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Abstrat

We explore the notion of " suÆient linear s-

tatistis for a lass of real valued funtions. We

show that for funtion lasses with a polyno-

mial rate of the Parametri Pollard dimension

one an �nd a set of linear empirial funtion-

als of polynomial size in the dimension that are

suÆient for " approximation of any funtion

in the lass. We also present a probabilisti

sheme for produing those funtionals.

1 Introdution

A fundamental problem in statistial estimation theory

is the availability of a set of empirial funtions that

apture the information on the parameters of the un-

derlying distribution. For parametri distributions suh

funtions were alled \suÆient statistis" and the ques-

tion of their possible existene was fully answered by

the elebrated theorem of Koopman [9℄, Pitman [13℄,

and Darmois [3℄, who restrited it to exponential fam-

ilies. A diret orollary of these results is that when

suÆient statistis exist they an always be expressed

as empirial means (for i.i.d. samples), or as linear fun-

tionals of the sample points. This fundamental results

makes the parameter estimation for exponential families

very eÆient, both in terms of the estimate variane and

omputational omplexity.

In this paper we address the question of the avail-

ability of a similar notion for the learnability of fun-

tions. We onsider the number of empirial funtion-

als (de�ned below) that apture the information need-

ed for approximating a funtion, based on its values

on a given random sample. We de�ne the notion of "-

suÆient statistis as a set of linear funtionals of the

sample points, whose values suÆe to obtain an L

2

"-

approximation for any target funtion in a lass F .

We begin with a few de�nitions and some notation.

Throughout, � will denote a probability measure on a

set 
 � IR

d

. To avoid measurability problems, we will

assume that all the measures are Borel measures. For

every measure �, E

�

is the expetation with respet to

�, and L

2

(�) is the set of all measurable funtions on


 suh that E

�

jf j

2

<1. This spae is a Hilbert spae

with respet to the norm kfk

L

2

(�)

=

�

E

�

jf j

2

�

1=2

.

For every set S

n

= f!

1

; :::; !

n

g � 
, let �

n

be

an empirial measure supported on S

n

. Thus, �

n

=

1

n

P

n

i=1

Æ

!

i

, where Æ

!

i

is the evaluation funtional at !

i

(i.e., Æ

!

i

(f) = f(!

i

)). 


1

is the in�nite produt of the

set 
. Eah ~! 2 


1

is of the form (!

1

; !

2

; :::), where

eah !

i

2 
. For every probability measure � on 
 we

endow 


1

with the in�nite produt measure �

1

, whih

is also a probability measure.

De�nition 1.1 A linear funtional x

�

is alled empiri-

al if it is a linear ombination of point evaluation fun-

tionals, i.e., x

�

=

P

m

i=1

a

i

Æ

!

i

. We say that x

�

is sup-

ported on the set f!

1

; :::; !

n

g if it has a representation

as a linear ombination of fÆ

!

1

; :::; Æ

!

n

g.

De�nition 1.2 Let F be a lass of funtions de�ned on

a set 
 and let � be a probability measure on 
. A set of

linear empirial funtionals (S

i

)

m

1

is alled "-suÆient

statistis with respet to L

2

(�) if, for every f; g 2 F

suh that for every 1 � i � m, S

i

(g) = S

i

(f), then

kf � gk

2

L

2

(�)

< ". The in�mum on the number of the "

suÆient statistis of F in L

2

(�) is denoted by S

F ;�

(").

Note that by this de�nition, the funtionals (S

i

) apture

the struture of the lass F up to a small permitted er-

ror. For example, for any f 2 F the data

�

S

i

(f)

�

is

enough to haraterize f up to an auray of ". Also,

it is important to emphasize that the seletion of " suf-

�ient statistis must have a random element when the

measure � is unknown. Hene, unless prior information

on the measure is given, one has to involve sampling

aording to � in the seletion proess of the suÆient

statistis.

The problem we wish to investigate is how to esti-

mate the number of linear empirial funtionals needed

to ensure " statistial suÆieny.

This problem has two aspets. First, one has to

bound the number of statistis needed for "-suÆieny.

Seond, (though important), one has to estimate the

size of the sample on whih the set of statistis is sup-

ported.

One example whih we shall fous on is that of uni-

form Glivenko{Cantelli lasses:
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De�nition 1.3 A lass of funtions F is alled a u-

niform Glivenko Cantelli lass (GC lass) if for every

" > 0

lim

n!1

sup

�

Pr

n

sup

m>n

sup

f2F

jE

�

f � E

�

m

f j � "

o

= 0;

where �

m

is the empirial measure supported the �rst m

oordinates of ~! = (!

1

; :::) 2 


1

, and for every measure

�, Pr is the in�nite produt measure �

1

. The supre-

mum is taken with respet to all the (Borel) probability

measures on 
.

For every " > 0 and 0 < Æ � 1, set n

F

("; Æ) to be the

sample omplexity of F , i.e., the minimal n for whih

sup

�2�

Pr

n

sup

m>n

sup

f2F

jE

�

f � E

�

m

f j � "

o

� Æ:

A trivial solution to the two parts of our puzzle may be

found through the Glivenko-Cantelli ondition. Indeed,

it is possible to show that if F is a GC lass of funtions

into [0; 1℄, then (F � F)

2

= f(f � g)

2

jf; g 2 Fg is also

GC. Hene, for every " > 0 and Æ 2 (0; 1), there is a set

of samples U

";Æ

� 


1

suh that Pr(U

";Æ

) � 1 � Æ and

for every n � n

(F�F)

2
("; Æ) and every ~! 2 U

";Æ

,

sup

f;g2F

�

�

E

�

(f � g)

2

� E

�

n

(f � g)

2

�

�

< "; (1.1)

Thus, for every ~! = f!

1

; :::; !

n

; :::g 2 U

";Æ

and n =

n

(F�F)

2

("; Æ) the statistis S

i

= Æ

!

i

; 1 � i � n are

"-suÆient.

Therefore, for every "; Æ 2 (0; 1), n

(F�F)

2
("; Æ) yields

an upper bound to the number of statistis S

F ;�

("), as

well as to the size of the sample on whih the statistis

are supported.

It is important to note that in order to apply this

bound one needs to use the Glivenko-Cantelli ondition

for the lass (F �F)

2

, and not with respet to any spe-

i� loss-funtion lass L

h

= f(f � h)

2

jf 2 Fg. If one

were to use any spei� loss-funtion lass assoiated

with some h 2 F , the set of statistis (Æ

!

i

) would be

" suÆient for that partiular target onept. For ex-

ample, if F is a GC lass and f; g 2 F have disjoint

supports, then a sample whih yields a good approxi-

mation for f may be ontained in the support of f , and

thus may prove to be a \bad" sample of g. However, we

need the suÆient statistis to apply to every h 2 F ,

hene one has to use the Glivenko-Cantelli ondition for

(F �F)

2

.

We show that the size of a set of " suÆient statistis

may be signi�antly improved. The improved bound is

established using a parameter originating from the loal

theory of Banah spaes alled the `-norm. It was shown

by Dudley and Sudakov that the `-norm of a set F is

related to the overing number and entropy integral of

F . The improvement in the upper bound beomes more

signi�ant as the size of the lass inreases (e.g. when

the lass has a larger parametri Pollard dimension).

This is done without inreasing the size of the sample

on whih the funtionals are supported.

Another appliation whih may be derived from the

theory we develop here is a learning proess for a target

onept whih belongs to a GC lass.

In the usual ontext of a learning problem, one tries

to estimate a funtion based on its values on a giv-

en sample. This is usually done by seleting a sample

f!

1

; :::; !

n

g aording to the given measure �, and �nd-

ing some funtion f from the lass whih agrees with

the target onept h on that sample. If the lass is a

Glivenko-Cantelli lass and assuming that the sample is

large enough, it follows that kf � hk

L

2

(�)

is small with

high probability.

In the language we wish to introdue, one an say

that for every target onept h 2 F and for n large e-

nough the point evaluation funtionals (Æ

!

i

)

n

1

are with

high probability \"-suÆient statistis" in the follow-

ing sense: given Æ

!

i

(h) = h(!

i

), then for every f 2

F suh that Æ

!

i

(f) = Æ

!

i

(h) for every 1 � i � n,

kf � hk

2

L

2

(�)

< ". Thus, learning problem is redued

to �nding some f 2 F whih satis�es the set of linear

empirial onstraints Æ

!

i

(f) = Æ

!

i

(h).

Note that the funtionals (Æ

!

i

) are not " suÆient in

the \usual sense", sine the fat that a set (Æ

!

i

)

n

1

ap-

tures almost all the information regarding a one target

onept in F does not guarantee it will do the job for

other target onepts in F . In other words, in the on-

text of a learning problem the statistis depend on the

target onept.

We show that for any funtion in the given lass it

is possible to redue the number of linear onstraints

(viewed as linear equations) that the sample indues on

the funtion lass from the sample size, to approximate-

ly its square-root, without losing any information on the

target. This suggests a more omputationally eÆien-

t algorithm for learning a onept from a lass with a

�nite VC dimension or a \small" parametri Pollard di-

mension. (see de�nition below).

The results we present are in two generi ases. The

�rst in when F is viewed as a subset of L

2

(�

n

) for some

empirial measure �

n

. In this ase the statistis are

supported on the same points as the empirial measure.

The seond ase we explore is when one views F as a

subset of L

2

(�) for a general probability measure �.

2 Theoretial Bakground

This setion is devoted to several well know de�nitions

whih will be used in the sequel. The following are def-

initions of well known ombinatorial parameters whih

are used to haraterize GC lasses.

De�nition 2.1 Let F be a lass of f0; 1g funtions on

a spae 
. We say that F shatters f!

1

; :::; !

n

g, if for

every I � f1; :::; ng there is a funtion f 2 F for whih

f(!

i

) = 1 if i 2 I and f(!

j

) = 0 if j 62 I. Let

V C(F ;
) = sup

n

jAj

�

�

�

A � 
; A is shattered by F

o

:

It is possible to use a parametri version of the VC di-

mension, alled the fat-shattering dimension.

De�nition 2.2 Let F be a lass of funtions on a spae


 and let " > 0. We say that F "{shatters f!

1

; :::; !

n

g �


 if there is some a 2 IR suh that for every I �
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f1; :::; ng there is a funtion f

I

2 F for whih f(!

i

) �

a+ "=2 if i 2 I and f

I

(!

j

) � a� "=2 if j 62 I. Let

V C

"

(F ;
) = sup

n

jAj

�

�

�

A � 
; A is " shattered by F

o

:

V C

"

(F ;
) is alled the fat shattering dimension of F .

The parametri Pollard dimension (de�ned below)

may serve the same purposes as the fat shattering di-

mension.

De�nition 2.3 For every " > 0, a set A = f!

1

; :::; !

n

g

is said to be "{shattered in the Pollard sense by F if

there is some funtion s : A ! IR, suh that for every

I � f1; :::; ng there is some f 2 F for whih f(!

i

) �

s(!

i

) + "=2 if i 2 I, and f(!

j

) � s(!

j

) � "=2 if j 62 I.

Let

P

"

(F ;
) = sup

n

jAj

�

�

�

A � 
; A is " shattered by F

o

:

By the pigeonhole priniple it is easy to see that the

parametri Pollard dimension and the fat shattering di-

mension are related for lasses of funtions whih have a

uniformly bounded range (i.e., if there is some M 2 IR

suh that sup

f2F

sup

!2


jf(!)j � M). In this ase,

there is some onstant C > 0 suh that for every " > 0,

V C

"

(F ;
) � P

"

(F ;
) � C

V C

"=2

(F ;
)

"

;

where C depends only on the uniform bound on the

members of F .

The onnetion between Glivenko-Cantelli lasses and

the ombinatorial parameters de�ned above is the fol-

lowing fundamental result:

Theorem 2.4 A lass of f0; 1g valued funtions is a

Glivenko{Cantelli lass if and only if it has a �nite VC

dimension. A lass of uniformly bounded real-valued

funtions is a Glivenko{Cantelli lass if and only if it

has a �nite parametri Pollard dimension for every " >

0.

The \if" part in the �rst laim is due to Vapnik and

Chervonenkis (see [16℄) while the \only if" is due to

Assouad and Dudley ([2℄). The seond laim was estab-

lished by Alon, Ben-David, Cesa-Bianhi and Haussler

([1℄).

A key tool in the analysis of GC lasses are overing

number estimates (de�ned below). It turns out that the

overing numbers of a given lass not only determines

whether it is a GC lass or not, but, in fat, enable one

to estimate the sample omplexity (see [6℄, [1℄).

If (X; d) is a metri spae and if F � X , denote

by N(";F ; d) the minimal number of open balls with

radius " (with respet to the metri d) needed to over

F . N(";F ; d) are alled the overing numbers of F .

In ases where the metri is lear we shall denote the

overing numbers by N(";F).

The ourse of ation we take is as follows: we use

a well know geometri parameter from the loal theory

of Banah spaes alled the `-norm. This parameter

measures how \large" a given set is. It is possible to

establish both upper and a lower bounds on `(F) by the

L

2

-log overing numbers of the set F . This important

fat is due to Dudley ([4℄) and Sudakov ([14℄). In setion

3 and in the Appendix we investigate the `-norms of GC

lasses in empirial L

2

spaes. We provide an upper

bound to `(F) in terms of V C(F) or P

"

(F).

The `-norm estimates enable us to bound the num-

ber of the statistis required for " suÆieny.

Reall that a setK is said to be symmetri if the fat

that x 2 K implies that �x 2 K. Consider a onvex

symmetri set K � L

2

(�

n

). If x

�

1

; :::; x

�

k

are linear fun-

tionals on L

2

(�

n

) then they indue a k-odimensional

setion ofK. Indeed, V = \

i

ker(x

�

i

) is a k-odimensional

subspae of L

2

(�

n

), thus V \K is a k-odimensional se-

tion of K. If the diameter of this setion is small, then

the funtionals x

�

1

; :::; x

�

k

may be used to identify any

member of K: if g; f 2 K suh that x

�

i

(g) = x

�

i

(f),

then g=2 � f=2 2 V . Moreover, sine K is onvex

and symmetri then g=2 � f=2 2 K, implying that

the kg=2� f=2k

L

2

(�

n

)

is bounded by the diameter of

V \ K, whih was assumed to be small. Intuitively,

for every vetor of k real numbers ~� = (�

1

; :::; �

k

), the

aÆne spae V (~�) = fx 2 X jx

�

i

(x) = �

i

; i = 1; :::ng

whih is a translation of V , slies K to disjoint slies

K \ V (~�). Eah slie has a diameter whih is smaller

than diam(V \K). Hene, if one wishes to loate an un-

known element h 2 K, it is enough to �nd some f 2 K

whih is on the same translation of V as h. Suh an f

will automatially be \lose" to h, sine their distane

is bounded by the diameter of K \ V .

The onnetion to our problem is simple. Given

the lass F and an empirial measure �

n

supported on

f!

1

; :::; !

n

g, set K=�

n

to be the symmetri onvex hull

of F , viewed as subset of L

2

(�

n

). Beause of the de�-

nition of the empirial L

2

spae, eah linear funtional

on L

2

(�

n

) is a linear ombination of point evaluation

funtionals Æ

!

i

, 1 � i � n. Hene, if (x

�

i

)

k

1

are suh that

diam

�

\

i

�

ker(x

�

i

) \K=�

n

��

<

p

", then x

�

1

; :::; x

�

k

are "

suÆient statistis for the onvex hull of F in L

2

(�

n

),

sine they are empirial and apture almost all the rele-

vant information regarding the onvex hull of F . Thus,

they are " suÆient for F itself.

It is possible to show that the `-norm may be used

to onnet the number of funtionals seleted with the

diameter of an \almost optimal" slie of the given set

of that odimension. This elebrated result is due to

Pajor and Tomzak-Jaegermann (see [11℄). Moreover,

they were able to show that an \almost optimal" setion

may be obtained using random seletion proess, and, in

fat, most of the k-odimensional setions of the set are

\almost optimal". In setion 4 we ombine their result

with the `-norm estimates disussed in setion 3 and

provide a bound on the number of statistis needed to

ensure "-suÆieny in empirial L

2

spaes. We then use

the Glivenko-Cantelli ondition to pass from empirial

L

2

spaes to general L

2

spaes and establish a bound

on the number of " suÆient statistis in general L

2

(�)

spaes.
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3 `-norm estimates in L

2

(�

n

)

We begin this setion with a several standard de�nitions

from the theory of Banah spaes.

Given a Banah spae X , the dual of X (denoted by

X

�

) onsists of all the bounded linear funtionals on X ,

with the norm kx

�

k

X

�

= sup

kxk

X

=1

jx

�

(x)j. Let `

n

2

be a

real n-dimensional inner produt spae with respet to

the inner produt




;

�

and let K be a bounded onvex

symmetri subset of `

n

2

whih has a nonempty interior.

It follows that K is the unit ball of some norm denoted

by k k

K

. Set k k

K

�

to be the dual norm to k k

K

.

Reall the de�nition of the `-norm of a set F :

De�nition 3.1 For every set F � `

n

2

, let

`(F ) =

�

Z

IR

n

sup

f2F

�

�




f; x

�

�

�

2

d

n

�

1

2

; (3.1)

where 

n

is the Gaussian measure on IR

n

. If F � L

2

then `(F ) = sup

H

`(F \H) and the supremum is taken

with respet to all �nite dimensional subspaes of L

2

,

whih are identi�ed with `

n

2

by the natural isometry.

Denote by K the symmetri onvex hull of a bounded

set F � `

n

2

and assume it has a nonempty interior. It

is easy to see that if g

1

; :::; g

n

are independent standard

Gaussian random variables on some probability spae

and if e

1

; :::; e

n

is an orthonormal basis in `

n

2

then `(F ) =

(E k

P

n

i=1

g

i

e

i

k

2

K

�

)

1=2

. Indeed, sine the dual norm is

determined by the extreme points ofK, whih all belong

to the losure of F [ �F , then

E











n

X

i=1

g

i

e

i











2

K

�

=

Z

IR

n

sup

f2F[�F




x; f

�

2

d

n

;

implying that `(K) = `(F ).

The following deep result provides a onnetion be-

tween the `-norm of a set and its overing numbers in

`

n

2

. The upper bound was established by Dudley in [4℄

while the lower one is due to Sudakov (see [14℄). A proof

of both bounds may be found in [12℄.

Theorem 3.2 Let F � `

n

2

. Then there are absolute

positive onstants  and C suh that

 sup

">0

" log

1

2

(N("; F )) � `(F ) � C

Z

1

0

log

1

2

(N("; F ))d":

If F is a lass of funtions on 
, then for every em-

pirial measure �

n

, F may be viewed as a subset of

L

2

(�

n

) { whih is isometri to `

n

2

. Indeed, if �

!

i

is the

harateristi funtion of the set f!

i

g then

F=�

n

=

n

n

X

i=1

f(!

i

)�

!

i

jf 2 F

o

=

n

n

X

i=1

n

�

1

2

f(!

i

)e

i

jf 2 F

o

;

where e

i

is an orthonormal basis of L

2

(�

n

).

It is possible to obtain upper bounds on `(F=�

n

)

based on the entropy of the lass F . We shall fous on

two ases. The �rst, is when F is the a lass of f0; 1g

funtions with a �nite VC dimension. The seond ase

is when F a lass whih onsists of funtions bounded by

1, suh that the parametri Pollard dimension is O("

�p

)

for some p > 0.

Below are the `-norm estimates we were able to es-

tablish. The proof of this laim may be found in the

Appendix.

Theorem 3.3 Let F be a lass of funtions whose range

is a subset of [0; 1℄.

1. If F is a f0; 1g lass suh that V C(F) = d, then

there is some absolute onstant C suh that for ev-

ery empirial measure �

n

, `(F=�

n

) � Cd

1=2

.

2. Assume that for every " > 0, P

"

(F) � "

�p

for

some  � 1. Then, there are onstants C

p

whih

depend only on p suh that for every n > 1 and

every empirial measure �

n

,

`(F=�

n

) �

8

>

<

>

:

C

p



1

2

logn if 0 < p < 2;

C

2



1

2

log

2

n if p = 2;

C

p



1

2

n

1

2

�

1

p

logn if p > 2:

4 Appliation of the `-norm estimates

In this setion we show how the `-norm estimates as-

sist us in estimating the number of statistis needed to

ensure " suÆieny.

From the geometri point of view, we fous our at-

tention to the possibility of onstruting a subspae

V � L

2

(�

n

) whih has a \small" odimension suh that

the diameter of its intersetion with K=�

n

is also small,

where K is the symmetri onvex hull of F .

It turns out that the diameter of an \almost opti-

mal" k-odimensional setion may be estimated in terms

of the `-norm. This important result is due to Pajor and

Tomzak Jaegermann (see [12℄). Moreover, it follows

that the desired subspae may be seleted randomly in

some sense. Indeed, let (g

ij

) be standard independent

Gaussian random variables on some probability spae

Y . Set G : `

n

2

! `

m

2

to be an operator whose matrix

representation with respet to an orthonormal basis is

(g

ij

).

Theorem 4.1 LetK � `

n

2

be onvex, bounded and sym-

metri with a nonempty interior. There is an absolute

onstant C

1

and a set Y

1

� Y , suh that Pr(Y

1

) � 1=3

and for every y 2 Y

1

diam

�

kerG(y) \K

�

� C

1

m

�1=2

`(K):

Also, there is some absolute onstant C

2

suh that

if n > m > C

2

log(1=Æ) then Y

1

may be hosen so that

Pr(Y

1

) � 1� Æ.

The proof of the �rst part of Theorem 4.1 appears in

[12℄. The estimate on the measure the set Y

1

may be

found in [7℄.



85

In our ase, the n dimensional Hilbert spae is L

2

(�

n

)

and the set we wish to investigate is

K=�

n

=

n

n

X

i=1

k(!

i

)�

!

i

jk 2 K

o

:

Note that the assumption that K=�

n

has a nonemp-

ty interior poses no obstale. Due to the struture of

L

2

(�

n

), the set K=�

n

has an empty interior in L

2

(�

n

)

if and only if there is some !

i

on whih all the ele-

ments of F vanish. Thus, by removing suh points from


, we may assume that K=�

n

has a nonempty inte-

rior. Reall that in L

2

(�

n

) the set (

p

n�

!

i

)

n

i=1

is an

orthonormal basis. Therefore, the funtionals (x

�

i

) for

whih diam

�

ker(x

�

i

) \K=�

n

�

is small are given by

p

n

n

X

j=1

g

ij

(y)�

!

j

:

Thus, if y 2 Y

1

and f; g 2 F suh that for every 1 �

j � m

n

X

j=1

g

ij

(y)f(!

j

) =

n

X

j=1

g

ij

(y)h(!

j

) (4.1)

then kf � hk

L

2

(�

n

)

� C

1

m

�1=2

`(F=�

n

).

4.1 Appliation for SuÆient Statistis

Here, we show how to onstrut "-suÆient statistis for

the lass F . We begin with the ase where the suÆient

statistis are onstruted in empirial L

2

spaes.

Theorem 4.2 Let F be a lass of funtions into [0; 1℄.

Put 0 < Æ < 1 and let �

n

be an empirial measure on 


for some n > 1.

1. If V C(F) = d then there is some absolute onstant

C suh that for every " > 0, there exist a system of

at most m = C

d

"

linear empirial funtionals (x

�

i

),

suh that if f; g satisfy that x

�

i

(f) = x

�

i

(g), then

kf � gk

2

L

2

(�

n

)

< ".

2. If P

"

(F) �



"

p

then there is a set of at most m

empirial linear funtionals (x

�

i

) suh that if f; g 2

F satisfy that x

�

i

(f) = x

�

i

(g), then kf � gk

2

L

2

(�

n

)

<

". The number of equations required is

m �

8

>

<

>

:

C

p



"

log

2

n if 0 < p < 2;

C

2



"

log

4

n if p = 2;

C

p



"

n

1�

2

p

log

2

n if p > 2:

where C

p

is a onstant whih depends only on p.

In both ases the seletion of the funtionals (x

�

i

)

m

1

whih

determine the system of equations is random. There is

some absolute onstant C

1

suh that if m > C

1

log(

1

Æ

)

then with probability larger than 1� Æ the random pro-

ess provides funtionals (x

�

i

)

m

1

for whih our assertion

holds.

We shall present a partial proof to this laim by estab-

lishing its �rst part. The remaining assertions follow us-

ing similar methods, by applying the `-norm estimates

from the previous setion.

Proof: Assume that V C(F) = d, let �

n

be an empiri-

al measure and set K=�

n

the symmetri onvex hull of

F=�

n

. Thus, by Theorem 3.3, `(K=�

n

) � Cd

1=2

. Given

"; Æ 2 (0; 1) and 1 � i � m, let x

�

i

=

P

n

j=1

g

ij

(y)Æ

!

j

,

where m = O

�

log(

1

Æ

)

�

and (g

ij

) are standard indepen-

dent Gaussian random variables on a spae Y . By The-

orem 4.1, there is a set Y

1

� Y suh that Pr(Y

1

) > 1�Æ,

and for every y 2 Y

1

,

diam

n

\

i=1

�

ker(x

�

i

) \K=�

n

�

� C

�

d

m

�

1

2

:

Clearly, for suh y, the set fx

�

1

; :::; x

�

m

g are C

d

m

suÆient

statistis for F in L

2

(�

n

). Indeed, if x

�

i

(f) = x

�

i

(g) for

every 1 � i � m then kf � hk

L

2

(�

n

)

< C

�

d

m

�

1=2

. Our

laim follows by seleting m = O

�

max

n

log

1

Æ

;

d

"

o

�

.

�

By the proof of Theorem 4.2 it follows that there is a

random onstrution algorithm for the suÆient statis-

tis in empirial L

2

spaes, whih does not depend on

the exat struture of the lass F , only on its \size", as

aptured by the `-norm.

Thus far, we established a bound on the number

of " suÆient statistis in empirial L

2

spaes. When

one wishes to pass from empirial L

2

spaes to general

L

2

spaes, one has to take advantage of the fat that

our lass is a GC lass. Indeed, if �

n

is an empirial

measure suh that

�

�

E

�

(f � g)

2

� E

�

n

(f � g)

2

�

�

< " for

every f; g 2 F , and if S

1

; :::; S

m

are "-suÆient statistis

in L

2

(�

n

), then they are also 2"-suÆient statistis in

L

2

(�).

We shall utilize this fat and establish the desired

estimates for generalL

2

(�) spaes. To that end, we need

the following sample omplexity estimates for (F�F)

2

.

Reall that for every " > 0 and 0 < Æ < 1, n

F

("; Æ)

denotes the sample omplexity estimate of the lass F

assoiated with the auray " and the on�dene Æ.

Lemma 4.3 Let F be a GC lass of funtions whose

range is a subset of [0; 1℄ and set G = (F �F)

2

.

1. If F is a f0; 1g lass and V C(F) = d then there is

some absolute onstant C suh that

n

G

("; Æ) = O

�

d

"Æ

�

for every " > 0 and 0 < Æ < 1.

2. If P

"

(F) � "

�p

, then there are onstants C

p

whih

depend only on p suh that for every " > 0 and ev-

ery 0 < Æ < 1, n

G

("; Æ) � C

p



"

2

�

1

"

p

log

3

1

"

+ log

1

Æ

�

.

The proof of the Lemma is standard, hene it is omitted.

An argument similar to the one used in the proof may

be found in [10℄.
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Corollary 4.4 Let F be a GC lass of funtions into

[0; 1℄ and let � be a probability measure on 
.

1. If V C(F) = d then S

F ;�

(") � C

d

"

for some absolute

onstant C. Moreover, the statistis are support-

ed on a sample of C

0

�

d

"

log

1

"

�

points at the most,

where C

0

is some absolute onstant.

2. If P

"

(F) �



"

p

then

S

F ;�

(") �

8

>

<

>

:

C

p



"

log

2 

"

if 0 < p < 2;

C

2



"

log

4 

"

if p = 2;

C

p



"

1

"

p�

4

p

log

5

(



"

) if p > 2:

where C

p

is a onstant whih depends only on p.

Eah funtional S

i

is supported on a sample of at most

D

p

(

1

"

p+2

log

3

1

"

) elements, where D

p

depends only on p.

Again, we shall prove only the �rst part of the Corol-

lary. The other laims follow in a similar fashion.

Proof: Let F be a f0; 1g lass suh that V C(F) = d.

Let " > 0, �x some Æ 2 (0; 1) and put n = O

�

d

"Æ

log

1

"

�

,

whih is the sample omplexity estimate for (F�F)

2

. S-

ine Æ < 1 there is some empirial measure �

n

suh that

for every f; g 2 F ,

�

�

E

�

(f � g)

2

� E

�

n

(f � g)

2

�

�

< ". By

Theorem 4.2 there exist a set of m = O(

d

"

) linear em-

pirial funtionals S

1

; :::; S

m

suh that if S

i

(f) = S

i

(g)

for every 1 � i � m, then kf � gk

2

L

2

(�

n

)

< ". Therefore,

S

1

; :::; S

m

are 2" suÆient statistis in L

2

(�). Our laim

follows by taking Æ ! 1.

�

4.2 Example

As an example, let F be the lass of all the funtion-

s f : [0; 1℄ ! [0; 1℄ suh that for every x; y 2 [0; 1℄,

jf(x)� f(y)j � jx� yj. To estimate the fat shattering

dimension of F , note that if f!

1

< !

2

< ::: < !

n

g is "

shattered, then for every 1 � i � n, there is some f 2 F

suh that

" � f(!

i+1

)� f(!

i

) =

jf(!

i+1

)� f(!

i

)j � !

i+1

� !

i

:

Hene,

1 � !

n

� !

1

=

n

X

i=1

!

i+1

� !

i

� n";

and n �

1

"

. On the other hand, it is easy to see that

V C

"

(F) �

h

1

"

i

:

By the onnetion between the parametri Pollard di-

mension and the fat shattering dimension, it follows that

h

1

"

i

� P

"

(F) �

1

"

2

:

Let � be a probability measure on [0; 1℄ and set some

" 2 (0; 1). By the sample omplexity estimate, there is

some absolute onstant C suh that

n � n

(F�F)

2

("; Æ) �



"

2

�

1

"

2

log

3

1

"

+ log

1

Æ

�

:

Thus, there is a sample f!

1

; :::; !

n

g suh that if f; g 2 F

and if for every 1 � i � n f(!

i

) = g(!

i

) then E

�

(f �

g)

2

< ". Therefore, the set fÆ

!

1

; :::; Æ

!

n

g are " suÆient

statistis. Sine suh a sample exists for every Æ 2 (0; 1),

then

S

F ;�

(") � lim inf

Æ!0

n

(F�F)

2

("; Æ) �



"

4

log

3

1

"

:

Moreover, for every Æ 2 (0; 1) the set of statistis is

supported on the seleted sample, hene, on a set of

n

(F�F)

2
("; Æ) elements at the most.

Let us ompare this diret method with our ap-

proah. The beginning of the seletion proess is the

same: selet a sample S

n

= f!

1

; :::; !

n

g suh that if �

n

is an empirial measure supported on S

n

then for every

f; g 2 F ,

�

�

E

�

(f � g)

2

� E

�

n

(f � g)

2

�

�

<

"

2

: (4.2)

Next, we onstrut " suÆient statistis for F=�

n

. By

Theorem 4.2 there is a random seletion proess whih

produesm �

C

2

"

log

4

n linear empirial equations (S

i

)

m

1

whih are supported on S

n

suh that if f; g 2 F and

S

i

(f) = S

i

(g) for every 1 � i � m then E

�

n

(f � g)

2

<

". Sine for every Æ 2 (0; 1) n may be seleted as

n

(F�F)

2

("; Æ), then up to a logarithmi fator in

1

Æ

,

m �

C

"

log

4

1

"

:

Now, by (4.2) it follows that (S

i

)

m

1

are " suÆient s-

tatistis for F in L

2

(�). Thus,

S

F ;�

�

C

"

log

4

1

"

;

whih is muh better than the estimate obtained by the

diret method.

Let us sum-up the seletion sheme for a lass F :

Fix the desired on�dene and auray parameters.

1. Randomly selet an i.i.d. sample f!

1

; ::; !

n

g aord-

ing to �, where n = n

(F�F)

2
("=2; Æ=2).

2. Let m be as in Theorem 4.2 and assume that m �

C

1

log

2

Æ

, where C

1

is the absolute onstant as in

Theorem 4.1. Set G be an m� n matrix whose en-

tries are realizations of standard independent Gaus-

sian random variables.

3. For every 1 � i � m, let

S

i

=

n

X

j=1

g

ij

Æ

!

j

:

Then, with probability larger than 1 � Æ, (S

i

)

m

1

are "

suÆient statistis in L

2

(�).

Note that our result is even stronger than what we

have laimed. Not only did we prove the existene of

suÆient statistis, we where able to formulate a simple

random onstrution sheme whih produes " suÆient

statistis with arbitrarily large probability.
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4.3 Improving the omputational omplexity

In this �nal appliation we indiate how onstruting

suÆient statistis in empirial L

2

spaes may aid in re-

duing the omputational omplexity of a learning prob-

lem.

Assume that h is the target onept and that �

n

is

an empirial measure suh that

sup

f2F

�

�

E

�

(f � h)

2

� E

�

n

(f � h)

2

�

�

< " :

Normally, when trying to approximate a funtion h with

respet to the L

2

(�

n

) norm, one tries to solve the sys-

tem of n empirial linear equations Æ

!

i

(h) = Æ

!

i

(f) (i.e.

the equations f(!

i

) = h(!

i

)) subjeted to the onstraint

that the solution belongs to F . By using linear fun-

tionals on L

2

(�

n

) whih are linear ombinations of the

point evaluation funtionals fÆ

!

1

; :::; Æ

!

n

g, it is enough

to solve S

F ;�

n

(") << n linear empirial equations with

the same onstraint to ensure that the solution approx-

imates h in L

2

(�

n

).

Below is a summary of the learning proedure to-

gether with omplexity estimates in terms of the `-norm.

The proof of the laims in the example below are based

on the same idea as in the proof of Theorem 4.2.

Example 4.5 Let F be a lass of funtions on a set


, all of whih have a range ontained in [0; 1℄ and set

h 2 F to be the target onept. Let "; Æ be the auray

and on�dene parameters, set n to be the sample om-

plexity estimate of F assoiated with an auray of "

and on�dene of Æ=2, and put `

n

= sup

�

n

`(F=�

n

).

1. Selet a sample (!

1

; :::; !

n

) aording to � and let

�

h(!

1

); :::; h(!

n

)

�

be the values of h on the sample.

2. Let m = Cmaxf`

2

n

="; log 2=Æg, where C is some

absolute onstant, and put G to be an m � n ma-

trix suh that eah element g

ij

is a realization of a

standard Gaussian random variable.

3. Find a solution f 2 F to the system

P

n

1

g

ij

h(!

i

) =

P

n

1

g

ij

f(!

i

) whih onsists of m empirial linear

equations.

Then, by the seletion of m, kf � hk

2

L

2

(�

n

)

< " with

probability larger than 1� Æ=2. Combining this with the

seletion of n it follows that with probability larger than

1� Æ, kf � hk

2

L

2

(�)

< ".

It is important to note that this learning proedure

does not improve the sample omplexity estimates. One

has to start with an empirial measure for whih

sup

f2F

�

�

E

�

(f � h)

2

� E

�

n

(f � h)

2

�

�

are \lose", where h is the target onept. This is done

by randomly seleting a sample aording to �, and the

size of the sample is determined by the given aura-

y and on�dene parameters. On the other hand, the

omputational omplexity improves. As an example, let

F be a lass of funtions into [0; 1℄ suh that for every

" > 0, P

"

(F) = O("

�2

). Given the auray and on-

�dene parameters " and Æ, then m = O("

�1

), while

n = O("

�4

) up to a logarithmi fator in

1

"

and

1

Æ

.

This learning rule may be adjusted to have a pre

proessing feature. Indeed, given "; Æ 2 (0; 1), if one

selets n = n

(F�F)

2

("; Æ) then the empirial funtion-

als found here (whih are determined by the Gaussian

matrix G) do not depend on the target onept h. For

every pair f; h 2 F , if

P

n

1

g

ij

h(!

i

) =

P

n

1

g

ij

f(!

i

) for

every 1 � j � m, then with probability larger than

1 � Æ kf � hk

2

L

2

(�)

< ". The prie one has to pay for

this pre proessing feature is a worse sample omplexity

estimate.

5 `-norm estimates

This appendix is devoted to empirial `-norm estimates

of GC lasses based on their VC or parametri Pollard

dimension. Reall that in both these ases, there are

known estimates for the overing numbers of F : if F

has a �nite VC dimension then by Haussler's inequality

(see [8℄ or [15℄) its overing numbers in L

2

(�) are poly-

nomial in 1=" for every probability measure �. Even

when F does not have a �nite VC dimension but it-

s parametri Pollard dimension P

"

(F) is polynomial in

1=", then its log-overing numbers in L

2

(�

n

) are poly-

nomial in 1=". We shall use those estimates to establish

`-norm estimates for the sets F=�

n

.

Let us reall Haussler's result:

Theorem 5.1 Let F be a lass of f0; 1g valued fun-

tions, suh that V C(F) = d. Then, there is an absolute

onstant C suh that for every probability measure � on


, N(";F ; L

2

(�)) � Cd(4e)

d

"

�2d

.

Using this estimate it is easy to derive the following:

Theorem 5.2 Let F � L

2

(�) whih onsists of f0; 1g

funtions and assume that V C(F) = d. Then, there is

some absolute onstant C suh that `(F) � Cd

1=2

.

Proof: LetH be a �nite dimensional subspae of L

2

(�).

Clearly, for every 0 < " � 1,

logN

�

";F \H;L

2

(�)

�

�

logN

�

";F ; L

2

(�)

�

� Cd log

2

"

:

If " > 1 then f0g is an "-over of F , hene, for suh ",

the log-overing numbers of F vanish. By Theorem 3.2,

`(F \H) �

Z

1

0

Cd

1

2

log

1

2

1

"

d" � Cd

1

2

:

and our laim follows.

�

Next, Assume that P

"

(F) = O("

�p

) for some p >

0. The following estimate is due to Alon, Ben{David,

Cesa{Bianhi and Haussler (see [1℄).

Theorem 5.3 Let F be a lass of funtions on 
, all

of whih have a range ontained in [0; 1℄ and set d =

P

"=4

(F). Then, for every empirial measure �

n

,

N

�

";F ; L

1

(�

n

)

�

� 2(

4n

"

2

)

d log

�

en

d"

�

:
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We may apply the same idea used in the proof of The-

orem 5.2 to lasses whih have a \small" parametri

Pollard dimension.

Theorem 5.4 Let F be a lass of funtions into [0; 1℄

suh that P

"

(F) � "

�p

for some 0 < p < 2 and  �

1. Then, there are onstants C

p

suh that for every

empirial measure �

n

,

`(F=�

n

) � C

p



1

2

(1 + logn);

where C

p

= 2

p

C

R

1

0

1

"

p=2

log

1

"

d" for some absolute on-

stant C.

Proof: By Theorem 5.3 it follows that there is some

absolute onstant C suh that

logN

�

";F ; L

2

(�

n

)

�

� C

4

p



"

p

�

1 + log

2

n

"

2

�

:

Sine F is a subset of the unit ball of L

2

(�

n

), then for

every " � 1 it takes only a single ball of over F . Thus,

by Theorem 3.2,

`(F=�

n

) � 2

p

C

1

2

(1 + logn)

Z

1

0

1

"

p

2

log

1

"

d":

�

The ase of p � 2 is muh more diÆult, beause one

an not use the upper bound in Theorem 3.2. However,

it is possible to estimate the `-norm, as desribed in the

following Theorem:

Theorem 5.5 Let F be a lass of funtions whose range

is ontained in [0; 1℄. Assume further that P

"

(F) �

"

�p

for some p � 2. Then, there is some absolute

onstant C, suh that for every empirial measure �

n

,

1. if p > 2 then

`(F=�

n

) �

C

1

2

�

p

(1 + logn)(n

1

2

�

1

p

� 1) + n

1

2

�

1

p

;

where �

p

= 2

p=2

(2

p=2�1

� 1)

�1

, and,

2. if p = 2 then

`(F=�

n

) � C(1 + 

1

2

) log

2

n:

Although we an not apply the upper bound of theorem

3.2 diretly, we shall use the same idea used in the proof

of that Theorem.

Reall that F may be viewed as an subset of L

2

(�

n

),

where �

n

is an empirial measure supported on the sam-

ple f!

1

; :::; !

n

g. Eah f 2 F is identi�ed as an elemen-

t of L

2

(�

n

) (whih is denoted by f=�

n

) by the map

T (f) =

P

n

i=1

f(!

i

)�

!

i

, where �

!

i

is the harateris-

ti funtion of f!

i

g. In terms of the orthonormal ba-

sis of L

2

(�

n

), f=�

n

= n

�1=2

P

n

i=1

f(!

i

)e

i

. Let (g

i

)

n

i=1

be independent standard Gaussian random variables.

For every f 2 F , let Z

f

= n

�1=2

P

n

i=1

f(!

i

)g

i

. Thus,

eah Z

f

is a random variable on some probability s-

pae (Y; P ), and denote by k k

2

the norm in L

2

(Y; P ).

From the de�nition of the `-norm it is easy to see that

`(F=�

n

) =





sup

f2F

Z

f





2

. It is possible to show (see,

for example, [12℄) that there is some absolute onstant

C > 0 suh that

`(F=�

n

) � CE

�

�

sup

f2F

Z

f

�

�

= E( sup

f2F[�F

Z

f

):

Also, note that the map V : L

2

(�

n

) ! L

2

(Y; P ) giv-

en by V (

P

n

i=1

a

i

e

i

) =

P

n

i=1

a

i

g

i

is an isometry into

L

2

(Y; P ). Thus, for every f 2 F , Z

f

= V (f=�

n

).

The following Lemma plays a ruial part in the

proof of the upper bound in Theorem 3.2. It is based

on the lassial inequality of Slepian (see [12℄ or [5℄).

Lemma 5.6 Let fZ

1

; :::; Z

N

g be Gaussian random vari-

ables. Then, there is some absolute onstant C suh that

E sup

i

Z

i

� C sup

i;j

kZ

i

� Z

j

k

2

log

1

2

N:

Proof of Theorem 5.5: We will assume that F is

symmetri. The proof in the non-symmetri ase is es-

sentially the same. Set Z

F

= fZ

f

jf 2 Fg and note that

sine V : L

2

(�

n

) ! L

2

(Y; P ) is an isometry for whih

V (F=�

n

) = Z

F

then

N

�

";F=�

n

; L

2

(�

n

)

�

= N

�

";Z

F

; L

2

(P )

�

:

Therefore, by Theorem 5.3 and sine P

"

(F) � "

�p

,

there is some absolute onstant C suh that

logN(";Z

F

) � C

�

1 + 4

p

"

�p

log

2

n

"

2

�

:

Let "

k

= 2

�k

, put N = [p

�1

log

2

n℄ and set H

k

� Z

F

to

be a 2"

k

over of Z

F

, suh that

log jH

k

j � C

�

1 + 4

p

"

�p

k

log

2

n

"

2

k

�

:

Hene, for every k and every Z

f

there is some Z

k

f

2 H

k

suh that







Z

f

� Z

k

f







2

� 2"

k

. By writing

Z

f

=

N

X

k=1

(Z

k

f

� Z

k�1

f

) + Z

f

� Z

N

f

it follows that

E sup

f2F

Z

f

�

N

X

k=1

E sup

f2F

(Z

k

f

� Z

k�1

f

) + E sup

f2F

(Z

f

� Z

N

f

):

By the de�nition of Z

k

f

and by Lemma 5.6, there is an

absolute onstant C suh that

E sup

f2F

(Z

k

f

� Z

k�1

f

) �

E sup

�

Z

i

� Z

j

jZ

i

2 H

k

; Z

j

2 H

k�1

; kZ

i

� Z

j

k

2

� 4"

k

	

�

C sup

i;j

kZ

i

� Z

j

k

2

log

1

2

jH

k

j jH

k�1

j �

C"

k

�

1 + 2

p



1

2

"

�

p

2

k

log

n

"

2

k

�

:

Sine Z

N

f

2 Z , there is some f

0

2 F suh that Z

N

f

=

Z

f

0

. Hene,
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�

n

X

i=1

f(!

i

)� f

0

(!

i

)

p

n

2

�

1

2

=

kf=�

n

� f

0

=�

n

k

L

2

(�

n

)

= kZ

f

� Z

f

0

k

2

� "

N

;

whih implies that for every f 2 F and every y 2 Y ,

�

�

Z

f

(y)� Z

N

f

(y)

�

�

�

n

X

i=1

�

�

�

�

f(!

i

)� f

0

(!

i

)

p

n

g

i

(y)

�

�

�

�

� "

n

�

n

X

i=1

g

2

i

(y)

�

1

2

:

Therefore,

E sup

f2F

Z

f

� Z

N

f

� "

N

E

�

n

X

i=1

g

2

i

�

1

2

= "

N

p

n:

Combining the two estimates and sine "

k

= 2

�k

and

N = [p

�1

log

2

n℄,

sup

f2F[�F

Z

f

�

C

N

X

k=1

2

�k

�

1 + 2

p



1

2

2

kp

2

log 4

k

n

�

+ 2

�N

p

n �

C

�

1 + 2

p



1

2

log 2

2N

n

�

N

X

k=1

2

(�1+

p

2

)k

+ 2

�N

p

n �

C

�

1 + 2

p



1

2

logn

�



p

(n

1

2

�

1

p

� 1) + n

1

2

�

1

p

;

where 

p

= 2

p=2�1

(2

p=2�1

� 1)

�1

and the laim fol-

lows.

�

Remark 1 Using a similar argument, it is possible to

show that if P

"

(F) � "

�2

then there is some absolute

onstant C suh that for every empirial measure �

n

,

`(F=�

n

) � C(

1

2

+ 1) log

2

n:
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