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Abstract

Boosting algorithms like AdaBoost and Arc-GV
are iterative strategies to minimize a constrained
objective function, equivalent to Barrier algorithms.
Based on this new understanding it is shown that
convergence of Boosting-type algorithms becomes
simpler to prove and we outline directions to de-
velop further Boosting schemes. In particular a
new Boosting technique for regression –"-Boost
– is proposed.

1 Introduction

The past years have seen strong interest dedicated to Boost-
ing and ensemble learning algorithms due to their success in
practical classification applications (e.g. [13, 26, 28, 43, 2,
11]). Recent research in this field now focuses on the better
understanding of these methods and on extensions that are
concerned with robustness issues [31, 3, 37, 36, 38] or gen-
eralizations of Boosting algorithms to regression [19, 14,5].

The present work aims to contribute in two respects: (a)
we will show an important relation of Boosting to a gen-
eral class of optimization methods, the so-called barrier op-
timization – a technique to minimize constrained objective
functions [20]. We clarify that Boosting can be seen as a
special case of barrier optimization, i.e. as an iterative ap-
proximation method to a barrier algorithm that also relatesto
the Gauss-Southwell method [27] of nonlinear optimization.
Furthermore, this understanding allows us to outline possible
paths going beyond existing Boosting schemes. For exam-
ple, convergence theorems from the optimization literature
can be applied, simplifying convergence proofs for Boosting
type algorithms. We choose a particularly interesting path,
giving rise to our second contribution: (b) the definition of
a new Boosting algorithm for regression and its convergence
proof. Experiments on toy examples follow, that show the
proof of concept for our regression algorithm. Finally a brief
conclusion is given.

2 Boosting and Convex Programming

In this section we will introduce some terminology and no-
tation conventions. We will mainly consider convex opti-
mization problems for finding hypothesis coefficients that

are used for some linear combination of hypotheses from a
given finite hypothesis set. Contrarily, in Section 4 we will
consideriterative algorithms like AdaBoost and Arc-GV.

2.1 Margin, Edge and Linear Programming

We begin by focusing on the following problem. We are
given a set ofN examplesZ = f(x

n

; y

n

) : 1 � n � Ng �

X � f�1g and a (finite) set of hypothesesH = fh

j

: 1 �

j � Jg of the formX ! [�1;+1℄.
Our goal is to find a “good” convex combination of the

hypotheses, i.e.

f

�

(x

n

) =

J

X

j=1

�

j

h

j

(x

n

); (1)

where� lies in theJ-dimensional probability simplex�J .
That is,�

j

� 0 and
P

J

j=1

�

j

= 1. If f
�

is used as a classi-
fier then the classification of instancex is sign(f

�

(x)).1

Let us now define a measure of goodness for a single
example. Themargin of an example(x

n

; y

n

) with respect
to a given weight vector� is defined asy

n

f

�

(x

n

). A pos-
itive margin corresponds to a correct classification and the
more positive the margin the greater the confidence [39, 40,
49] that the classification is correct. The margin has been
frequently used in the context of Support Vector Machines
(SVMs) [49, 47] and Boosting (e.g. [39, 40, 36]). However,
for the definition of the margin one needs to have a normal-
ization by some norm of�, as otherwise one could arbitrarily
increase the margin by scaling the weight vector�. Different
norms are used for SVMs and Boosting. In SVMs the margin
is normalized by thè

2

-norm of the weight vector in feature
space. In Boosting thè

1

-norm of the weight vector is used
(cf. Footnote 1). Note that for the purpose of classification
the normalization of the functionf

�

is immaterial.
For convenience we introduce the matrixU 2 R

N�J ,
whereU

nj

= y

n

h

j

(x

n

). Then-th example(x
n

; y

n

) corre-
sponds to then-th row and thej-th hypothesis to thej-th col-
umn ofU . We letU

n

denote then-th row ofU . With this no-
tation the margin of then-th example isy

n

f

�

(x

n

) = U

n

�.
The margin of a functionf

�

is defined as the minimum mar-

1Note, that we could use an arbitrary� � 0, e.g.k�k
1

6= 1 and
then we would need to normalize the functionf

�

. Here, we use the
`

1

norm for the normalization.
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gin over allN examples, i.e.

�(�) =

N

min

n=1

U

n

�: (2)

A reasonable choice [29, 21, 1, 49] for a convex combi-
nation is to maximize the minimum margin of the examples,
i.e.

choose�� 2 �

J such that�(��) = max

�2�

J

�(�): (3)

Roughly speaking, the larger the margin the better the bounds
that can be proven for the generalization error (e.g. [49, 1]).
Also SVMs are based on maximizing a minimum margin.
They use thè

2

-norm to define the margin and the maximum
margin hyperplane maximizes the minimum geometric dis-
tance of the patterns to the hyperplane. In our case we use
the`

1

-norm to define the margin. Now the maximum margin
hyperplane maximizes the minimum̀

1

distance of the pat-
terns to the hyperplane [30]. We assume for convenience
throughout the paper that the hypotheses class is comple-
mentation closed (h 2 H implies�h 2 H) in order to avoid
problems2 for the case that�(��) < 0.

Boosting algorithms maintain a distributiond 2 �

N on
the examples. What would be a good choice for this distri-
bution for a given set of examples and hypotheses? Assume
for a moment that the labels of the hypothesis are binary, i.e.
h

j

(x

n

) 2 f�1g. Then for a distributiond, the dot product
U

>

j

d =

P

N

n=1

d

n

y

n

h

j

(x

n

) is the expectation thath
j

pre-
dicts thef�1g label correctly.3 We call this theedge [8] of
the hypothesish

j

. Note that a random hypothesis has an ex-
pected edge of zero and sinceh

j

(x

n

) 2 [�1;+1℄, the edge
of h

j

lies in [�1;+1℄. We define theedge of a weight vector
d as the maximum edge over the set of hypotheses, i.e.

�(d) =

J

max

j=1

U

>

j

d: (4)

SinceH is complementation closed, the above is equivalent
tomax

J

j=1

jU

>

j

dj. In the case of Boosting, we want to find a
distribution on the examples such that the maximum edge of
the hypotheses is minimized [8] (a solution always exists):

choosed� 2 �

N such that�(d�) = min

d2�

N

�(d): (5)

The minimax theorem of linear programming (LP) can
be used to make the following connection [8, 21, 17, 3] be-
tween the above two optimization problems.

Theorem 1.

min

d2�

N

�(d) = max

�2�

J

�(�): (6)

The theorem is proven by considering both sides of (6)
as linear programming problems (Here0 and1 are vectors
or all zeros and ones, respectively, where the dimension is
understood from the context):

max

�;�

� min

�;d

�

s.t. � � 0;�

>

1 = 1 d � 0;d1 = 1

U� � �1 U

>

d � �1

Margin-LP Problem Edge-LP Problem

(7)

2Alternatively, one can use two non-negative weights per hy-
pothesish

j

, one forh
j

and one for�h
j

.
3Here correct means+1 and incorrect�1. If correct is encoded

as+1 and incorrect as 0, then it would become1

2

(U

>

j

d+ 1).

Both problems are dual to each other and thus the equality of
the theorem follows from the fact that the primal and the dual
objective have the same value. Since our hypothesis class is
complementation closed, this value is always non-negative.
The Margin-LP Problem was introduced in [29] and was first
used for Boosting in [8, 21].

2.2 Boosting and Relative Entropy Minimization

We will now use the Edge-LP problem to make a connection
to a class of Boosting algorithms that use a relative entropy
in the objective function [22, 25, 9]. In theTotally Corrective
Algorithm of [22] and in a related algorithm by [9] the edge
was forced to be zero for all hypotheses. This essentially
corresponds to the Edge-LP Problem with� fixed at0. Fur-
thermore a relative entropy to the uniform distribution was
used as the objective function:

min

d

N

P

n=1

d

n

ln

d

n

1=N

s.t. d � 0;d

>

1 = 1

U

>

d = 0

Totally Corrective Algorithm

(8)

Note, the well-known AdaBoost algorithm [16, 40] can be
motivated as minimizing a relative entropy subject to the
constraint that the edge of only the last hypothesis is zero
[16, 22, 25, 9].

However, how should one choosed when there is no dis-
tribution d for which the edges of all hypotheses are zero?
Theorem 1 implies that if the margin�(��) > 0, then such
distributiond does not exist. In this case the minimal edge is
positive. This question can be answered by adding a relative
entropy to the objective function of the Edge-LP Problem:

min

�;d

�+ �

N

P

n=1

d

n

ln

d

n

1=N

s.t. d � 0;d

>

1 = 1

U

>

d � �1;

(9)

Note that we introduced a constant parameter�, which con-
trols the trade-off between keeping the edge� versus the rel-
ative entropy ofdminimal. For� ! 0 we recover the Edge-
LP Problem. Also note that if� = 0 is enforced in the above
problem then we arrive at the optimization problem of the
Totally Corrective Algorithm. We believe that above prob-
lem with the trade-off parameter� is the natural choice for
the case when�(��) > 0.

Before we continue we change to a more convenient vari-
ant of the above problem (9). Using the new problem (called
theEdge-Entropy Problem) will simplify the notation in the
sequel of the paper. Note that constraints of both problems
are the same, but the objective function of the new problem
differs by �d>1(lnN + 1). Since we have the constraint
d

>

1 = 1, it is a constant and both optimization problems
are equivalent:

min

�;d

�+ �

N

P

n=1

d

n

ln d

n

� d

n

s.t. d � 0;d

>

1 = 1

U

>

d � �1;

Edge-Entropy Problem

(10)
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The dual of the above is

max

�

�

;�

�

�

� �

N

P

n=1

exp

�

�

�

�U

n

�

�

�

s.t. � � 0;�

>

1 = 1

Margin-Exp Problem

(11)

In Section 4.2 we will present how this problem is related to
the Arc-GV algorithm [8]. Let�

�

(�) be the solution of (11)
for a fixed�. We have:

�

�

(�) = �� log

"

N

X

n=1

exp

�

�

U

n

�

�

�

#

: (12)

Analyzing the behavior of�
�

(�) for � ! 0 yields:

lim

�!0

�

�

(�) = �(�); (13)

where the convergence in terms of� is linear in the worst
case. We can get rid of the variable�

�

in the Margin-Exp
Problem by plugging in the optimal�

�

(�) given in (12).
This results in an equivalent optimization problem with one
less variable to optimize:

min

�

�

�

log

N

P

n=1

exp

�

�

U

n

�

�

�

+ 1

�

s.t. � � 0;�

>

1 = 1

(14)

Note that except for the constraint�>1 = 1 (and some con-
stants) the above problem is dual to the optimization problem
(8) of the Totally Corrective Algorithm. Also AdaBoost can
be motivated as optimizing alog of a sum of exponentials,
where the constraint�>1 = 1 is absent.4 Note also that
the solution��

�

of the Margin-Exp Problem converges (for
� ! 0) to a global solution�� of the Margin-LP Problem.5

When the examples are noisy then the solution found by
(3) and (11) for� ! 0 tends to over-fit the data, as all pat-
terns are classified with some non-negative margin [21, 36].
In Section 4.5 we will consider a regularization approach,
where the entropy is used as regularization by keeping� >

0. Then, the parameter� specifies the trade-off between min-
imizing the edge and keeping the relative entropy small.

Note that the constraintsU� � �1 of the Margin-LP
problem are absent from the Margin-Exp problem. However,

lim

�!0

�� exp

�

�

�1

(�� U

n

�)

�

= �1 iff U
n

� � �

and thus the additional term (which involves a sum of expo-
nentials) in the objective function of the Margin-Exp Prob-
lem enforces the constraintsU

n

� � � for small enough�.
This technique for solving a constraint optimization problem
is known as theexponential barrier method (e.g. [10]). Also
the constraintsd � 0 can be removed when going from the
Edge-LP Problem to the Edge-Entropy problem. Here, the

4However, the scaling can easily be done by setting� =

1=(1

>

�

u

), where�u is now the unnormalized version of�. This
will be worked out in detail in Section 4.2.

5For the case that the solution of the Margin-LP Problem is not
unique, (14) prefers solutions which have a small relative entropy
in the dual domain.

entropy term works as a barrier for the non-negativity con-
straints. This barrier function is called theentropic barrier
[6].

Before we show some more connections to Boosting in
Section 4, we will introduce the numerical method of barrier
optimization in the next section.

3 Barrier optimization

3.1 Problem definition

Let us shortly review some basic statements and formula-
tions about barrier optimization techniques. For details,the
reader is referred to e.g. [20, 6, 27]. Consider the convex
optimization problem

min g(�)

with 

n

(�) � 0; 8n = 1 : : : N

(15)

We callC the convex set of feasible solutions described by

C = f� : 

n

(�) � 0; 8 n = 1; : : : ; Ng: (16)

We assumeC is non-empty, i.e. there exists a feasible solu-
tion. If the functiong(�) is strictly convex, then the solution
of problem (15) is unique. Ifg(�) is convex only, there exists
a set of global solutions��. Note that from the convexity of
g(�) andC follows that any local minimum is a global mini-
mum as well.

3.2 Barrier functions

Problem (15) can be solved by finding a sequence of (uncon-
straint) minimizers of the so called barrier (or penalty) error
function

E

�

(�) = g(�) +

N

X

n=1

�

�

(

n

(�)); (17)

where,�
�

is a barrier function and� > 0 is a penalty pa-
rameter. Common choices for�

�

can be found in Table 1.
Barrier algorithms use a suitably chosen sequence of�’s that
goes to zero. For each�, using the� found in the previous
iteration as a starting value, (17) is minimized.

For the Log-Barrier and the Entropic Barrier the initial�

has to be a feasible solutions. The barrier function assures
that the sequence of�’s corresponding to the decreasing se-
quence of� values remain feasible. Thus the final�

� is ap-
proached from the “interior” of the feasible region. Methods
based on the Log-Barrier and the Entropic Barrier are there-
fore called interior point methods. Such methods are often
used for finding solutions for SVMs [7].

Table 1: Common barrier functions used in convex optimization

�

�

(t) Name
�� log t Log-Barrier [6, 20, 27]
��t log t Entropic Barrier [6, 27]

� exp(�t=�) Exp-Barrier [10, 24, 12, 33]

In the case of the Exp-Barrier, the initial solution does not
have to be feasible [10]. For the Exp-Barrier the minimizers
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of E
�

(�) will become feasible automatically, when� be-
comes small enough. If a constraint is violated then this will
lead to an exponential growth in the barrier objective (17).
So the barrier has the effect that it keeps� in the feasible
region or pulls it closer to a feasible solution. Note that En-
tropic Barrier is the dual of the Exp-Barrier (cf. Section 2.2).

The Exp-Barrier can also be used to solve the feasibility
problem for convex programming:

�nd �

with 

n

(�) � 0 8n = 1 : : :N

(18)

In fact, we will see in Section 4.3 that AdaBoost exploits that
property. Solving the feasibility problem with interior point
methods is more involved [48]. In the rest of the paper we
concentrate on the Exp-Barrier only and focus on its connec-
tion to Boosting methods. Most of the work in Section 5 can
be extended to other barrier functions.

3.3 Convergence

Besides an intuitive reasoning for the barrier function con-
verging to an optimal solution of (15) the following presents
some more formal aspects. Let us define

�

�

:= argmin

�

E

�

(�) (19)

as the optimal solution for some fixed�. Moreover, let��

be the set of global solutions of (15). Then for any barrier
function and any sequence�

t

! 0 holds:

lim

t!1

�

�

t

2 �

� (20)

However, for the Exp-Barrier6 it it turns out to be unnec-
essary toexactly minimizeE

�

t

for each�
t

. The following
proposition shows how close an estimate�

t to �
�

t

has to be,
in order to obtain the desired convergence:

Proposition 2 (along the lines of [10]). Assume g and 

n

are differentiable and convex functions. Let �
t

be an Æ
t

� 0

minimizer of

E

�

t

(�) = g(�) + �

t

N

X

n=1

exp(�

n

(�)=�

t

); (21)

i.e. kr
�

E

�

t

(�

t

)k � Æ

t

. Then, for Æ
t

; �

t

t!1

�! 0 every limit

point of f�
t

g

t2N

is a global solution to (15).

In the sequel we will often use a simpler version of Proposi-
tion 2, where we useÆ

t

= �

t

and requirekr
�

E

�

t

(�

t

)k � �

t

.

4 Boosting as Barrier Algorithms

In Section 2 we have considered convex optimization prob-
lems for finding the hypothesis coefficients� for a given fi-
nite hypothesis setH. Now, we would like to consider itera-
tive algorithms that have to solve two problems: In each iter-
ation one has to select a hypothesis fromH and then one as-
signs a weight to the selected hypothesis. We will show how
AdaBoost [16] and Arc-GV [8] can be understood as par-
ticular implementations of a barrier optimization approach,
asymptotically solving convex optimization problems of the

6For other barrier functions there exist similar results.

type stated in Section 2. It is shown, that Boosting is basi-
cally a Gauss-Southwell method minimizing a barrier func-
tion.

Throughout the paper, we will think of dealing in each
iterationt of Boosting with a full hypothesis weight vector
�

t of sizeJ . However, usually we will change only one
entryj at a time. We denote byI

t

the index of the hypoth-
esis that has been chosen in thet-th iteration and by�

I

t

the
hypothesis coefficient that has been updated. Thus,I is a
mapping from the hypotheses that have been chosen so far to
H, i.e.I : N ! H.

4.1 The underlying Optimization Problem

Letf
�

be a convex combination (cf. Section 2) of hypotheses
h 2 H as defined in Section 2

f

�

(x) :=

J

X

j=1

�

j

k�k

1

h

j

(x); (22)

where we enforce the hypothesis coefficients to sum to one
by dividing by k�k

1

. For simplicity, we will consider the
unnormalized version of� throughout the rest of the paper
and normalize, if it is needed.

Suppose one would like to solve the Margin-LP Problem
(7), where we can omit the�>1 = 1 constraint due to of the
normalization introduced in (22):

max �

with y

n

f

�

(x

n

) � �;

� � 0

(23)

Note that the constraint�
j

� 0 can always be enforced
by selecting theh

j

with the appropriate sign (we have as-
sumed complementation closedness ofH). For convenience,
we will in the sequel also often write�>1 instead ofk�k

1

.
Using (17) and the definition ofU

nt

we minimize

E

�

(�; �) = ��+ �

N

X

n=1

exp

�

�k�k

1

� U

n

�

�k�k

1

�

(24)

with respect to� and� with � � 0. Let

[�

�

; �

�

℄ = argmin

��0;�

E

�

(�; �) (25)

and let[��; ��℄ be a global solution to (23). Note that�
�

=

�

�

(�) introduced in Section 2.2. Using (20) we conclude,
that

lim

�!0

[�

�

; �

�

℄ = [�

�

; �

�

℄ (26)

4.2 Arc-GV – A Greedy Algorithm

Let us now consider one particular iterative strategy for min-
imizing (24) which will turn out to be exactly Arc-GV: We
start with�0

= 0 andf
�

0

� 0. In each iterationt we (i) ap-
proximate�

�

and (ii) find a hypothesish
j

2 H (i.e. an index
j) and update�

j

to get the new hypothesis weight vector�

t.
Now the details: First we set�

t

� k�

t

k

�1 which is a
reasonable choice, as (assuming complementation closed hy-
pothesis sets) for AdaBoost and Arc-GVk�k ! 1 holds.
In step (i) one approximates the minimum margin�

�

by
(cf. Eq. (13))

� = �(�

t�1

) = min

n

y

n

f

�

t�1
(x

n

):
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In step (ii) one updates the hypothesis weighting�

I

t

by

�

I

t

= argmin

�

I

t

>0

N

X

n=1

exp (�k�k

1

� U

n

�); (27)

where one chooses the indexI
t

such that the sum in (27) is
minimal. That is, one finds the hypothesis such that some
weighted training error� is minimized [16]. Note that for
the case where we usef�1g-valued weak learners one can
compute a closed form solution [8] for (27):

�

I

t

=

1

2

log

�

1� �

�

�

1� �

�

(28)

Moreover, note that� is the same astop used in [8].
Proposition 2 serves as a useful tool for proving the con-

vergence of such kind of algorithms: From the fast conver-
gence of� to �

�

we can conclude thatr
�

E

�

(�; �) vanishes
fast. Consider the update for the hypothesis weight�

I

t

given
by (27) and (28), respectively. Under rather mild assump-
tions, one can show that in the limit fork�k

1

!1 holds:

argmin

�

I

t

�0

E

�

(�; �) = �

I

t

; (29)

where� is the vector of the last iteration�t�1 changed in
the I

t

-th component only. This is because the factor� =

k�k

�1

1

in front of the sum in (24) loses its influence on the
minimization of�

I

t

ask�kt�1
1

becomes large.
However, (29) does not imply that the gradient with re-

spect to� becomes0 yet, as needed to apply Proposition 2.
It needs some more argumentation to show that

r

�

E

�

(�; �)! 0; (30)

where one exploits that always the best hypothesish

I

t

is
found. Essentially, a proof can be done in the style of Theo-
rem 4 in Section 5.5, where one uses the convergence proper-
ties of the Gauss-Southwell method (gradient-descent in co-
ordinate directions with maximal gradient) [27]. One has to
show, thatk�k

1

grows slow enough while the gradients be-
come smaller. Similar techniques have been used in [15, 14]
and (30) has already been shown in [8], so we will not go
into further details. Using the property (30), one can finally
apply Proposition 2 which shows the convergence.

Based on the argumentation above, we would like to view
Arc-GV as a barrier algorithm using a particular strategy (re-
lated to the Gauss-Southwell method) for minimizingE

�

and choosing�.

4.3 AdaBoost – Finding a Separation

We can argue as before and find that AdaBoost can be inter-
preted as a barrier algorithm for finding a separation of some
training set with margin at least'. For this, we fix� to' and
get the barrier function from Eq. (24)) as

E

�

(�) = �'+ �

N

X

n=1

exp

�

k�k

1

'� U

n

�

�k�k

1

�

: (31)

Originally, the� in front of the sum in (31) down-weights
the constraint penalties against the objective. But in the case
of AdaBoost and Arcing we have' � 0 and' � const.,
respectively, and our goal is to simply obtain a feasible solu-
tion (y

n

f

�

(x

n

) � ', cf. Eq. (18)). Thus, we can omit the�

here and drop the' in front. What remains is only the sum
of (31). By using the same simplified optimization strategy
(coordinate–wise descent) and setting� � k�k

�1

1

in (31)
as before, we obtain the original AdaBoost error function
[8, 18, 31, 36]. Thus, we will get a solution with margin at
least', if k�k

1

! 1. Note thatk�k
1

will stay bounded if
and only if there is no solution [16, 36].

4.4 Iterative Boosting Algorithms that always update
all previous coefficients

There are two basic approaches for designing boosting algo-
rithms. The first one is to update the coefficient of a single
(possibly new) hypothesis in each iteration. In this approach
we want to do little work per iteration. Typical examples are
AdaBoost and Arc-GV. A second approach is to ignore op-
timization issues and use the optimization problems consid-
ered in Section 2.1 to always find the optimal weights of all
past hypotheses. The Totally Corrective Algorithm of [22]
and the Column Generation Algorithm of [3] are particular
examples using this approach.7

Assume at trialt we already have a subsetHt�1 of t� 1

hypotheses from the base setH. We also have a vector�t�1

of t � 1 weights for combining the hypotheses ofHt�1 in
some optimal way. This vector was found by solving some
convex optimization problem (e.g. the Margin-Exp Problem)
when applied to the setHt�1. Note that via the dual relation-
ships we always have a corresponding distributiond

t�1 on
the examples. During trialt we add one more hypothesish

t

from the base setH toHt�1 to formH

t and then findt new
weights�t for all hypotheses ofHt.

We have not specified how to choose the new hypothesis
h

t

at trialt. A natural greedy heuristic is choose a hypothesis
such that the value of optimization problem forH

t�1

[fh

t

g

is optimized or approximately optimized.
Basically, any optimization algorithm for finding a linear

combination for a fixed set of hypotheses (or by the duality
relationship a distribution based on these hypotheses) imme-
diately leads to a boosting algorithm via the above scheme.

4.5 A regularized Version of Boosting

The question is which optimization problem should we use
to construct a boosting algorithm (via the scheme of the pre-
vious subsection) in the case when the examples is noisy.
Before we address this we give some background. It has
been shown that solutions found by AdaBoost, Arc-GV and
also for the Margin-Exp problem for� ! 0, tend to over-fit
the data, as all patterns are classified with some non-negative
margin [21, 36]. Several approaches have been proposed to
deal with this situation. For SVMs slack variables have been
frequently used [4, 49] to allow for somesoft margin, i.e. vi-
olations of the margin constraints similar to (7). In the dual
domain the introduction of slack variables leads to an`

1

-
norm constraint on the dual variables. Therefore, the (dual)
variablesd of the Edge-LP are restricted to intersection of
the probability simplex�N and some hypercube only, where
the size of the hypercube is controlled by some regulariza-
tion constant. Basically, the distributiond is kept near to the

7The boosting algorithms of [9] update the weights of all past
hypotheses in parallel in an attempt to find a close approximation
of the optimal weights of all the past hypotheses.
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center of the simplex�N . The same idea has been proposed
for Boosting in [37].

In view of this discussion, it is natural to keep the�
parameter in the Edge-Entropy problem (10) fixed or lower
bounded. Now the relative entropy term does not vanish and
is traded off with the maximum edge�. The parameter�
should be tuned via cross-validation. The more noise in the
data, the larger� should be. Large� give the relative entropy
to the uniform distribution high importance and the solution
is kept close to the center of the simplex�

N (as in SVMs). It
can be shown that this regularization approach is equivalent
to the PBVM algorithm proposed in [44].

Note that the trade-off between a relative entropy and
some loss has long been used to derive on-line learning al-
gorithms (see the derivation of the Exponentiated Gradient
Algorithm in [23]).

5 Boosting for Regression

So far we were mainly concerned with understanding Boost-
ing algorithms for classification from the barrier optimiza-
tion point of view and pointed out potential extensions. In
this section we will now consider one natural generalization
in depth: Boosting for regression.

5.1 Problem definition

LetH be a finite class of base hypothesesH := fh

j

: X !

R : j = 1; : : : ; Jg. The regression problem is to find some
function8

f

�

2 lin(H); f

�

: X ! R:

f

�

(x) =

J

X

j=1

�

j

h

j

(x) (32)

with � 2 R

J

;x 2 X ;

based on iid (training) data(x
1

; y

1

); : : : ; (x

N

; y

N

) 2 X �R.
The goal of the learning process is to find a functionf with
a small riskR[f ℄ =

R

X�R

l(y � f(x)) dP (x; y), whereP
is the probability measure which is assumed to be responsi-
ble for the generation of the observed data, andl is a loss
function, e.g. l(y � f(x)) = (y � f(x))

2, depending on
the specific regression estimation problem at hand. Since we
do not know the probability densityP and our hypothesis
class might be large, one has to take care that the functionf

does not overfit the data. Thus, one has to introducecapacity
control, i.e. one has to bound thecomplexity of f . One way
to obtain a small(er) risk is to minimize a regularized risk
functional

R

reg

[f ℄ := CP[f ℄ +R

emp

[f ℄ (33)

whereR
emp

[f ℄ :=

1

N

P

N

n=1

l(y

n

� f(x

n

)) is the empirical
risk, P is a regularizer penalizing (and therefore limiting) the
model complexity. The parameterC defines the trade-off
between complexity and empirical risk. Under rather mild
assumptions it can be shown [46] that there exists a constant
C

0 such that minimizing (33) produces the same function as
solving the problem

min

P[f ℄�C0

R

emp

[f ℄: (34)

This is shown by the following lemma:
8In some cases it might be useful also to have a biasb. This

extension is made in Appendix A.1.

Lemma 3 (Along the lines of [46]). Let l(y � f

�

(x)) and
P[f

�

℄ be convex in �. If P defines a structure of nested
subsets of lin(H), then for any sample Z � X � R there
exists a monotonically decreasing function C 0(C), such that
the problems (33)and (34)using C and C 0(C), respectively,
have the same solution sets.

5.2 The Convex Program

Let us assume thatl and P are chosen such thatR
reg

[f

�

℄

is convex in�. Then we can solve the following convex
program for minimizingR

reg

[f

�

℄ with respect to�:

min CP[f
�

℄ +

1

N

N

P

n=1

l(Æ

n

)

with Æ

n

= y

n

� f

�

(x

n

)

n = 1; : : : ; N; Æ 2 R

N

;� 2 R

J

(35)

Consider the following optimization problem which is equiv-
alent to (35) in the spirit of Lemma 3.

min

1

N

N

P

n=1

l(Æ

n

)

with P[f
�

℄ � C

0

Æ

n

= y

n

� f

�

(x

n

)

n = 1; : : : ; N; Æ 2 R

N

;� 2 R

J

(36)

5.3 A Barrier Algorithm

Before we derive the barrier objective, we substituteÆ

n

by
two non-negative variables�

n

; �

�

n

� 0:

Æ

n

= �

n

� �

�

n

:

Then each equality constraint in (35) can be replace by two
inequality constraints:

y

n

�

J

X

j=1

�

j

h

j

(x

n

) � �

n

�y

n

+

J

X

j=1

�

j

h

j

(x

n

) � �

�

n

Thus, the barrier minimization objective for the problem (35)
using the exponential penalty can be written as:

E

�

(�; �; �

�

) := CP[f
�

℄ +

1

N

X

l(�

n

� �

�

n

) +

+�

N

X

n=1

�

e

��

n

=�

+ e

��

�

n

=�

�

+

+�

N

X

n=1

�

e

(Æ

n

��

n

)=�

+ e

(�Æ

n

��

�

n

)=�

�

(37)

whereÆ
n

:= y

n

�

P

J

j=1

�

j

h

j

(x

n

). To show how to mini-
mize (37) using a Boosting-type algorithm, we need to spec-
ify P and l. For convenience we use theL

1

-norm of the
hypothesis weight vector� as a measure for the complexity
of f

�

[45]

P
1

[f

�

℄ := k�k

1

: (38)

Note that it fulfills the assumptions made in Lemma 3. Fur-
thermore, as frequently and successfully used for regression
with SVMs [49, 41], we consider the"-insensitive loss:

l

"

(f(x)� y) := max(0; kf(x)� y

n

k

1

� "): (39)
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The"-insensitive loss has appealing properties, as it will usu-
ally lead to sparse solutions of (35) and the�-trick [42, 45]
can be applied to even optimize" automatically (cf. Ap-
pendix A.2). Note that most of the following derivations for
this particular choice ofP and l generalize easily to other
regularizers and cost functions (e.g. for some other norm of
� and for the squared loss using thelog-barrier function).
Plugging in our definitions ofP[�℄ and l(�) to (37) using
Lemma 3 yields:

E

�

(�; �; �

�

) :=

1

N

k� � �

�

k

1

+

+�

N

X

n=1

�

e

��

n

=�

+ e

��

�

n

=�

�

+

+�

N

X

n=1

�

e

(Æ

n

�"��

n

)=�

+ e

(�Æ

n

�"��

�

n

)=�

�

(40)

with k�k
1

� C

0. Now we can find the optimal slack vari-
ables by minimizing (40) for given� and � by setting
r

�

E

�

= 0 and solving for�; ��. We get:

�

n

(�) = � log(1 + e

�("�Æ

n

)=�

) (41)

�

�

n

(�) = � log(1 + e

�("+Æ

n

)=�

): (42)

As expected,lim
�!0

�

n

(�) = max(0; "�Æ

n

) and lim

�!0

�

�

n

(�) =

max(0; "+ Æ

n

) hold.

5.4 How to Optimize in Practice

Usually, in a barrier algorithm one would optimize alln+2N

parameters directly (up to a certain precision) for some� and
then decrease� until the desired precision is reached. But
then we would need to know all hypothesis inH in advance
in order to optimize their weights (like in SVMs). Thus, we
consider a Boosting-type algorithm that finds one new hy-
pothesish

I

t

and its weight�
I

t

in each iteration. Then there
is only one parameter,�

I

t

(�), to be determined in each iter-
ation.9

In the described setting we can fulfill the constraintk�k

1

�

C

0 only by stopping the algorithm when the constraint is vi-
olated, because the weights of the previous iterations are al-
ready fixed. One way to keep going is to redefine�:

�

j

:= 

j

min(1; C

0

kk

�1

1

) (43)

and to optimize in terms of. Then the constraint is always
fulfilled and is active, if and only ifkk

1

� C

0.10

5.5 Convergence

The critical point in proving the convergence of the algo-
rithm is how the base learner selects the next hypothesis,
i.e. which indexI

t

must be chosen, such thatE

�

is reduced
reasonably – without knowing the whole hypothesis classH

9To minimize (37) with respect to�
I

t

for a given�, one may
employ standard techniques like Brent’s line search methodwhich
work quite fast.

10There are also other ways, like introducing a scaling variable,
to deal with this problem.

Algorithm 1 The"-Boost algorithm

argument: Sample X = fx

1

; : : : ;x

N

g;y = fy

1

; : : : ; y

N

g

Number of iterations T

Regularization constant C

0

Tube size " � 0

constants: �

start

2 (0; 1), p > 1.

returns: Linear combination from H.

function "-Boost(X;y; T; C

0

; ")

Set � = �

start

for n = 1; : : : ; N do
w

n

= exp((�y

n

� ")=�)� exp((y

n

� ")=�)

endfor
for t = 1; : : : ; T

h

t

:= L(X;w)



t

:= argmax



t

;b2R

E

�

(

t

)

Compute � by (43)
Set Æ

n

:= y

n

�

P

j

q

�

q

h

q

(x

n

)

for n = 1; : : : ; N do

w

n

:= e

(Æ

n

��

n

�")=�

� e

(�Æ

n

��

�

n

�")=�

endfor

� if jh

t

(X)

>

wj < �, do
� := �

p

endif
endfor

return f = b+

P

J

t=1

�

t

h

t

end
function E

�

()

Compute � by (43)
Set Æ

n

:= y

n

�

P

t

q=1

�

q

h

q

(x

n

)

Compute �; �

�

by (41) and (42)
Set r := [d

>

+ �

>

+ "1;�d

>

+ �

�

>

+ "1; �

>

; �

�

>

℄

return 1

N

k� � �

�

k

1

+ �

P

q

exp(�r

q

=�)

end

in advance. The idea is as follows: The gradient ofE

�

with
respect to each�

j

can be computed as

r

�

j

E

�

(�; �; �

�

) =

N

X

n=1

w

n

h

j

(x

n

);

wherew
n

= e

(Æ

n

��

n

�")=�

� e

(�Æ

n

��

�

n

�")=� . To reduceE
�

iteratively (for some fixed�) one may choose the hypothesis
h

I

t

such that

I

t

= argmax

j=1;::: ;J

�

�

r

�

j

E

�

�

�

: (44)

This corresponds to a coordinate descent method, the so-
called Gauss-Southwell method, which finally converges [27]
to the global solution ofE

�

– for some fixed�. This choice
of I

t

ensures, that theL
1

-norm ofr
�

E

�

, and therefore any
norm ofr

�

E

�

(if H is finite), will converge to zero for some
fixed�, because of the convergence properties of the Gauss-
Southwell method.

Theorem 4. Assume H is finite. Let the base learner be

L(X;w) := argmax

h2H

jh(X)

>

wj: (45)
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Suppose we run "-Boost (see pseudocode) with C

0

> 0 as
regularization constant and " � 0 as tube size. Then for
T ! 1 the output of the algorithm converges to a global
solution of (36)using l = l

"

and P[f

�

℄ = k�k

1

.

Proof. Assume we would fix� > 0, then the sequence of
�

t generated in each iterationt converges to the global min-
imum ofE

�

exploiting the convexity ofE
�

and the conver-
gence properties of the Gauss-Southwell method. Thus, after
a finite number of steps we have

J

�1=2

kr

�

E

�

(�)k

2

� �:

Moreover, leth
I

t

be the hypothesis found in thet-th iteration
by the base learnerL(X;w

t

). Then

J

�1=2

kr

�

E

�

(�

t

)k

2

� kr

�

E

�

(�

t

)k

1

= h(X)

>

w

t

:

Thus, line� in Algorithm 1 ensures that we decrease� only
if kr

�

E

�

(�

t

)k

2

� �

t

p

J . Hence, the algorithm generates
sequences of�t and(�

t

; �

t

p

J) fulfilling the conditions in
Proposition 2. This proves the theorem.

Let us analyze (45) as a particular way of finding the next
hypothesis: Assumekh

j

(X)k

2

= const for all hypothesis.
Then selecting the hypothesis which minimizes the mean
squared error (MSE)

h = argmin

h2H

1

N

N

X

n=1

(w

n

� h(x

n

))

2

;

will result in the same hypothesis as in (44) and (45).

The definition of the base learner (45) seems to be very
restricting. The next corollary uses a weaker condition onL

and is a direct implication of Theorem 4:

Corollary 5. Assume the conditions as in Theorem 4 and a
base learner L which for some weighting w always returns
a hypothesis h, such that for some K <1

max

h2H

jh(X)

>

wj < Kjh(X)

>

wj: (46)

Suppose we run "-Boost. Then for T ! 1 the output of the
algorithm converges to a global solution of (34).

Proof. Using the same argumentation as in the proof of The-
orem 4, after a finite number of stepst we have a gradient
with respect to a sub-vector� of � satisfying:

J

�1=2

kr

�

E

�

(�

t

)k

2

� �:

Moreover, leth
I

t

be the hypothesis found in thet-th iter-
ation by a base learnerL(X;w

t

) fulfilling condition (46).
Suppose there would exist a hypothesish

j

such that

jr

�

j

E

�

(�)j > K�:

Then the base learner is enforced to returnh

j

before� is
decreased. Thus, the coordinate descent iterations will focus
on directions with large gradients. Thus after a finite number
of iterations the gradient is reduced for such hypothesis as
well, until

kr

�

E

�

(�

t

)k

1

� Kkr

�

E

�

(�

t

)k

1

Hence,

J

�1=2

kr

�

E

�

(�

t

)k

2

� kr

�

E

�

(�

t

)k

1

� Kh(X)

>

w

t

:

Thus, line� in Algorithm 1 ensures that we decrease� only if
kr

�

E

�

(�

t

)k

2

� K�

t

p

J . Hence, the algorithm generates
sequences of�t and(�

t

;K�

t

p

J) fulfilling the conditions
in Proposition 2. This proves the theorem.

NB: One is now looking for a hypothesis which is not too
bad compared to the best hypothesis inH. If K = 1, then
one would allow that the base learner never returns some of
the needed hypotheses. Thus, we could remove them from
H and would getK <1.

5.6 An Experiment on toy data

To illustrate (i) that the proposed regression algorithm con-
verges to the optimal (i.e. zero error) solution and (ii) is ca-
pable of finding a good fit to noisy data we applied it to a toy
example whose results are shown in Figure 1. For simplic-
ity we used radial basis function kernels as base hypothesis,
i.e.H = fh

n

(x) = exp(�2kx� x

n

k

2

) j n = 1; : : : ; Ng.

6 Conclusion

Barrier optimization is a general framework for minimizing
a constrained objective function. We have proposed to un-
derstand AdaBoost or Arc-GV as special iterative strategies
for barrier optimization. This new view suggests that we
can use the tool kit of optimization theory for barrier meth-
ods quite convenient in the context of Boosting and it allows
e.g. simpler convergence proofs and more general Boosting
algorithms for classification and regression. The proposed
new "-Boost algorithm exemplifies this general claim, as it
defines a very natural Boosting scheme for regression.
So far the strength of our contribution is to be seen on the
theoretical and conceptual side. On the practical side this
paper has only shown toy examples, to give the proof of con-
cept. Large scale simulation studies need to follow. Future
theoretical research will be dedicated to further exploiting
the link between barrier methods and Boosting, in order to
obtain extensions of Boosting algorithms that are eventually
faster, better, more general and easier to understand.
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A Extensions

A.1 Regression using a Bias

In some cases it might be useful to have a bias term. One
way to achieve this is using a hypothesis class that includes
the constant function. But then – depending on the definition
of the regularizer – the bias is penalized, too. Therefore, it
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Figure 1: Toy example: The left panel shows the fit of the sinc
function without noise (training samples: dots, fit: line) after a large
number of iterations without any regularization. It is almost perfect,
i.e. empirically the algorithm converges to the optimal solution of
the unregularized linear program. The right panel shows a fitof a
noisy sinc function with regularization parameterC

0

= 4:0 (train-
ing samples: dots, fit: solid,"-tube: dotted, true function: dashed).

is worth investigating how to explicitely introduce it to"-
Boost.

In regression with biasb one has to find some function
f

�;b

2 a�(H); f

�;b

: X ! R:

f

�;b

(x) =

J

X

j=1

�

j

h

j

(x) + b

with � 2 R

J

;x 2 X ; b 2 R;

Thus, we only need to change (32) and all referring equa-
tions. In particular one needs to change the definition ofÆ

n

:

Æ

n

:= y

n

� b�

J

X

j=1

�

j

h

j

(x

n

)

However, the problem is how to find the minimizingb for
(40) in each iteration. One way is to optimizeb separately in
each iteration, e.g. after finding�

I

t

(cf. Algorithm 1). An-
other approach, likely to be more efficient in the number
of boosting iterations, would be to findb and�

I

t

simulta-
neously. Certainly, optimizing two variables instead of one
is much more computationally expensive than for one. But

standard methods like the Newton algorithm or Conjugate
Gradient algorithms work quite fast for two variables. Note
that for both approaches Theorem 4 and Corrolary 5 can be
easily extended.

A.2 Adaptive "-Boost

One problem of the"-insensitive loss used in"-Boost is that
it has a free parameter" specifying the tube size. Tuning"
needs some knowledge about the problem at hand. In [42]
a way for automatically tuning" for SVMs was proposed:
given a constant� 2 (0; 1), the tube-size is automatically
chosen such that approximately a fraction of� patterns lie
outside the"-tube.

This idea was extended in [45] for SVM regression us-
ing linear programming. It turns out to be a straightforward
extension of (36):

min �"+

1

N

P

N

n=1

�

n

+ �

�

n

; " � 0

with �; �

�

2 R

N

+

;� 2 R

J

y

n

� f

�;b

(x

n

) � "+ �

n

; n = 1; : : : ; N

�y

n

+ f

�;b

(x

n

) � "+ �

�

n

; n = 1; : : : ; N

k�k � C

0

(47)

Hence the difference between (36) and (47) lies in the
fact that" has become a positively constrained variable of the
optimization problem itself. The� property for (47), stated
below (see [45, 37]) can be shown straight forward.

Proposition 6 ([45]). Assume " > 0. Suppose we run (47).
The following statements hold:

(i) � is an upper bound on the fraction of errors (i.e. points
outside the "-tube).

(ii) � is a lower bound on the fraction of points not inside
(i.e. outside or on the edge of) the " tube.
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