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Abstract particularly complex tasks are split between experts, each

of whose expertise lies in a narrow field (corresponding
to a small sub-domain of the input space in our simplified
model). The structure of the final classifier produced in
our approach is related to the mixture of experts (ME) ar-
chitecture studied by Jordan and co-workers (e.g., [11]).

We introduce and analyZecBoost, a new boost-
ing algorithm, which leads to the incremental
construction of a mixture of experts type ar-
chitecture. We provide upper bounds on the

expected loss of such models in terms of the In this work we introduce such a “boosting with local-
smoothness properties of the gating functions ization” framework which we callL.ocBoost. We pro-
appearing in the mixture of experts model. Fur- vide analysis of the generalization ability of LocBoost
thermore, anincremental algorithm is proposed type classifiers and show that under certain smoothness
for the construction of the classifier, based on a assumptions regarding the expert coefficient functions,
maximume-likelihood approach and the EM al- uniform convergence bounds hold in our extended frame-
gorithm. Preliminary numerical results appear work. One of the most appealing features of the gener-
to be promising. alization bounds for convex constant coefficients is their

independence of the number of participating experts [19].

We show that similar results can be derived for our input-
1 INTRODUCTION dependent expert mixtures. As far as we aware these
are the first generalization results for mixtures of experts
ndvith non-constant expert coefficients, which possess the
sdesirable features of previous constant coefficient bounds

adaptively combining ‘weak’ classifiers, through a proce- & @Pply this new approach by presenting an incremental

dure that has come to be termed Boosting (see Schapiregreedy learning algorithm based on a maximume-likelihood

et al. [19] for a detailed exposition of the practice and criterion. The resulting classifier is similar to the final
theolry of this type of algorithm). Work by several au- classifier obtained in boosting algorithms, except that it

thors [3, 18, 7, 9, 16] has provided a rather general ap- has the greater flexibility of input-dependent weights: Ini

proach to Boosting, through the incremental greedy min- tial €xperiments with the LocBoost algorithm appear to
imization of some empirical cost function. This point € Promising.

of view stresses the relationship to some widely studied The remainder of the paper is organized as follows. We
algorithms in the statistics, signal processing and neu- begin in Section 2 by presenting some generalization bounds
ral network communities. For example, the popular ap- for mixture of experts architectures based on recent re-
proach to nonlinear wavelet approximation through matchsults for convex classes. Section 3 then proceeds to in-
ing pursuit [14] falls in this class of algorithms. troduce an incremental algorithm based on maximum-

In this work we extend the framework for the construc- likelihood estimation. Implementation details and Pre-
liminary numerical results are presented in Section 4, and

tion of composite classifiers by allowing the weights of hort di T ludes th in Section 5
the different weak classifiers to depend on the input. That & Shortdiscussion is concludes the paper in Section 5.

is, rather than having constant weights attached to each of

the experts (as in previous approaches), we allow weights
that are functions over the input domain. Our extension 2 GENERALIZATION BOUNDS FOR

models a scenario in which a learner may base the rel- ~ MIXTURES OF EXPERTS

ative significance of each of his expert advisors on the
features of the specific input he has to classify. This ex- \we consider two-class classification problems, using
tension seems to better model real-world situations where jopce rated classifiers, which produce real-valued hy-

*Ran El-Yaniv is a Marcella S. Geltman Memorial Aca- potheses € [—1, 1], rather than simple binary hypothe-
demic Lecturer. ses. Such classifiers have recently been shown to be very

One of the most successful recent approaches to machi
learning and pattern classification is based on the idea o
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effective in boosting algorithms [20, 9], and in general is to broaden the scope of classes that are known to be
yield greater flexibility (e.g., [1]). Consider a compos- learnable, we prove upper bounds on the covering num-
ite classifier formed by linearly combining a setlofse bers of the generated classes in terms of the covering
classifiersi;, t = 1,... ,T, where the combination coef- numbers of the original classes.

ficients depend on the input variable. Formally, we have

T Definition 2 Let H and A denote classes of real-valued
H(zx) = Zﬁt(ﬁ)ht(iﬂ), functions (we assume that o« > 0,Yao € A). We then
=1 define the following classes of functions:

where the soft classifieris;(2) assume values in the in- HA={fg:heH,ge A}
terval[—1, +1], and the input-dependent mixture coeffi- /
cients[obé;/rﬂle condition P P const™ (H) ={c-h:0<c<M,M>0,heH}

T CO(H) = alhl(x) : a;=1,h; e H,n e N
Bix)>1 5 Y Bilw) =1, ; ;
t=1
i1 @i(@)hi(x)
In some cases it will be convenient to represéfit) coa(H) = {Waai €A hieH,neN
asH(x) = Y, ar(x)he(a)/ >, au(a), where the nor- =
malization is made explicit. We will now show that if L B
the functionsy, (z) are sufficiently smooth, and the class co4(H) = {X; ai(2)hi(z), 01 € A, hi € H}

{h} is not too large, then the estimation error does not
grow too quickly.

First, it is important to understand the need for smooth-
ness assumptions. To see this, consider an arbitrary set o
m pointsS = {(zi, y:) 172, € (R? x {—1,+1})". Let , f ,
two constant valued classifiers be given, say(z) = Zdass of functions [ I;_, Fi over the domain X = U, X;,
landh_(z) = —1 for anyz. Let I(F) denote the Y

indicator function for the eventl, and letS. be the k

sub-sets ofS corresponding to the positive and nega- H]—}- ={f:3fHeF,...,3fx € Fr, Vi <k,

tive examples, respectively. Set the weighting function i=1

Bi(x) = 1—I(z € S-), so that3, (z) equalsO on Vo € X, f(z) = fi(2)}.

all the negative examples and unity otherwise, and simi- - ) )

larly B_(z) = I(z € S_). Clearly the two-component Let G be a partition of the c’lomam set X Tﬁqt is G =
mixture 34 (2)h (x)+ B (z)h_ () achieves the correct Xiyooo Xk} wlilere the X;’s are pairwise disjoint sL.tb-
classification ort, andB, () + B_(z) = 1. Obviously, ~ sets of X and Ui, X; = X. Given a class of function
no generalization can be expected from such a classifier, 7t @nd a partition G of its domain, the class of case-wise
sinceany classification on a finite set of points can be defined H functions w.r.. G is defined as

achieved in this fashion. Thus, it is desirable to envis- CWE(H) ={f:IHhi,... hx} € H,Vi <k,

age the complexity of the classifier being generated by Vo € X, f(x) = hi(z)}

the convex combination itself, rather than by the com- v ‘ ’

plexity of the component classifiefs (x) and mixture ) )
coefficientss; (z). We present a few simple claims that bound the cover-

o ) ing numbers of the classes generated by the above oper-
We begin with a few comments on notation. The proba- ators. Unless otherwise mentioned, all the above claims

Pefinition 3 Ler (F1,... ,Fr) be classes of functions
defined over domains (X, ... ,Xy) respectively. Define

bility of an eventE underD will be denoted byP p (E), are universally quantified with respect to the parameters
while P 5(E) denotes the probability of the evelitwith that are not explicitly mentioned (e.g., unlessis ex-
respect to choosing an example uniformly at random from pjicitly mentioned, each of the following claims should
a setS. be read with the prefix ‘for alin’). As the proofs of

A these lemmas are all relatively straightforward, we skip
Definition 1 A function class F is an e-sloppyn-cover some of the simple proofs.

of F w.rt. data S if, for all f € F, there exists a f € F

. ; Lemma 1 For any pair of classes of functions, H, A,
th Ps {|f(x) - < e Let N(F y P
" s |f($) f@[>mng < e Let N(Fn, e,m) |h| < B,|la| < B, forh € H,a € A, and for every
cilem;te the.‘ ma}m}o:um. ovejrc ahll subslelts S, ?’| = m, from n > 0ande >0,
the domain, of the size of the smallest e-sloppy mn-cover
of F w.rt. S. Note that the standard definition of cover N(HA,n,e,m) < N(H,n/2B,e,m)N(A,n/2B,€e,m)

holds when ¢ = 0.

We now introduce some operations that generate newProof Assume that{ and.A are finite sloppy;/2-covers
classes of functions from existing classes. As our goal of H and.A, respectively. We show th&tA is a sloppy
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n-cover of HA. To see this simply note that for any
h € H anda € A there exist: anda such that

Ps {|B(z) — h(z)| > 77/2} < ¢, and similarly fora.
The claim then follows from the observation that —
hé = (h— h)a+ (o — &)h, and the boundedness of the
functions. |

Lemma 2 Forn > 0, M > 0 and any class 'H,
N (const™H,n,e,m) < N(H,n/M,e, M).
If ' H is closed under multiplication by constants then

constMH = H.

Lemma 3 Let (Fi,...,Fy) be classes of functions de-
fined over domains (X1, ... , X)) respectively. Then,

k
N <H.7:i,n,e,m>

=1

k
S HN(fianveam)'

i=1

Corollary 1 For every class H and every partition G of
its domain into k subsets,

N(CWG (H)7 /r]’ 67 m) S N(H7 /r]’ 67 m)k'

Corollary 2 Let H be a class of functions and G = { X},
..., Xk} a partition of its domain X into k subsets. Let
Bg denote the class of functions from X to the unit inter-
val that are constant on each of the X;’s in G. Then

N(cos, (H),n,e,m) < N(co(H), 1, e,m)".

Proof: Just note that gg,(H) € CW%(co(H)) and
apply Corollary 1.

Lemma 4 For every A and H, the class co’(H) is a
subset of the class const® (Co(H.A)).

Lemma 5 For every real valued function f, constant k,
distribution D, sample S and accuracy parameters € and
n. Pp(yf(z) <0)>Ps(yf(z) <n)+eif andonlyif,
Pp(ykf(z) <0)>Ps(ykf(z) < kn) + €

Proof: Just note thay f(z) < 0 iff ykf(z) < 0 and
ykf(x) < kniff yf(z) <.

Remark 1 We can now apply the generalization bounds
for convex hulls (e.g., [19]), to obtain generalization hda
for co (#). This follows since for eacly € cof(H)
there exist som¢ € co(AH) such thay = kf.

We recall the definition of the pseudo-dimension of a

chosen from X is pseudo-shattered by H if there are real
numbersry, ... vy, suchthat for eachb € {0,1}™ there
is a function hy, € H with sgn(hy(z;) — r;) = b; for 1 <
i < m. The pseudo-dimension of H, denoted P-dim(H),
is the maximum cardinality of a pseudo-shattered subset

of X.

The following Lemma, from [20], relates the sloppy cov-
ering number of c@H) to the pseudo-dimension &f.

Lemma 6 ([20], Theorem 8Yor any n > 0,
N (co(H),n, 2e~N7"/% m) < (2em/(nd))™,
where d = P-dim(H).

Corollary 3 Given any pair of classes of functions, 'H,
A, for every e > 0 and k € N, the e-sloppy n-covering
number ofCOﬁl(H) is at most the result of the last lemma
applied to the product of the sloppy 1/2k-covering num-
bers of H and A.

We recall an important result from the work of Schapire
etal. [19].

Lemma 7 ([19], Theorem 4)Let F be a class of real-
valued functions defined on the instance space X. Let
D be a distribution over X x {—1,1}, and let S be a
sample of m examples drawn independently at random
according to D. Let € > 0 and n > 0. Then for any
f € F, the probability that

Pp [V F(X) < 0] > Ps[YF(X) <]+
is smaller than

2N (F,n/2,¢/8,2m) exp(—e*m/32).

Using Corollary 2 the following corollary follows, upon
using similar arguments to those in Theorem 8 of [20].

Corollary 4 Let D be a distribution over X x {—1, +1},
and let S be a sample of m points chosen independently
at random according to D. Assume that m > d, > 1,
where d,, is the pseudo-dimension of 'H, and assume that
A is composed of piecewise constant functions, assuming
constant values on a partition G of X. Then for any f €
cou(F)

Pp [V f(X) <0] <Ps[Yf(X) <7

o (L <|G|dp g, (m/d;) + log <%)>1/2> .

vm n?
Observe that Corollary 4 extends the results of [20] to
functions formed by mixtures, where the mixing coeffi-

class of real-valued functions. cients are themselves piece-wise constant functions. Note

also that only difference between this result and Theorem
8in [20] is the additional factor df7|, accounting for the
number of regions. An essential feature of this bound, as

Definition 4 Suppose 'H is a class of real-valued func-
tions defined over a domain X. A set of points {x1, ... ,xm}
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of its precursors in [19], is that it doesr depend on the ~ We show that f () — f. fy(x) | )| is small if v is small.
number of terms in the convex combination. ~ .
|Z hj(x) 32, a;()hy()

>k okl ) >k k()

We next extend the results of Corollary 4 to smooth func- If(x)
tions. The smoothness constraints are enforced through a

Lipschitz condition, guaranteeing that the mixture coef- a;(z)
ficient functions do not change too rapidly. For technical < Z ‘Z o Z & ()
reasons we also require that the domairs bounded. k(@ k Ok
The result below applies to the cake= [0, 1], but may 22. v (z) — j(x)|
be easily extended to any bounded subs&of S . — 5
Z a;(x)
Theorem 1 Let D be a distribution over [0, 1]4x{—1, +1}, where the last line is obtained by simple algebra. Since
and let S be a sample of m points chosen independently a&j(x) > a > 0 for eachy, then usingoy; (z) — &;(z)| <
at random according to D. Assume that m > d, > 1, laj(z) — oy (51)| < L7/2 and settingy = an/L we
where d,, is the pseudo-dimension of H. Let the weight conclude thatf( H(@)] < nve e o 1]¢. Since
functions o (x) satisfy the Lipschitz condition |oj(z) — |f(z) — f(z)| < nand|f(z) — fy(x)| < nforany
ij(>y)(|)§ L||lﬂlU - y}l;o as V};;ll asbthlf'lc'?;ditﬁlon O;jl(x) ? z € 8, We conclude from the triangle inequality that
a or att j. en wiin prooavtlity at Leas — 0, r 3 _
every function [ € coa(H) satisfies the following bound @ ) ( )| < 2mforalle € 5, wheref,(z) =
foralln > 0: >0y /Z &;(x) anda;(z) are constant over
each of theK regions. We may therefore directly utilize
Pp[Yf(X) <0 <Ps[Yf(X)<n the results of Corollary 4 replacing the number of regions
K by (L/an). | |

dy..2 1/2
co L (dEntogtim/dy) () |
vm n? 5 .
Remark 2 It is helpful to understand the trade-off be-

tween the two terms appearing in the bound of Theorem
Proof The idea of the proof is simple. Since the func- 1. For a fixed value), we have the standard trade-off
tions obey a Lipschitz condition, they cannot vary too which appears in all margin-based bounds (e.g., Chapter
rapidly over a bounded region. If we then partition the 13in[1]), namely the empirical err@®g [V f(X) < n]is
domain X’ into sub-regions, and replace the functions monotonically increasing with, while the second term
a;(x) over each sub-region by a constant, we obtain a is monotonically decreasing, leading to an optimal value
piecewise constant approximation. The proof then pro- for the margin;. A similar behavior can be seen to occur
ceeds by characterizing the number of regions needed toas a function of the smoothness paraméteFirst, note
achieve a given level of accuracy. that if L = n, the bound we obtain is of the exact same
form as in [19]. On the other hand, Adncreases we ex-
pect the first empirical term to decrease, while the second
_ Z o . x)/ Z a;(z). term increases. There thus seems to be an optimal value

‘ ’ of smoothness, at which a tight bound is attained.

Consider a functiorf € co4(H), namely

Construct a finitey-cover of , denoted byH, namely 3 THE LOCBOOST ALGORITHM
for eachh € H there exists a functioh € H such that

|h(z) — ﬁ(x)| < nforanyz € S. Define A rather general approach to boosting, based on incre-
mental greedy optimization, has been recently introduced

o) =) ai(@)h; (x)/ > ai(x). by Mason et al. [16]. In this procedure a composite clas-

P - sifier is formed by incrementally adding on a weak clas-

) R sifier based on some margin-based empirical loss func-
Itis easy to show thatf(z) — f(z)| < 7 forall z € S. tion. In this work, as in many boosting algorithms, a fi-
Cogslder a partition of the hyper cubie 1] into K = nal composite hypothesis is constructed by a weighted
~~ ¢ axis-parallel sub-cubgst; } [ |, each of volume,”. combination of weak (base) classifiers. The coefficients
From the L|pSCh|tZ condition it follows that for any func- of the combination in the standard approach’ however,
tion aj(z), andz, y in a sub-cubeja; () — a;(y)| < do not depend on the position of the pointvhose la-
L|lz—yllc < Ly, since the side-length of each sub-cube pe| is desired. Since the boosting procedure filters the
is 7. Leta;(x) be the function obtained from;(z) by data sequentially through re-weighting, it is possible tha
replacing it within each domaif; with its value atg;, some of the classifiers,(x) were not exposed during

the center ofY;. Thus{a;(z)}; are piecewise constant training to any data in the vicinity of the point More-
functions assuming constant valuesi We define a  oyer, greater flexibility can be achieved by having each
guantized approximation tp by classifier operate only in a localized region. It would
R thus seem more opportune to weight each classifier
= Zdi(x)hi(x)/ > ai(). () at pointz by a local weights; () depending onz. In
i i order to implement this idea, we recall the mixture of
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expert model [11], where the posterior class-conditional If the clasS” = {~(-, ¢) : ¢ € ®} contains the zero func-

probability distributionP (y|z) is expressed as a locally

weighted mixture of base probabilitie®(y|x, Q)

iy Blx,¢)p(ylz.0;) , where(g; € @, 0, € ©),

Bz, ¢;) > 0,55, Bz, ¢,;) = 1 and
0F = {¢jv ej};?:l-

In analogy with the boosting literature, we refep(@|x, 6;)
as ‘weak’ models. This type of structure, was shown to
be very effective in problems of regression, classifica-
tion and time series prediction. It was also shown in [11]
that the well-known Expectation-Maximization (EM) al-
gorithm is especially useful for the purpose of learning

through maximum likelihood estimation.

tion, clearly maximization of (5) with respect éoand¢,

may only increase the likelihood. Note that for any finite
value ofm the log-likelihood is bounded from above by
zero sincep(y|z,0) < 1 and0 < ~(x,0) < 1. There-
fore, if an increase in the likelihood can be guaranteed at
each step, the algorithm is guaranteed to converge. How-
ever, care must be taken not to induce over-fitting.

It is interesting to observe that recent work by Li [12],
in the context of density estimation, has shown that not
much is lost by performing the optimization in an incre-
mental fashion. It can be shown that these results may
be extended to the present case of estimating conditional
probability models. One finds that under appropriate reg-
ularity conditions on the conditional probability distuib

In this work, we focus on an sequential approach, wherebytion p(y|z, 0), the value of the log-likelihood obtained in-
experts are added on incrementally as in boosting. As- crementally aftefl” steps of the procedure (6), is at most
sume that at step a modelP,_; (y|z, 2'~1) has been

constructed, wher@!~! denotes all the parameters up to

timet¢ — 1. At stept we form the model

Py(ylz, Q") = (1 — ve(x, ¢¢)) Prr (yla, Q1)
+ 712, de)pe (yl, 04),

(2)

wherePy(y|x) = 1/2Vz,y. Note, by induction, that for
anyt we may expres$; (y|z, ) in terms of the weak

conditional probabilities by

t

Pt(y|117, Qt) = Z ﬁT(Ia ¢T)p7'(y|xa 97’)7

T=1

(3)

where¢™ = {¢1,... .6,y and > L_ B (z,¢7) = 1

for anyx. To each of the weak conditional probabilities

p(y|z, 8) we may also assign a soft-classifier given by

h(z,0) =2p(y = 1|z,0) — 1.
The combined soft classifier is then given by

Hy(x) =Y Br(x,¢")he(2,65).
T=1

(4)

Within a maximume-likelihood approach, at tintewe

wish to maximize the function

é(gb, 97 Qtil) = IOgH Pt(yz|x’u Qt)

=1

= log [(1 = ye(wi, ¢)) P (yilwi, 1)
i=1

+ ’Yt(xiv ¢)pt (y’t|x17 9)] )

(5)

with respect to the parametepsand#, the parameters

QY =10y, 0, 1,61,...,6:1} being fixed.

other words, at stepwe set

0;, s = argmax £(¢,0; Q' 1).
0€0,pcd

Note that the function (5) is related to the generalized
cost functions used for boosting in [9] and [16], although

it is not directly based on the margin functigh(z).

In

(6)
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O(1/T) away from the value of the true maximum log-
likelihood obtained by optimizing the full mixture model
of orderT over all parameters simultaneously. More pre-
cisely, letPr(y|z, QT) denote the conditional probabil-
ity distribution obtained afteTl” steps of the incremental
algorithm (6), and denote bPM-E (y|z) the value of
the maximum likelihood estimate obtained by simultane-
ously optimizing all parameters in the mixture model (3).
Then one can show, under appropriate regularity condi-
tions, that

1 m . 1 m . c
E:l Pr(yila;. QT) > loo PMLE
m og Pr(yi|wi, ) > m E og L'y (ylz) — T

=1 =1

It should be noted, though, that the result disregards opti-
mization issues and assumes that a global maximum may
be attained at each stage of the incremental procedure.

While standard numerical procedures may be used in or-
der to maximize the log-likelihood, it is particularly con-
venient at this point to cast the problem as an incremen-
tal generalized EM (GEM) algorithm. The main motiva-
tion for doing this is the explicit connection to boosting
through the optimization of a re-weighted version of the
likelihood, and the decoupling of the optimization pro-
cess (see below). Using standard results (see, for exam-
ple, [11]), one can show that the EM-based maximization
of the likelihood may be achieved by successively maxi-
mizing the function

Qt(¢7 9|¢Ca 9C> = Z h§71 logpt(yl|xza 9)
i=1

+ > [pE M log (@i, 0) + (1= hi™ ) log(1 — (i, )]
- ™
with respect tap andd and iterating, where
het = ye(wi, 0°)p(ysl s, 90)/
[(1 = (@i, 6°) Peer (yil i, @7 + (i, 9°)p(yil i, 6°))]
C)



A brief discussion of the effect of the weight$ ™' is may be easily bounded by the logarithmic loss using the
given below, following the description of the GEM algo- bound
rithm.
I(yiHi(z;) < 0) < —logy Pi(yilxi).
Moreover, it is well known that under appropriate reg-
ularity conditions (e.g., [21]) the maximum likelihood
Qi(9,019%,0°) > Qi(9°, 0°(¢°, 6°), estimator asymptotically minimizes the Kullback-Leibler
then the likelihood increases, namely divergence between the true underlying distribution and
06, 0: 011 > 0(6°, 6% Q). the estimated distribution.

Observe that the maximization over the parameteasd

6 is broken up into two separate procedures. The imple-
mentation of the LocBoost algorithm is described in Fig-
ure 1 and is further discussed in Section 4.

The basic theory of the GEM algorithm [5] guarantees
that if  and# are chosen so that

In order to connect the Kullback-Leibler divergence to

the classification error, we consider bounding the the lat-
ter by an expression depending on the former.Q @f|x)

be an estimator for the class-conditional probability dis-
tribution, and consider the plug-in classifier givengy) =

The LocBoost Algorith sgn2Q(y = 1|z) —1). Denote the true class-conditional
¢ Locboost Algortthim probability distribution by byP(y|z). Denoting the Bayes
error by

1. Given:(z1,41), -, (Tm,ym) € (R x {£1}H™ P — B {min(P(y = +1]2), P(y = 1))}

2. Fort=1,2,...,T we have from [6] (p. 93) that

(@) Setp® andd“ to appropriate initial values (see

Sec. 4). P{g(X)#Y} - P
(b) Let ¢ and 0, be any parameter values for 1/2
which Q:(¢,0]¢%,6°) > Q:(¢°, 0°|¢°, 0°). <2 (/ |P(y =1|z) - Qy = 1|:c)|2u(dar>> :
X

(c) ComputeP; (y|z, Q") using (2).
Next, note that for any two numbersand v such that

0 < n,v < 1!n10g% +(1 _n)log% > (77_”)2 (the
result may be easily established by subtracting the |.h.s.
from the r.h.s. and showing that the resulting function is
convex with a minimum of zero at = n). We therefore

Some points are worth noting concerning the LocBoost conclude that
algorithm. First, if ‘past’ performance at the point P{g(X)#Y}— P*
is good, namely?; 1 (y;|z;, Q'~1) (8) is large, then this
data point is down-weighted, influencing the new weak
classifier only marginally as is seen in the expression < 2\//)( D (P(yl2)|Q(ylz))u(dz).
for hi~'. Conversely, the weight ' of the new weak
model is increased near points for which the past predic- Although this result relates the probability of misclassi-
tion P,y (y;|x;, Q1) is poor. fication to the Kullback-Leibler divergence between the

i . class-conditional distributions, the bound may not bettigh
A stano_lz?\r.d approach to the representation of conditional j, general (e.g., Theorem 6.5 in [6]). However, it does
probabilities |slthrough the logistic functigrty|x, 0) = show that consistency in the sense of the Kullback-Leibler
(14 e v/@) " = o(yf(x)), for some functionf (z). divergence leads to consistency in terms of classification
Note that this representation directly relates the margin error. It is interesting to note that Yang [22] recently es-
yf(x) to the probability in a very natural way, in that tablished conditions under which bounds of this type are
large margins correspond to confident predictions. It is asymptotically tight in a minimax sense.
important at this point to contrast our approach with the
Logit algorithm of Friedman et al. [9] who consider con-
ditional probabilities of the form

3. OutputPr(yl|z, Q%)

Figure 1: The LocBoost algorithm

Before describing several numerical experiments we have
performed, we comment on two recently proposed ap-
proaches to localized boosting. First, Maclin [13] has

plylz) = o (U Y ft(I))' where the functiong; are  introduced an approach to boosting where the weights
estimated in an incremental greedy fashion as in [16]. In of each weak learner are determined by its accuracy on
our case we form a locally weighted mixturepebbabil- points which are similar to it. In particular, eitherka

ities (rather than functions) and use an incremental EM nearest neighbor approach or a neural network are used
algorithm for estimation. in order to assess the accuracy. Second, Moerland and

Mayoraz [17] introduce®ynaBoost, which similarly to
AdaBoost is based on a margin based exponential cost-
function (rather than the log-likelihood function as in our
case), except that the mixing coefficients depend on the
input location, as in our approach. The experimental re-
Hy(z;) =2P(y; = 1|a;) — 1 sults of both these papers on several data-sets from the

The procedure described here is based on maximum like-
lihood estimation of the posterior class-conditional prob
ability P(y|x). Note that the empirical classification er-
ror of the soft classifier

195



UCI repository of Machine Learning demonstrate that
they often significantly out-perform boosting, especially
in situations where the weak learners are not very power-
ful. However, both approaches suffer from the potential
for overfitting noisy data sets. We comment that the gen-
eralization bounds presented in Section 2 should apply to
these two algorithms as well.

4 IMPLEMENTATION AND
NUMERICAL EXAMPLES

The above description of the LocBoost algorithm (Fig-
ure 1) leaves open the choices for the weak probability
model, the localizing function, and the method for choos-
ing appropriate initial values for the parametefsand

0°. In our implementation of the LocBoost algorithm we
take the weak probability modely|z, #) to be the logis-

tic functiono (y6-x) = (1+exp(—yb-x))~t, with x and

6 being vectors iR4*!, where the extra dimension in-
corporates the threshold. The localizing function we use
is an unnormalized symmetric multivariate normal distri-
bution,

v(zld) = (x|, B) = exp (—3(z — )" S (@ — p))

with ¥ = s%I. Clearly,0 < 7y(z|p,¥) < 1. Let-
ting o, = o(y;0x;) we obtain from a simple calcula-
tion thatVyQ, = > A1 (1 — 0y)ysz; andV2Q; =

— 3" b e (1—0y)x2T implying that@, is concave
w.r.t. 6. This fact is important for numerical optimization
and means that we can optimigg w.r.t. 0 to a global
maximum. Nevertheless, the optimizationdgof (u, )

is non-concave and is therefore highly susceptible to lo-
cal maxima problems. It is thus extremely important to
choose appropriate initial values for these parameters.

We use the following strategy for choosing the initial val-
ues ofy andX. We identify the setS of training ex-
amples that are badly classified By_, and attempt to
partition S into “large” clusters containing as many as
possible training examples which are badly classified by
P,_1 and as few as possible training examples that are
correctly classified byP,_;. This partition is computed
using a standard algorithm for identifying strongly con-
nected components [4] applied to the heuristically con-
structed graplt: = (V, E') whose vertex set’ is the set

of training examples, and whose edges are constructed a
follows. Foreach: € S, letxq, 2o, ... , x,, be the entire
training set sorted by distance o Let j be the mini-
mum index such that; is notinS. Foralll <i < j

we let the (undirected) edde;, z;) be in E. Intuitively,
each connected component@fends to identify a clus-
ter of training examples which are incorrectly classified
by P,_,. We therefore takg to be the mean of the largest
connected componenit’ of GG, ands? (X = s%I) to be

the average of of the main diagonal of the covariance ma-
trix of G’. The routine for computing these initial choices
for (i, s?) is summarized in Figure 2.

For the GEM optimization step (step (b) in Figure 1) we
used trust region Newton and quasi-Newton line search
[2]. In order to ease the computational burden of these al-
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Compute Initial (1, s?) values for round ¢
1. Given:(z1,y1), .-+, (Tm, ym) € (R? x {£1})™
2.8 ={w;:sign(2P—1(ylz:) — 1) # i}
3. ConstrucG = (V, E)
@ V= {a:}
(b) Foreachr € S
i. Letzy,x2,...,z, be the elements df
sorted by increasing distanceto
i. Setj, = argmin,{z; ¢ S}
iii. Foralll <i<j,let(x,x;) € E
4. Compute’t, ... , Cy, the strongly connected com-
ponents of7
5. Seti* = argmax{|C;|}
6. Sety = mean(Cj+)
7. Sets® = mean(trace(cov(Cix)))
8. Output:p, s>

Figure 2. A heuristic for computing reasonable initial
(i, s?) values before rount

gorithms one optimizes over a random sub-sample of the
training examples (with a new sample chosen for each
boosting round). In some of the experimental results re-
ported below we used this strategy.

The frames in Figure 3 depict a run of the algorithm ap-
plied to a toy XOR problem of 400 points drawn from 4
symmetric Gaussians. In this problem the optimal Bayes
decision boundary consists of theandy axes, and the
optimal Bayes error is approximately2. The underly-

ing weak classifiers and the localizing functions are de-
picted in the 4 top frames in Figure 3. In each of these
frames, the line corresponds to the weak model and the
two concentric ellipsoidalcontours depict the localizing
function computed after an iteration consisting of 2 EM
steps. The 4 bottom frames in the figure correspond to
the first 4 boosting iterations of the algorithm where each
frame depicts the final (strong) classifier at the end of a

Yound. The optimization performed in each EM step was

over a random sample containing 25% of the training ex-
amples. The inner ellipsoid correspond to a 0.9 contour
line and the outer ellipsoid, to a 0.5 contour line.

As can be seen, the algorithm progressively and system-
atically identifies poor-performance regions which arated
by new localized weak classifiers. A 10-fold cross-validati
run consisting of 5 boosting iterations each of which com-
putes one EM round, resulted in an average error of 0.152
and standard deviation 6f0067.

An attractive feature of the algorithm is the relatively

These ellipsoids are in fact circles and appear as elligsoid
due to the aspect ratio of the figure.



| Dataset || No. attributes] No. examples|
Sonar 60 208
lonosphere 34 351
Pima 8 768

Table 1: Characteristics of three datasets from the UCI
repository used in the experiments

| Dataset || LocBoost | RealBoost]|
Sonar 243+£543 | 201 £9.2
lonospherel| 12.3+2.8 | 10.2+5.5
Pima 226422 | 26.7+£4.7

Table 2: 5-fold cross-validation test error results oledin
by LocBoost and RealBost on three datasets from the
UCI repository

smootlt decision surfaces it generates. This can also be
seen in Figure 4 depicting the decision boundary com-
puted by the algorithm after 8 boosting iterations over a
synthetically constructed 800-point “spirals” dataset.

Our initial experiments with real datasets from the UCI

demonstrating the potential practical efficacy of the ap-
proach.

Several open questions are left for future research. First,
an extension of the approach to multi-category classifi-
cation should be quite straightforward given the proba-
bilistic framework adopted here (see, for example, [9]).
Second, as stressed in the text, a possible problem of
the approach is the potential for over-fitting. An impor-
tant objective of our immediate research is the establish-
ment of effective regularization procedures. Third, char-
acterization of good choices of mixing functionge, ¢)

and class conditional probabilitiegy|z, 6) are needed,
yielding both good representational power and effective
optimization. Fourth, an interesting research direction
would be the consideration of other cost functions, per-
haps in the spirit of the theoretically motivated functions
introduced in [15]. It would be interesting to see whether
EM type algorithms can be developed in these situations.
Finally, a detailed numerical comparison to other boosting
type algorithm is in order.

Acknowledgments: We are grateful to Zeev Litichever
for his help with the numerical simulations.
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Weak classifier Iteration 2
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Figure 3:A run of LocBoost over a 400-point XOR problem. The 'x’s ands'cepresent training points from two classes. The top

Train Error = 0.269

Train Error = 0.156

Train Error = 0.128

4 frames correspond to the underlying first 4 weak classifirdsthe localizing functions. In each of these frames treeri@present
the weak modél and the two ellipsoids depict the activatiea af this weak model (the inner ellipsoid correspdnds t®aontour
level of this region and the outer ellipsoid corresponds @Bacontour level. The lower 4 frames depict the first 4 stroliagsifiers
constructed by the localized boosting algorithm. In eacthe§e frames the lines represent the decision boundarycapi®n on
top of each frame specifies the iteration number and bottgtiara(of the top frames) specifies the training error achiev

Figure 4:The decision region obtained by LocBoost after 8 boostinmds applied to a synthetic spirals problem.
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