions do not change too rapidly. For technical
reasons we also require that the domainX is bounded.
The result below applies to the caseX = [0, 1]d, but may
be easily extended to any bounded subset ofR

d.

Theorem 1 Let D be a distribution over [0, 1]d×{−1, +1},
and let S be a sample of m points chosen independently
at random according to D. Assume that m ≥ dp ≥ 1,
where dp is the pseudo-dimension of H. Let the weight
functions αj(x) satisfy the Lipschitz condition |αj(x) −
αj(y)| ≤ L‖x − y‖∞ as well as the condition αj(x) ≥
a > 0 for all j. Then with probability at least 1 − δ,
every function f ∈ coA(H) satisfies the following bound
for all η > 0:

PD [Y f(X) ≤ 0] ≤ PS [Y f(X) ≤ η]

+ O

(

1√
m

(

dp(L/η)d log2(m/dp)

η2
+ log

(

1

δ

))1/2
)

.

Proof The idea of the proof is simple. Since the func-
tions obey a Lipschitz condition, they cannot vary too
rapidly over a bounded region. If we then partition the
domainX into sub-regions, and replace the functions
αj(x) over each sub-region by a constant, we obtain a
piecewise constant approximation. The proof then pro-
ceeds by characterizing the number of regions needed to
achieve a given level of accuracy.

Consider a functionf ∈ coA(H), namely

f(x) =
∑

i

αi(x)hi(x)
/

∑

i

αi(x).

Construct a finiteη-cover ofH, denoted byĤ, namely
for eachh ∈ H there exists a function̂h ∈ Ĥ such that
|h(x) − ĥ(x)| ≤ η for anyx ∈ S. Define

f̂(x) =
∑

i

αi(x)ĥi(x)
/

∑

i

αi(x).

It is easy to show that|f(x) − f̂(x)| ≤ η for all x ∈ S.
Consider a partition of the hyper-cube[0, 1]d into K =
γ−d axis-parallel sub-cubes{Xi}K

i=1, each of volumeγd.
From the Lipschitz condition it follows that for any func-
tion αj(x), andx, y in a sub-cube,|αj(x) − αj(y)| ≤
L‖x−y‖∞ ≤ Lγ, since the side-length of each sub-cube
is γ. Let α̃j(x) be the function obtained fromαj(x) by
replacing it within each domainXi with its value atξi,
the center ofXi. Thus{α̃j(x)}j are piecewise constant
functions assuming constant values inXi. We define a
quantized approximation tôf by

f̃γ(x) =
∑

i

α̃i(x)ĥi(x)
/

∑

i

α̃i(x). (1)

We show that|f̂(x) − f̃γ(x)| is small ifγ is small.

|f̂(x) − f̃γ(x)| =

∣

∣

∣

∣

∣

∑

j αj(x)ĥj(x)
∑

k αk(x)
−
∑

j α̃j(x)ĥj(x)
∑

k α̃k(x)

∣

∣

∣

∣

∣

≤
∑

j

∣

∣

∣

∣

αj(x)
∑

k αk(x)
− α̃j(x)
∑

k α̃k(x)

∣

∣

∣

∣

≤
2
∑

j |αj(x) − α̃j(x)|
∑

j α̃j(x)
,

where the last line is obtained by simple algebra. Since
α̃j(x) ≥ a > 0 for eachj, then using|αj(x)− α̃j(x)| ≤
|αj(x) − αj(ξi)| ≤ Lγ/2, and settingγ = aη/L we
conclude that|f̂(x) − f̃γ(x)| ≤ η ∀x ∈ [0, 1]d. Since
|f(x) − f̂(x)| ≤ η and |f̂(x) − f̃γ(x)| ≤ η for any
x ∈ S, we conclude from the triangle inequality that
|f(x) − f̃γ(x)| ≤ 2η for all x ∈ S, where f̃γ(x) =
∑

j α̃j(x)ĥj(x)
/
∑

j α̃j(x) andα̃j(x) are constant over
each of theK regions. We may therefore directly utilize
the results of Corollary 4 replacing the number of regions
K by (L/aη)d.

Remark 2 It is helpful to understand the trade-off be-
tween the two terms appearing in the bound of Theorem
1. For a fixed valueη, we have the standard trade-off
which appears in all margin-based bounds (e.g., Chapter
13 in [1]), namely the empirical errorPS [Y f(X) ≤ η] is
monotonically increasing withη, while the second term
is monotonically decreasing, leading to an optimal value
for the marginη. A similar behavior can be seen to occur
as a function of the smoothness parameterL. First, note
that if L = η, the bound we obtain is of the exact same
form as in [19]. On the other hand, asL increases we ex-
pect the first empirical term to decrease, while the second
term increases. There thus seems to be an optimal value
of smoothness, at which a tight bound is attained.

3 THE LOCBOOST ALGORITHM

A rather general approach to boosting, based on incre-
mental greedy optimization, has been recently introduced
by Mason et al. [16]. In this procedure a composite clas-
sifier is formed by incrementally adding on a weak clas-
sifier based on some margin-based empirical loss func-
tion. In this work, as in many boosting algorithms, a fi-
nal composite hypothesis is constructed by a weighted
combination of weak (base) classifiers. The coefficients
of the combination in the standard approach, however,
do not depend on the position of the pointx whose la-
bel is desired. Since the boosting procedure filters the
data sequentially through re-weighting, it is possible that
some of the classifiersht(x) were not exposed during
training to any data in the vicinity of the pointx. More-
over, greater flexibility can be achieved by having each
classifier operate only in a localized region. It would
thus seem more opportune to weight each classifierht

at pointx by a local weightβt(x) depending onx. In
order to implement this idea, we recall the mixture of



194

expert model [11], where the posterior class-conditional
probability distributionP (y|x) is expressed as a locally
weighted mixture of base probabilities,P (y|x, Ωk) =
∑k

j=1 β(x, φj)p(y|x, θj) , where(φj ∈ Φ, θj ∈ Θ),

β(x, φj) ≥ 0,
∑k

j=1 β(x, φj) = 1 and

Ωk = {φj , θj}k
j=1.

In analogy with the boosting literature, we refer top(y|x, θj)
as ‘weak’ models. This type of structure, was shown to
be very effective in problems of regression, classifica-
tion and time series prediction. It was also shown in [11]
that the well-known Expectation-Maximization (EM) al-
gorithm is especially useful for the purpose of learning
through maximum likelihood estimation.

In this work, we focus on an sequential approach, whereby
experts are added on incrementally as in boosting. As-
sume that at stept a modelPt−1(y|x, Ωt−1) has been
constructed, whereΩt−1 denotes all the parameters up to
time t − 1. At stept we form the model

Pt(y|x, Ωt) = (1 − γt(x, φt))Pt−1(y|x, Ωt−1)

+ γt(x, φt)pt(y|x, θt), (2)

whereP0(y|x) = 1/2∀x, y. Note, by induction, that for
any t we may expressPt(y|x, Ωt) in terms of the weak
conditional probabilities by

Pt(y|x, Ωt) =

t
∑

τ=1

βτ (x, φτ )pτ (y|x, θτ ), (3)

whereφτ = {φ1, . . . , φτ} and
∑t

τ=1 βτ (x, φτ ) = 1
for anyx. To each of the weak conditional probabilities
p(y|x, θ) we may also assign a soft-classifier given by

h(x, θ) = 2p(y = 1|x, θ) − 1.

The combined soft classifier is then given by

Ht(x) =
t
∑

τ=1

βτ (x, φτ )hτ (x, θτ ). (4)

Within a maximum-likelihood approach, at timet we
wish to maximize the function

ℓ(φ, θ; Ωt−1) = log

m
∏

i=1

Pt(yi|xi, Ω
t)

=

m
∑

i=1

log
[

(1 − γt(xi, φ))Pt−1(yi|xi, Ω
t−1)

+ γt(xi, φ)pt(yi|xi, θ)] , (5)

with respect to the parametersφ andθ, the parameters
Ωt−1 = {θ1, . . . , θt−1, φ1, . . . , φt−1} being fixed. In
other words, at stept we set

θt, φt = argmax
θ∈Θ,φ∈Φ

ℓ(φ, θ; Ωt−1). (6)

Note that the function (5) is related to the generalized
cost functions used for boosting in [9] and [16], although
it is not directly based on the margin functionyh(x).

If the classΓ = {γ(·, φ) : φ ∈ Φ} contains the zero func-
tion, clearly maximization of (5) with respect toθ andφ,
may only increase the likelihood. Note that for any finite
value ofm the log-likelihood is bounded from above by
zero sincep(y|x, θ) ≤ 1 and0 ≤ γ(x, θ) ≤ 1. There-
fore, if an increase in the likelihood can be guaranteed at
each step, the algorithm is guaranteed to converge. How-
ever, care must be taken not to induce over-fitting.

It is interesting to observe that recent work by Li [12],
in the context of density estimation, has shown that not
much is lost by performing the optimization in an incre-
mental fashion. It can be shown that these results may
be extended to the present case of estimating conditional
probability models. One finds that under appropriate reg-
ularity conditions on the conditional probability distribu-
tionp(y|x, θ), the value of the log-likelihood obtained in-
crementally afterT steps of the procedure (6), is at most
O(1/T ) away from the value of the true maximum log-
likelihood obtained by optimizing the full mixture model
of orderT over all parameters simultaneously. More pre-
cisely, letP̂T (y|x, ΩT ) denote the conditional probabil-
ity distribution obtained afterT steps of the incremental
algorithm (6), and denote bŷP MLE

T (y|x) the value of
the maximum likelihood estimate obtained by simultane-
ously optimizing all parameters in the mixture model (3).
Then one can show, under appropriate regularity condi-
tions, that

1

m

m
∑

i=1

log P̂T (yi|xi, Ω
T ) ≥ 1

m

m
∑

i=1

log P̂ MLE
T (y|x) − c

T
,

It should be noted, though, that the result disregards opti-
mization issues and assumes that a global maximum may
be attained at each stage of the incremental procedure.

While standard numerical procedures may be used in or-
der to maximize the log-likelihood, it is particularly con-
venient at this point to cast the problem as an incremen-
tal generalized EM (GEM) algorithm. The main motiva-
tion for doing this is the explicit connection to boosting
through the optimization of a re-weighted version of the
likelihood, and the decoupling of the optimization pro-
cess (see below). Using standard results (see, for exam-
ple, [11]), one can show that the EM-based maximization
of the likelihood may be achieved by successively maxi-
mizing the function

Qt(φ, θ|φc, θc) =

m
∑

i=1

ht−1
i log pt(yi|xi, θ)

+
m
∑

i=1

[

ht−1
i log γt(xi, φ) + (1 − ht−1

i ) log(1 − γt(xi, φ))
]

(7)

with respect toφ andθ and iterating, where

ht−1
i = γt(xi, φ

c)p(yi|xi, θ
c)
/

[(1 − γt(xi, φ
c))Pt−1(yi|xi, Ω

t−1) + γt(xi, φ
c)p(yi|xi, θ

c)]

(8)
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A brief discussion of the effect of the weightsht−1
i is

given below, following the description of the GEM algo-
rithm.

The basic theory of the GEM algorithm [5] guarantees
that if φ andθ are chosen so that

Qt(φ, θ|φc, θc) ≥ Qt(φ
c, θc|φc, θc),

then the likelihood increases, namely

ℓ(φ, θ; Ωt−1) ≥ ℓ(φc, θc; Ωt−1).

Observe that the maximization over the parametersφ and
θ is broken up into two separate procedures. The imple-
mentation of the LocBoost algorithm is described in Fig-
ure 1 and is further discussed in Section 4.

The LocBoost Algorithm

1. Given:(x1, y1), . . . , (xm, ym) ∈ (Rd × {±1})m

2. Fort = 1, 2, . . . , T

(a) Setφc andθc to appropriate initial values (see
Sec. 4).

(b) Let φt and θt be any parameter values for
whichQt(φ, θ|φc, θc) ≥ Qt(φ

c, θc|φc, θc).
(c) ComputePt(y|x,Ωt) using (2).

3. OutputPT (y|x, ΩT )

Figure 1: The LocBoost algorithm

Some points are worth noting concerning the LocBoost
algorithm. First, if ‘past’ performance at the pointxi

is good, namelyPt−1(yi|xi, Ω
t−1) (8) is large, then this

data point is down-weighted, influencing the new weak
classifier only marginally as is seen in the expression
for ht−1

i . Conversely, the weightht−1
i of the new weak

model is increased near points for which the past predic-
tion Pt−1(yi|xi, Ω

t−1) is poor.

A standard approach to the representation of conditional
probabilities is through the logistic functionp(y|x, θ) =
(

1 + e−yf(x)
)−1 ≡ σ(yf(x)), for some functionf(x).

Note that this representation directly relates the margin
yf(x) to the probability in a very natural way, in that
large margins correspond to confident predictions. It is
important at this point to contrast our approach with the
Logit algorithm of Friedman et al. [9] who consider con-
ditional probabilities of the form

p(y|x) = σ
(

y
∑T

t=1 ft(x)
)

, where the functionsft are

estimated in an incremental greedy fashion as in [16]. In
our case we form a locally weighted mixture ofprobabil-
ities (rather than functions) and use an incremental EM
algorithm for estimation.

The procedure described here is based on maximum like-
lihood estimation of the posterior class-conditional prob-
ability P (y|x). Note that the empirical classification er-
ror of the soft classifier

Ht(xi) = 2Pt(yi = 1|xi) − 1

may be easily bounded by the logarithmic loss using the
bound

I(yiHt(xi) < 0) ≤ − log2 Pt(yi|xi).

Moreover, it is well known that under appropriate reg-
ularity conditions (e.g., [21]) the maximum likelihood
estimator asymptotically minimizes the Kullback-Leibler
divergence between the true underlying distribution and
the estimated distribution.

In order to connect the Kullback-Leibler divergence to
the classification error, we consider bounding the the lat-
ter by an expression depending on the former. LetQ(y|x)
be an estimator for the class-conditional probability dis-
tribution, and consider the plug-in classifier given byg(x) =
sgn(2Q(y = 1|x)−1). Denote the true class-conditional
probability distribution by byP (y|x). Denoting the Bayes
error by

P ∗ = E {min(P (y = +1|x), P (y = −1|x))} ,

we have from [6] (p. 93) that

P{g(X) 6= Y } − P ∗

≤ 2

(
∫

X

|P (y = 1|x) − Q(y = 1|x)|2µ(dx)

)1/2

.

Next, note that for any two numbersη andν such that
0 ≤ η, ν ≤ 1, η log η

ν + (1− η) log 1−η
1−ν ≥ (η − ν)2 (the

result may be easily established by subtracting the l.h.s.
from the r.h.s. and showing that the resulting function is
convex with a minimum of zero atν = η). We therefore
conclude that

P{g(X) 6= Y } − P ∗

≤ 2

√

∫

X

DKL (P (y|x)‖Q(y|x))µ(dx).

Although this result relates the probability of misclassi-
fication to the Kullback-Leibler divergence between the
class-conditional distributions, the bound may not be tight
in general (e.g., Theorem 6.5 in [6]). However, it does
show that consistency in the sense of the Kullback-Leibler
divergence leads to consistency in terms of classification
error. It is interesting to note that Yang [22] recently es-
tablished conditions under which bounds of this type are
asymptotically tight in a minimax sense.

Before describing several numerical experiments we have
performed, we comment on two recently proposed ap-
proaches to localized boosting. First, Maclin [13] has
introduced an approach to boosting where the weights
of each weak learner are determined by its accuracy on
points which are similar to it. In particular, either ak
nearest neighbor approach or a neural network are used
in order to assess the accuracy. Second, Moerland and
Mayoraz [17] introducedDynaBoost, which similarly to
AdaBoost is based on a margin based exponential cost-
function (rather than the log-likelihood function as in our
case), except that the mixing coefficients depend on the
input location, as in our approach. The experimental re-
sults of both these papers on several data-sets from the
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UCI repository of Machine Learning demonstrate that
they often significantly out-perform boosting, especially
in situations where the weak learners are not very power-
ful. However, both approaches suffer from the potential
for overfitting noisy data sets. We comment that the gen-
eralization bounds presented in Section 2 should apply to
these two algorithms as well.

4 IMPLEMENTATION AND

NUMERICAL EXAMPLES

The above description of the LocBoost algorithm (Fig-
ure 1) leaves open the choices for the weak probability
model, the localizing function, and the method for choos-
ing appropriate initial values for the parametersφc and
θc. In our implementation of the LocBoost algorithm we
take the weak probability modelp(y|x, θ) to be the logis-
tic functionσ(yθ ·x) = (1+exp(−yθ ·x))−1, with x and
θ being vectors inRd+1, where the extra dimension in-
corporates the threshold. The localizing function we use
is an unnormalized symmetric multivariate normal distri-
bution,
γ(x|φ) = γ(x|µ, Σ) = exp

(

− 1
2 (x − µ)T Σ−1(x − µ)

)

with Σ = s2I. Clearly, 0 < γ(x|µ, Σ) ≤ 1. Let-
ting σi = σ(yiθxi) we obtain from a simple calcula-
tion that∇θQt =

∑m
i=1 ht−1

i (1 − σi)yixi and∇2
θQt =

−∑m
i=1 ht−1

i σi(1−σi)xix
T
i implying thatQt is concave

w.r.t. θ. This fact is important for numerical optimization
and means that we can optimizeQt w.r.t. θ to a global
maximum. Nevertheless, the optimization ofφ = (µ, Σ)
is non-concave and is therefore highly susceptible to lo-
cal maxima problems. It is thus extremely important to
choose appropriate initial values for these parameters.

We use the following strategy for choosing the initial val-
ues ofµ andΣ. We identify the setS of training ex-
amples that are badly classified byPt−1, and attempt to
partition S into “large” clusters containing as many as
possible training examples which are badly classified by
Pt−1 and as few as possible training examples that are
correctly classified byPt−1. This partition is computed
using a standard algorithm for identifying strongly con-
nected components [4] applied to the heuristically con-
structed graphG = (V, E) whose vertex setV is the set
of training examples, and whose edges are constructed as
follows. For eachx ∈ S, letx1, x2, . . . , xm be the entire
training set sorted by distance tox. Let j be the mini-
mum index such thatxj is not inS. For all 1 ≤ i < j
we let the (undirected) edge(x, xi) be inE. Intuitively,
each connected component ofG tends to identify a clus-
ter of training examples which are incorrectly classified
byPt−1. We therefore takeµ to be the mean of the largest
connected componentG′ of G, ands2 (Σ = s2I) to be
the average of of the main diagonal of the covariance ma-
trix of G′. The routine for computing these initial choices
for (µ, s2) is summarized in Figure 2.

For the GEM optimization step (step (b) in Figure 1) we
used trust region Newton and quasi-Newton line search
[2]. In order to ease the computational burden of these al-

Compute Initial (µ, s2) values for round t

1. Given:(x1, y1), . . . , (xm, ym) ∈ (Rd × {±1})m

2. S = {xi : sign(2Pt−1(y|xi) − 1) 6= yi}

3. ConstructG = (V, E)

(a) V = {xi}

(b) For eachx ∈ S

i. Let x1, x2, . . . , xm be the elements ofV
sorted by increasing distance tox

ii. Setjx = argminj{xj 6∈ S}

iii. For all 1 ≤ i < jx let (x, xi) ∈ E

4. ComputeC1, . . . , Ck, the strongly connected com-
ponents ofG

5. Seti∗ = argmax{|Ci|}

6. Setµ = mean(Ci∗)

7. Sets2 = mean(trace(cov(Ci∗)))

8. Output:µ, s2

Figure 2: A heuristic for computing reasonable initial
(µ, s2) values before roundt

gorithms one optimizes over a random sub-sample of the
training examples (with a new sample chosen for each
boosting round). In some of the experimental results re-
ported below we used this strategy.

The frames in Figure 3 depict a run of the algorithm ap-
plied to a toy XOR problem of 400 points drawn from 4
symmetric Gaussians. In this problem the optimal Bayes
decision boundary consists of thex andy axes, and the
optimal Bayes error is approximately1.2. The underly-
ing weak classifiers and the localizing functions are de-
picted in the 4 top frames in Figure 3. In each of these
frames, the line corresponds to the weak model and the
two concentric ellipsoidal1 contours depict the localizing
function computed after an iteration consisting of 2 EM
steps. The 4 bottom frames in the figure correspond to
the first 4 boosting iterations of the algorithm where each
frame depicts the final (strong) classifier at the end of a
round. The optimization performed in each EM step was
over a random sample containing 25% of the training ex-
amples. The inner ellipsoid correspond to a 0.9 contour
line and the outer ellipsoid, to a 0.5 contour line.

As can be seen, the algorithm progressively and system-
atically identifies poor-performance regions which are treated
by new localized weak classifiers. A 10-fold cross-validation
run consisting of 5 boosting iterations each of which com-
putes one EM round, resulted in an average error of 0.152
and standard deviation of0.0067.

An attractive feature of the algorithm is the relatively

1These ellipsoids are in fact circles and appear as ellipsoids
due to the aspect ratio of the figure.
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Dataset No. attributes No. examples
Sonar 60 208
Ionosphere 34 351
Pima 8 768

Table 1: Characteristics of three datasets from the UCI
repository used in the experiments

Dataset LocBoost RealBoost
Sonar 24.3 ± 5.43 20.1 ± 9.2
Ionosphere 12.3 ± 2.8 10.2 ± 5.5
Pima 22.6 ± 2.2 26.7 ± 4.7

Table 2: 5-fold cross-validation test error results obtained
by LocBoost and RealBost on three datasets from the
UCI repository

smooth2 decision surfaces it generates. This can also be
seen in Figure 4 depicting the decision boundary com-
puted by the algorithm after 8 boosting iterations over a
synthetically constructed 800-point “spirals” dataset.

Our initial experiments with real datasets from the UCI
repository appear to be promising and comparable to those
obtained by standard boosting algorithms. For example,
Table 2 summarizes cross-validated test error results ob-
tained by LocBoost and RealBoost (confidence rated Ad-
aBoost) [20] for three datasets from the UCI repository.
The figures are the 5-fold cross-validated error results
obtain by LocBoost and RealBoost, respectively, where
the weak classifier used by RealBoost is the perceptron
“pocket algorithm” [10]. The LocBoost algorithm was
applied with up to 10 boosting rounds and 5 EM itera-
tions per step. RealBoost was applied with 50 boosting
rounds in all runs and in each boosting round the pocket
algorithm was trained for 1000 iterations. Note that these
preliminary results are for illustrative purposes only and
are by no means conclusive. For example, for the first
two datasets (Sonar and Ionosphere) standard versions of
boosting algorithms like AdaBoost, using different weak
classifiers, have obtained better cross-validation errors
(see e.g. Freund and Schapire [8]).

5 DISCUSSION

We have presented and analyzed the mixture of expert ar-
chitecture for the problem of binary classification. Gen-
eralization error bounds, in the spirit of [19], have been
established. Moreover, we have introduced an incremen-
tal procedure based on maximum-likelihood estimation
and the EM algorithm, which bears strong affinities to
boosting algorithms, in particular to their incarnations
as gradient descent in function space [16]. Finally, we
have presented some preliminary numerical simulations,

2The rugged appearance of the decision boundaries in the
figures is due to low plot resolution.

demonstrating the potential practical efficacy of the ap-
proach.

Several open questions are left for future research. First,
an extension of the approach to multi-category classifi-
cation should be quite straightforward given the proba-
bilistic framework adopted here (see, for example, [9]).
Second, as stressed in the text, a possible problem of
the approach is the potential for over-fitting. An impor-
tant objective of our immediate research is the establish-
ment of effective regularization procedures. Third, char-
acterization of good choices of mixing functionsγ(x, φ)
and class conditional probabilitiesp(y|x, θ) are needed,
yielding both good representational power and effective
optimization. Fourth, an interesting research direction
would be the consideration of other cost functions, per-
haps in the spirit of the theoretically motivated functions
introduced in [15]. It would be interesting to see whether
EM type algorithms can be developed in these situations.
Finally, a detailed numerical comparison to other boosting-
type algorithm is in order.

Acknowledgments: We are grateful to Zeev Litichever
for his help with the numerical simulations.
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Figure 3:A run of LocBoost over a 400-point XOR problem. The ’x’s and ’o’s represent training points from two classes. The top
4 frames correspond to the underlying first 4 weak classifiersand the localizing functions. In each of these frames the line represent
the weak model and the two ellipsoids depict the activation area of this weak model (the inner ellipsoid corresponds to a 0.9 contour
level of this region and the outer ellipsoid corresponds to a0.5 contour level. The lower 4 frames depict the first 4 strongclassifiers
constructed by the localized boosting algorithm. In each ofthese frames the lines represent the decision boundary. Thecaption on
top of each frame specifies the iteration number and bottom caption (of the top frames) specifies the training error achieved.
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Figure 4:The decision region obtained by LocBoost after 8 boosting rounds applied to a synthetic spirals problem.


