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are used for some linear combination of hypotheses from a
Abstract given finite hypothesis set. Contrarily, in Section 4 we will

. . . consideriterative algorithms like AdaBoost and Arc-GV.
Boosting algorithms like AdaBoost and Arc-GV

are ite_rative st_rategies_ to minimize a const_rained 2.1 Margin, Edge and Linear Programming
objective function, equivalent to Barrier algorithms. ) ] _
Based on this new understanding it is shown that We begin by focusing on the following problem. We are
convergence of Boosting-type algorithms becomes given a set ofV examplesZ = {(x,,,y,) : 1 <n < N} C
simpler to prove and we outline directions to de- X x {+1} and a (finite) set of hypothesés = {h; : 1 <
velop further Boosting schemes. In particular a Jj < J} ofthe formX” — [—1, +1].
new Boosting technique for regressior-Boost Our goal is to find a “good” convex combination of the
— is proposed. hypotheses, i.e.
7
1 Introduction fa(xn) = ajhj(xy), (1)
j=1

The past years have seen strong interest dedicated to Boost-

ing and ensemble learning algorithms due to their success inyhereq lies in the J-dimensional probability simplek”.
practical classification applications (e.g. [13, 26, 28, 23 Thatis.c: > 0 andEJ a; = 1. If f. is used as a classi-
11]). Recent research in this field now focuses on the better | = Coaj=170 T T e
understanding of these methods and on extensions that aréer then the classification of instangés sign fu (x)).*
concerned with robustness issues [31, 3, 37, 36, 38] or gen-  Let us now define a measure of goodness for a single
eralizations of Boosting algorithms to regression [19,5]4,  example. Thenargin of an examplex,, y,) with respect
The present work aims to contribute in two respects: (a) 0 a given weight vectow is defined ag,, fo (x,). A pos-
we will show an important relation of Boosting to a gen- itive margin corresponds to a correct classification and the
eral class of optimization methods, the so-called bargier o more positive the margin the greater the confidence [39, 40,
timization — a technique to minimize constrained objective 49] that the classification is correct. The margin has been
functions [20]. We clarify that Boosting can be seen as a frequently used in the context of Support Vector Machines
special case of barrier optimization, i.e. as an iteratije a  (SVMs) [49, 47] and Boosting (e.g. [39, 40, 36]). However,
proximation method to a barrier algorithm that also reledes ~ for the definition of the margin one needs to have a normal-
the Gauss-Southwell method [27] of nonlinear optimization ization by some norm af, as otherwise one could arbitrarily
Furthermore, this understanding allows us to outline fbssi  increase the margin by scaling the weight veetoDifferent
paths going beyond existing Boosting schemes. For exam-horms are used for SVMs and Boosting. In SVMs the margin
ple, convergence theorems from the optimization litegatur is normalized by thé,-norm of the weight vector in feature
can be applied, simplifying convergence proofs for Boagtin  Space. In Boosting th& -norm of the weight vector is used
type algorithms. We choose a particularly interesting path (cf. Footnote 1). Note that for the purpose of classification
giving rise to our second contribution: (b) the definition of the normalization of the functiof, is immaterial.
a new Boosting algorithm for regression and its convergence ~ For convenience we introduce the mattix € RY*/,
proof. Experiments on toy examples follow, that show the wherelU,,; = y,h;(x,). Then-th example(x,,,y,) corre-
proof of concept for our regression algorithm. Finally a&bri ~ sponds to the-th row and thegj-th hypothesis to thg-th col-

conclusion is given. umn ofU. We letU,, denote the:-th row of U. With this no-
tation the margin of the-th example igy,, fo (x,,) = U, .

2 Boosting and Convex Programming The margin of a functiorf, is defined as the minimum mar-

In this section we will introduce some terminology and no- INote, that we could use an arbitragy> 0, e.g.||c||: # 1 and

tation conventions. We will mainly consider convex opti- then we would need to normalize the functifn. Here, we use the
mization problems for finding hypothesis coefficients that ¢, norm for the normalization.

170



gin over allN examples, i.e. Both problems are dual to each other and thus the equality of
N the theorem follows from the fact that the primal and the dual
p(e) = min Upa. 2) objective have the same value. Since our hypothesis class is
"= complementation closed, this value is always non-negative
The Margin-LP Problem was introduced in [29] and was first
used for Boosting in [8, 21].

A reasonable choice [29, 21, 1, 49] for a convex combi-
nation is to maximize the minimum margin of the examples,
ie.

choosen* € I'Y such thap(a*) = max p(a). (3) 2.2 Boosting and Relative Entropy Minimization

acl'’

We will now use the Edge-LP problem to make a connection
to a class of Boosting algorithms that use a relative entropy
in the objective function [22, 25, 9]. In tW®tally Corrective
Algorithm of [22] and in a related algorithm by [9] the edge
was forced to be zero for all hypotheses. This essentially
corresponds to the Edge-LP Problem witfixed at0. Fur-
Shermore a relative entropy to the uniform distribution was
used as the objective function:

Roughly speaking, the larger the margin the better the b&und
that can be proven for the generalization error (e.g. [49, 1]
Also SVMs are based on maximizing a minimum margin.
They use thé,-norm to define the margin and the maximum
margin hyperplane maximizes the minimum geometric dis-
tance of the patterns to the hyperplane. In our case we us
the¢;-norm to define the margin. Now the maximum margin
hyperplane maximizes the minimufy, distance of the pat-
terns to the hyperplane [30]. We assume for convenience

N
. dn
throughout the paper that the hypotheses class is comple- e 21 dn1In 1/N

mentation closedi( € ‘H implies—h € H) in order to avoid s.t. dnz 0,d"1=1 8

problems for the case that(a*) < 0. UTd =0 ®)
Boosting algorithms maintain a distributiehe 'V on

the examples. What would be a good choice for this distri- Totally Corrective Algorithm

bution for a given set of examples and hypotheses? AssumeNOte the well-known AdaBoost algorithm [16, 40] can be

for a moment that the labels of the hypothesis are binary, i.e motivated as minimizing a relative entropy subject to the

hj(%n) € {Jj\fl}' Then for a.d|str|but|ortl, the dot product constraint that the edge of only the last hypothesis is zero
U'd = Y, duynhj(xy) is the expectation that; pre- [16, 22, 25, 9].

dicts the{+1} label correctly> We call this theedge [8] of However, how should one choodavhen there is no dis-
the hypothesig ;. Note that a random hypothesis has an ex- tribution d for which the edges of all hypotheses are zero?

pected edge of zero and sinkg(x,,) € [—1,+1], the edge  Theorem 1 implies that if the margja*) > 0, then such

of h; liesin[—1, +1]. We define thedge of a weight vector distributiond does not exist. In this case the minimal edge is
d as the maximum edge over the set of hypotheses, i.e. positive. This question can be answered by adding a relative
entropy to the objective function of the Edge-LP Problem:
€(d) = miax U} d. 4) Py ) . g
]:
. d,
Since is complementation closed, the above is equivalent Ighn e+ f n2—:1 dyn In 1/N
tomaxy_, |U;"d|. Inthe case of Boosting, we want to find a st. d>0d'1=1 ©)
distribution on the examples such that the maximum edge of UTd ’< el

the hypotheses is minimized [8] (a solution always exists): i i
Note that we introduced a constant paramgterhich con-

choosed” € I'Y such thak(d") = qomn ed). (5 trols the trade-off between keeping the edgersus the rel-
ative entropy ofl minimal. Forg — 0 we recover the Edge-
LP Problem. Also note that = 0 is enforced in the above
problem then we arrive at the optimization problem of the
Totally Corrective Algorithm. We believe that above prob-

The minimax theorem of linear programming (LP) can
be used to make the following connection [8, 21, 17, 3] be-
tween the above two optimization problems.

Theorem 1. lem with the trade-off parametegris the natural choice for
min ¢(d) = max p(c). (6) the case whep(a*) > 0. . .
der~ acr’ Before we continue we change to a more convenient vari-

The theorem is proven by considering both sides of (6) ant of the above problem (9). Using the new problem (called
as linear programming problems (Heédeand 1 are vectors the Edge-Entropy Problem) will simplify the notation in the
or all zeros and ones, respectively, where the dimension issequel of the paper. Note that constraints of both problems

understood from the context): are the same, but the objective function of the new problem
max p min e d¢fers by ﬂ_d_Tl(lnN + 1). Since we have the constraint
prx ed d'1 = 1, it is a constant and both optimization problems
st. a>0,a’1=1 d>0,d1=1 are equivalent:
Ua > pl UTd<el (7)

N
min e+ 5. d,lnd, —d,
Margin-LP Problem Edge-LP Problem ed n=1

ot > L T1
2Alternatively, one can use two non-negative weights per hy- St gTZ d0’<d 11 ! (10)
pothesish;, one forh; and one for—h;. S€h
®Here correct means1 and incorrect-1. If correct is encoded
as+1 and incorrect as 0, then it would becoséU; d + 1). Edge-Entropy Problem
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The dual of the above is

pg—U,ax

)

max
Pp,x

S.t.

N
ps— 8 % exp (
n=1

a>0,a'1=1 (11)

Margin-Exp Problem

In Section 4.2 we will present how this problem is related to
the Arc-GV algorithm [8]. Lelpg(cx) be the solution of (11)
for a fixeda. We have:

N U,a
pa(a) = —Blog [Z e (-22)|. a2
n=1
Analyzing the behavior oz () for 5 — 0 yields:
lim ps(a) = p(a), (13)
B—0

where the convergence in terms @fis linear in the worst
case. We can get rid of the varialg in the Margin-Exp
Problem by plugging in the optimais(c) given in (12).
This results in an equivalent optimization problem with one
less variable to optimize:

)+ 1}

Note that except for the constraint’ 1 = 1 (and some con-
stants) the above problem is dual to the optimization proble
(8) of the Totally Corrective Algorithm. Also AdaBoost can
be motivated as optimizing lag of a sum of exponentials,
where the constraintt' 1 = 1 is absentf. Note also that
the solutiona; of the Margin-Exp Problem converges (for

 — 0) to a global solutiorx* of the Margin-LP Problem.

U,
B

N
min [ [Iog > exp (—
o n=1

= (14)
a>0,a’'l=1

S.t.

When the examples are noisy then the solution found by

(3) and (11) for8 — 0 tends to over-fit the data, as all pat-
terns are classified with some non-negative margin [21, 36].
In Section 4.5 we will consider a regularization approach,
where the entropy is used as regularization by keeping
0. Then, the parametg@rspecifies the trade-off between min-
imizing the edge and keeping the relative entropy small.
Note that the constrainSa > pl of the Margin-LP
problem are absent from the Margin-Exp problem. However,

éig}) —Bexp (ﬁfl(p — Una))

= —xiff Uha <p

and thus the additional term (which involves a sum of expo-
nentials) in the objective function of the Margin-Exp Prob-
lem enforces the constraint§,a > p for small enoughg.
This technique for solving a constraint optimization peohl

is known as thexponential barrier method (e.g. [10]). Also

the constraintsl > 0 can be removed when going from the
Edge-LP Problem to the Edge-Entropy problem. Here, the

“However, the scaling can easily be done by settihg=
1/(1Ta*), wherea* is now the unnormalized version of. This
will be worked out in detail in Section 4.2.

SFor the case that the solution of the Margin-LP Problem is not
unique, (14) prefers solutions which have a small relativeapy
in the dual domain.
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entropy term works as a barrier for the non-negativity con-
straints. This barrier function is called thetropic barrier
[6].

Before we show some more connections to Boosting in
Section 4, we will introduce the numerical method of barrier
optimization in the next section.

3 Barrier optimization

3.1 Problem definition

Let us shortly review some basic statements and formula-
tions about barrier optimization techniques. For detdils,
reader is referred to e.g. [20, 6, 27]. Consider the convex
optimization problem

9(0)
Cn(g) >0,

min

with (15)

Vn=1...N
We callC the convex set of feasible solutions described by
C={0 :c¢,(0)>0, Vn=1,...,N}. (16)

We assumg is non-empty, i.e. there exists a feasible solu-
tion. If the functiong(0) is strictly convex, then the solution
of problem (15) is unique. I§(8) is convex only, there exists
a set of global solution®*. Note that from the convexity of
¢(0) andC follows that any local minimum is a global mini-
mum as well.

3.2 Barrier functions

Problem (15) can be solved by finding a sequence of (uncon-
straint) minimizers of the so called barrier (or penaltyper
function

N
Es5(0) = g(0) + > ra(cn(8)), (17)

where, k3 is a barrier function ang > 0 is a penalty pa-
rameter. Common choices fa can be found in Table 1.
Barrier algorithms use a suitably chosen sequengisdhat
goes to zero. For eagh using thef found in the previous
iteration as a starting value, (17) is minimized.

For the Log-Barrier and the Entropic Barrier the inital
has to be a feasible solutions. The barrier function assures
that the sequence éfs corresponding to the decreasing se-
quence off values remain feasible. Thus the firgkl is ap-
proached from the “interior” of the feasible region. Metsod
based on the Log-Barrier and the Entropic Barrier are there-
fore called interior point methods. Such methods are often
used for finding solutions for SVMs [7].

Table 1: Common barrier functions used in convex optimiati

ka(t) Name
—pBlogt Log-Barrier [6, 20, 27]
—ptlogt Entropic Barrier [6, 27]
Bexp(—t/B) | Exp-Barrier [10, 24, 12, 33]

In the case of the Exp-Barrier, the initial solution does not
have to be feasible [10]. For the Exp-Barrier the minimizers



of Ez(@) will become feasible automatically, wheh be-
comes small enough. If a constraint is violated then this wil
lead to an exponential growth in the barrier objective (17).
So the barrier has the effect that it kegp#n the feasible
region or pulls it closer to a feasible solution. Note that En
tropic Barrier is the dual of the Exp-Barrier (cf. Sectio2R.

type stated in Section 2. It is shown, that Boosting is basi-
cally a Gauss-Southwell method minimizing a barrier func-
tion.

Throughout the paper, we will think of dealing in each
iterationt of Boosting with a full hypothesis weight vector
at of size J. However, usually we will change only one

The Exp-Barrier can also be used to solve the feasibility entry j at a time. We denote bj; the index of the hypoth-

problem for convex programming:

find 6
with ¢, (@) >0 VYn=1...N

In fact, we will see in Section 4.3 that AdaBoost exploitdtha
property. Solving the feasibility problem with interior ipb
methods is more involved [48]. In the rest of the paper we

(18)

concentrate on the Exp-Barrier only and focus on its connec-

tion to Boosting methods. Most of the work in Section 5 can
be extended to other barrier functions.

3.3 Convergence

Besides an intuitive reasoning for the barrier function-con
verging to an optimal solution of (15) the following present
some more formal aspects. Let us define

0 := argmin E(60) (29)
0

as the optimal solution for some fix¢d Moreover, let®*
be the set of global solutions of (15). Then for any barrier
function and any sequengg — 0 holds:

lim 85, € © (20)

However, for the Exp-Barriérit it turns out to be unnec-
essary teexactly minimize Eg, for eachg,. The following

proposition shows how close an estimateo 65, has to be,
in order to obtain the desired convergence:

Proposition 2 (along the lines of [10]). Assume g and c,
are differentiable and convex functions. Let 0" be an §; > 0
minimizer of

N
B, (0) = g(0) + B Z exp(—cn(0)/8:),  (21)

i.e. ||VoEs, (0")|| < 6. Then, for 6, By 2% 0 every limit
point of {0 }1en is a global solution to (15)

In the sequel we will often use a simpler version of Proposi-
tion 2, where we usé, = 3, and requiré| Ve Eg, (6°)|| < B;.

4 Boosting as Barrier Algorithms

esis that has been chosen in thih iteration and byy;, the
hypothesis coefficient that has been updated. Tlius,a
mapping from the hypotheses that have been chosen so far to
H,i.e.l :N— H.

4.1 The underlying Optimization Problem

Let f be a convex combination (cf. Section 2) of hypotheses
h € H as defined in Section 2

J
falx) =3
=1

where we enforce the hypothesis coefficients to sum to one
by dividing by ||a|]:. For simplicity, we will consider the
unnormalized version ofe throughout the rest of the paper
and normalize, if it is needed.

Suppose one would like to solve the Margin-LP Problem
(7), where we can omitthe " 1 = 1 constraint due to of the
normalization introduced in (22):

@y

h'(X),

22
Tl (@2)

max p

with ynfa (xn) Z P>
a>0

(23)

Note that the constraink; > 0 can always be enforced
by selecting the; with the appropriate sign (we have as-
sumed complementation closednes{pf For convenience,
we will in the sequel also often write " 1 instead of||«||; -
Using (17) and the definition df ,; we minimize

al el — Uper
Es(a,p) =—p+8_ exp (W) (24)

with respect tgp anda with a > 0. Let
[as, ps]

n=1

argmin Eg(a, p) (25)

a>0,p
and letja*, p*] be a global solution to (23). Note that =
ps () introduced in Section 2.2. Using (20) we conclude,
that

lim [oes, ps] = [, p] (26)
B—0
4.2 Arc-GV - A Greedy Algorithm

Let us now consider one particular iterative strategy far-mi

In Section 2 we have considered convex optimization prob- imizing (24) which will turn out to be exactly Arc-GV: We

lems for finding the hypothesis coefficientsfor a given fi-
nite hypothesis sef{. Now, we would like to consider itera-
tive algorithms that have to solve two problems: In each iter
ation one has to select a hypothesis frahand then one as-

start witha® = 0 andf,o = 0. In each iterationt we (i) ap-

proximateps and (i) find a hypothesis; € H (i.e. anindex

j) and updatey; to get the new hypothesis weight vecte.
Now the details: First we set; = ||af||~* which is a

signs a weight to the selected hypothesis. We will show how reasonable choice, as (assuming complementation closed hy

AdaBoost [16] and Arc-GV [8] can be understood as par-
ticular implementations of a barrier optimization apprtoac
asymptatically solving convex optimization problems of th

SFor other barrier functions there exist similar results.
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pothesis sets) for AdaBoost and Arc-G\|| — oo holds.
In step (i) one approximates the minimum margin by
(cf. Eq. (13))

p= p(atil) = mgn Ynfat—1(Xn).



In step (ii) one updates the hypothesis weighting by
N
ay, = argmin Y exp (el — Uex)

gy

(27)

n=1

where one chooses the indéxsuch that the sum in (27) is
minimal. That is, one finds the hypothesis such that some
weighted training erroe is minimized [16]. Note that for
the case where we uget1}-valued weak learners one can
compute a closed form solution [8] for (27):

o _11 1—c¢
oqt—20g 7

€

Moreover, note thgt is the same asop used in [8].

Proposition 2 serves as a useful tool for proving the con-
vergence of such kind of algorithms: From the fast conver-
gence ofp to pz we can conclude thaf , E3(a, p) vanishes
fast. Consider the update for the hypothesis weighgiven
by (27) and (28), respectively. Under rather mild assump-
tions, one can show that in the limit fgex||; — oo holds:

(29)

p

(28)

argmin Eg(a,p) = ay,,
g, ZO

wherea is the vector of the last iterationn’—! changed in
the I;-th component only. This is because the fagtor=
le||T* in front of the sum in (24) loses its influence on the
minimization ofa;, as||«||} ! becomes large.

However, (29) does not imply that the gradient with re-
spect toa: becomed) yet, as needed to apply Proposition 2.
It needs some more argumentation to show that

VaEs(@,p) = 0, (30)

where one exploits that always the best hypothégjsis
found. Essentially, a proof can be done in the style of Theo-

here and drop the in front. What remains is only the sum
of (31). By using the same simplified optimization strategy
(coordinate-wise descent) and settifigs ||c||7* in (31)

as before, we obtain the original AdaBoost error function
[8, 18, 31, 36]. Thus, we will get a solution with margin at
leastyp, if ||a||; — co. Note that||«||; will stay bounded if
and only if there is no solution [16, 36].

4.4 TIterative Boosting Algorithms that always update
all previous coefficients

There are two basic approaches for designing boosting algo-
rithms. The first one is to update the coefficient of a single
(possibly new) hypothesis in each iteration. In this apphoa
we want to do little work per iteration. Typical examples are
AdaBoost and Arc-GV. A second approach is to ignore op-
timization issues and use the optimization problems censid
ered in Section 2.1 to always find the optimal weights of all
past hypotheses. The Totally Corrective Algorithm of [22]
and the Column Generation Algorithm of [3] are particular
examples using this approath.

Assume at triat we already have a subskt—! oft — 1
hypotheses from the base g¢t We also have a vectar!—!
of t — 1 weights for combining the hypotheses®f ! in
some optimal way. This vector was found by solving some
convex optimization problem (e.g. the Margin-Exp Problem)
when applied to the s@{’~*. Note that via the dual relation-
ships we always have a corresponding distributién! on
the examples. During trigdlwe add one more hypothegis
from the base se# to H!~! to form ! and then find new
weightsa? for all hypotheses oH?.

We have not specified how to choose the new hypothesis
hg attrialt. A natural greedy heuristic is choose a hypothesis
such that the value of optimization problem fiéf_, U {h:}
is optimized or approximately optimized.

rem 4 in Section 5.5, where one uses the convergence proper-  Basically, any optimization algorithm for finding a linear
ties of the Gauss-Southwell method (gradient-descentin co combination for a fixed set of hypotheses (or by the duality
ordinate directions with maximal gradient) [27]. One has to relationship a distribution based on these hypothesespimm

show, that|c|; grows slow enough while the gradients be- diately leads to a boosting algorithm via the above scheme.
come smaller. Similar techniques have been used in [15, 14]

and (30) has already been shown in [8], so we will not go 4.5 A regularized Version of Boosting
into further details. Using the property (30), one can finall
apply Proposition 2 which shows the convergence.

Based on the argumentation above, we would like to view
Arc-GV as a barrier algorithm using a particular strategy (r
lated to the Gauss-Southwell method) for minimizifg
and choosing.

The question is which optimization problem should we use
to construct a boosting algorithm (via the scheme of the pre-
vious subsection) in the case when the examples is noisy.
Before we address this we give some background. It has
been shown that solutions found by AdaBoost, Arc-GV and
also for the Margin-Exp problem fgt — 0, tend to over-fit

4.3 AdaBoost — Finding a Separation the data, as all patterns are classified with some non-wegati

i . margin [21, 36]. Several approaches have been proposed to
We can argue as before and find that AdaBoost can be inter-yeq[ with this situation. For SVMs slack variables have been
preted as a barrier algorithm for finding a separation of some

- ; ) s ; frequently used [4, 49] to allow for someft margin, i.e. vi-
training set with margin at leagt For this, wefixotopand  jations of the margin constraints similar to (7). In theldua
get the barrier function from Eq. (24)) as

Bllely

domain the introduction of slack variables leads tofan
norm constraint on the dual variables. Therefore, the jdual
Originally, the in front of the sum in (31) down-weights
the constraint penalties against the objective. But in dsec

variablesd of the Edge-LP are restricted to intersection of
the probability simplexX™ and some hypercube only, where
the size of the hypercube is controlled by some regulariza-

of AdaBoost and Arcing we havwe = 0 andy = const.,

respectively, and our goal is to simply obtain a feasible-sol

tion (y,, fo (x) > ¢, cf. Eq. (18)). Thus, we can omit thie

N
Bute) =0+ 3o

n=1
tion constant. Basically, the distributiehis kept near to the
"The boosting algorithms of [9] update the weights of all past

hypotheses in parallel in an attempt to find a close apprcioma
of the optimal weights of all the past hypotheses.
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center of the simpleX”. The same idea has been proposed
for Boosting in [37].

In view of this discussion, it is natural to keep ti¥e
parameter in the Edge-Entropy problem (10) fixed or lower
bounded. Now the relative entropy term does not vanish and
is traded off with the maximum edge The parametef
should be tuned via cross-validation. The more noise in the
data, the larges should be. Largg give the relative entropy
to the uniform distribution high importance and the solntio
is kept close to the center of the simpléX (as in SVMs). It
can be shown that this regularization approach is equivalen
to the PBVM algorithm proposed in [44].

Note that the trade-off between a relative entropy and
some loss has long been used to derive on-line learning al-
gorithms (see the derivation of the Exponentiated Gradient
Algorithm in [23]).

5 Boosting for Regression

So far we were mainly concerned with understanding Boost-
ing algorithms for classification from the barrier optimiza
tion point of view and pointed out potential extensions. In
this section we will now consider one natural generalizatio
in depth: Boosting for regression.

5.1 Problem definition

Let H be a finite class of base hypothe$és= {h; : X —
R:j=1,...,J}. The regression problemis to find some
functiorf f, € lin(H), fo : & = K

J
fa(x) = > ajhi(x) (32)
j=1

with acR/ ,xex,

based oniid (training) dat&; ,y1), . . ., (xn,yn) € X xR

The goal of the learning process is to find a functjowith

a small riskR[f] = [, ,l(y — f(x))dP(x,y), whereP

is the probability measure which is assumed to be responsi-
ble for the generation of the observed data, &mla loss
function, e.g.l(y — f(x)) = (y — f(x))?, depending on

Lemma 3 (Along the lines of [46]). Ler I(y — fo(x)) and
P[fo] be convex in a. If P defines a structure of nested
subsets of lin(H), then for any sample Z C X x R there
exists a monotonically decreasing function C'(C), such that
the problems (33)and (34) using C and C'(C), respectively,
have the same solution sets.

5.2 The Convex Program
Let us assume thdtandP are chosen such that,.,[f«]

is convex ina. Then we can solve the following convex
program for minimizingR.cg[ fo] With respect tax:

N
min  CP[fa] + % X 1(0,)
n=1
with 6, = yn — fa(xn)
n=1,..., N0 e RV aecR/

Consider the following optimization problem which is equiv
alent to (35) in the spirit of Lemma 3.

N
min %le(én)
with P[fa] < C’
On :yn_fa(xn)
n=1,..., N0 e RV, aecR/

5.3 A Barrier Algorithm

Before we derive the barrier objective, we substitiieby
two non-negative variables,, £ > 0:

(5n :gn _f;;

Then each equality constraint in (35) can be replace by two
inequality constraints:

(35)

(36)

J
Yn — Za]hj(xn) S fn
j=1

J
_yn+zajhj(xn) < g:z
j=1

Thus, the barrier minimization objective for the probler)3

the specific regression estimation problem at hand. Since weUSing the exponential penalty can be written as:

do not know the probability density? and our hypothesis
class might be large, one has to take care that the fungtion
does not overfit the data. Thus, one has to introdupeciry
control, i.e. one has to bound themplexity of f. One way

to obtain a small(er) risk is to minimize a regularized risk
functional

Rieg[f] := CP[f] + Rempl[f] (33)

whereRep,[f] := + ZnN:1 l(yn — f(x4,)) is the empirical
risk, P is a regularizer penalizing (and therefore limiting) the
model complexity. The parametér defines the trade-off
between complexity and empirical risk. Under rather mild

Bx(0,€) = OPlfa] + 5 Y16~ ) +
N

+8Y (efsn/ﬁ 4 efsz/ﬁ) n
n=1

+3 i (ewn—sn)/ﬁ + ewnfs;)m) (37)
n=1

wheres,, = y, — Z‘j]:l ajhj(z,). To show how to mini-
mize (37) using a Boosting-type algorithm, we need to spec-
ify P andl. For convenience we use thig-norm of the

assumptions it can be shown [46] that there exists a constanhypothesis weight vectar as a measure for the complexity

C' such that minimizing (33) produces the same function as
solving the problem

i Mool

This is shown by the following lemma:

8In some cases it might be useful also to have a biaZhis
extension is made in Appendix A.1.

(34)
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of fo [45]
Pi[fa] := [l (38)

Note that it fulfills the assumptions made in Lemma 3. Fur-
thermore, as frequently and successfully used for regressi
with SVMs [49, 41], we consider theinsensitive loss:

(f(x) —y) := max(0, [[f (%) —ynllL —&).  (39)



Thee-insensitive loss has appealing properties, as it will Usu- Algorithm 1 Thee-Boost algorithm
ally lead to sparse solutions of (35) and thrick [42, 45]

can be applied to even optimizeautomatically (cf. Ap-
pendix A.2). Note that most of the following derivations for
this particular choice oP andi generalize easily to other
regularizers and cost functions (e.g. for some other norm of
«a and for the squared loss using tlg-barrier function).
Plugging in our definitions oP[-] and ((-) to (37) using
Lemma 3 yields:

argument: Sample X ={xy,...,xy},y ={y1,.-.,Un}
Number of iterations T
Regularization constant C'
Tube size € >0

constants: S, € (0,1), p>1.

returns: Linear combination from H.

function e¢-Boost(X,y,T,C’,¢)

Set B = Bstart

B | N for n=1,... ,N do
5(0,6,67) = e~ €l + wn = exp((—yn — £)/8) — exp((ya — €)/8)
N endfor
—&n /8B —£,./8 for t=1,...,T
R (e b= L(X, W)
N 7 3= argmax Es(v")
e S e Yt ,b€
+ﬂz (6(6” /B 4 gl=0n E")/B) (40) Compute a by (43)
n=t Set Op:=yn — Zfl aghg(zy)
with ||a|l; < C'. Now we can find the optimal slack vari- for n=1,...,N do )
ables by minimizing (40) for giver8 and @ by setting wy, 1= e0n—8n—8)/B _ o(-0n—8,—2)/8
V¢Ez = 0 and solving forg, £*. We get: endfor
« if |m(X)"w| <3, do
€n(B) = Blog(l + e (70n)/B) (41) B =GP
6(8) = Blog(1+e”F/A). (42) endlor
As expected]im &, (8) = max(0,e—d,) andlim &*(8) = return f=b+Y | ahy
B—0 B—0 end

max(o, €+ 671) h0|d function E’,B (7)

Compute a by (43)
Set 0p =y — Zzzl aghg ()
Compute &£,£" by (41) and (42)

5.4 How to Optimize in Practice
Usually, in a barrier algorithm one would optimizea#-2 N

parameters directly (up to a certain precision) for sghaed ATy T T, T T o%T
then decreasg until the desired precision is reached. But set r T [d +§ tel,—d +&" +el,6,8 ]
then we would need to know all hypothesisfihin advance return (€ — &7l + B2, exp(=ry/B)

in order to optimize their weights (like in SVMs). Thus, we end
consider a Boosting-type algorithm that finds one new hy-
pothesish;, and its weighty, in each iteration. Then there
is onlg/ one parametetyy, (3), to be determined in each iter-
ation:

In the described setting we can fulfill the constrdjod|; <

C' only by stopping the algorithm when the constraint is vi- . N

olated, because the weights of the previous iterationslare a Va; Ep(e,§,8") = Z wnh;(xn),
ready fixed. One way to keep going is to redefine n=1

in advance. The idea is as follows: The gradienEgfwith
respect to each; can be computed as

, A wherew,, = elon €. =9)/8 _ ¢(=0.—€.=2)/8_To reducek
a; :=; min(L, Cflv][; ) (43) iteratively (for some fixe@®) one may choose the hypothesis

and to optimize in terms of. Then the constraint is always hz, such that
fulfilled and is active, if and only if|y||; > C'.1° I; = argmax |V, Eg| . (44)
j=1,..,J

This corresponds to a coordinate descent method, the so-
5.5 Convergence called Gauss-Southwell method, which finally converge¥ [27

The critical point in proving the convergence of the algo- t© the global solution ofi; — for some fixedS. This choice

rithm is how the base learner selects the next hypothesis Of /+ ensures, that thé.,-norm ofV Ej5, and therefore any

i.e. which indexZ; must be chosen, such th&, is reduced ~ N0'M ofVq Ej (if H is finite), will converge to zero for some

reasonably — without knowing the whole hypothesis cliss fixed 3, because of the convergence properties of the Gauss-
Southwell method.

To minimize (37) with respect tez, for a givens, one may
employ standard techniques like Brent's line search mettitidh
work quite fast.

There are also other ways, like introducing a scaling végiab L(X,w) := argmax |h(X) "w]|. (45)
to deal with this problem. heH

Theorem 4. Assume H is finite. Let the base learner be
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Suppose we run e-Boost (see pseudocode) with C' > 0 as Hence,
regularization constant and € > 0 as tube size. Then for

—1/2 t t
T — oo the output of the algorithm converges to a global J7Y VaBs(@)lz < [[VaBs(a)l
solution of (36)using | = I, and P[fo] = ||c]|1- < Kh(X)Tw'
Proof. Assume we would fix3 > 0, then the sequence of  Thus, linexin Algorithm 1 ensures that we decregsenly if
a! generated in each iteratiertonverges to the global min- IVaEs(at)|l, < KB:V/J. Hence, the algorithm generates

imum of E3 exploiting the convexity o3 and the conver- { . .
gence properties of the Gauss-Southwell method. Thus, afte isneglrjgggsei?i;]ﬂz a?ﬁi(sﬁé}glgg\{ge) J#lefglr'gr%the cond|t|ogs

a finite number of steps we have

J*1/2||vaEﬁ(a)||2 < B. NB: One is now looking for a hypothesis which is not too
T ) _ bad compared to the best hypothesigfinlf K = oo, then
Moreover, let;, be the hypothesis found in theth iteration  gne would allow that the base learner never returns some of

by the base learndr(X, w'). Then the needed hypotheses. Thus, we could remove them from
J71/2||VQEB(at)||2 < ||vo¢EB(at)||oo H and would gef{ < oo.
= h(X)"w' 5.6 An Experiment on toy data
Thus, linex in Algorithm 1 ensures that we decreggenly ~ To illustrate (i) that the proposed regression algorithm-co

if [|VaEs(al)|ls < 8,7/ 7. Hence, the algorithm generates Verges to the optimal (i.e. zero error) solution and (ii)as c

: - o . pable of finding a good fit to noisy data we applied it to a toy
;erggggi%iigﬁ_r?‘?sdé?&g?{ge) tfﬁgglr'gg]the condltlonst example whose results are shown in Figure 1. For simplic-

ity we used radial basis function kernels as base hypothesis
Let us analyze (45) as a particular way of finding the next i-€.7 = {h,(x) = exp(=2[|x — x,|*) [n =1,... ,N}.
hypothesis: Assumgh;(X)||. = const for all hypothesis.

Then selecting the hypothesis which minimizes the mean6 Conclusion

squared error (MSE) . o L
Barrier optimization is a general framework for minimizing
1 & ‘ a constrained objective function. We have proposed to un-
h = argmin — > (w, — h(x,))?, derstand AdaBoost or Arc-GV as special iterative strategie
REH el for barrier optimization. This new view suggests that we
will result in the same hypothesis as in (44) and (45). can use the tool kit of optimization theory for barrier meth-

ods quite convenientin the context of Boosting and it allows
e.g. simpler convergence proofs and more general Boosting
algorithms for classification and regression. The proposed
new e-Boost algorithm exemplifies this general claim, as it
defines a very natural Boosting scheme for regression.

The definition of the base learner (45) seems to be very
restricting. The next corollary uses a weaker conditior.on
and is a direct implication of Theorem 4:

Corollary 5. Assume the conditions as in Theorem 4 and a So far the strength of our contribution is to be seen on the
base learner L which for some weighting w always returns theoretical and conceptual side. On the practical side this
a hypothesis h, such that for some K < oo paper has only shown toy examples, to give the proof of con-
T T cept. Large scale simulation studies need to follow. Future
e (X)) w] < K|h(X) w]. (46) theoretical research will be dedicated to further expigiti
the link between barrier methods and Boosting, in order to
Suppose we run e-Boost. Then for T — oo the output of the obtain extensions of Boosting algorithms that are evehtual
algorithm converges 10 a global solution of (34) faster, better, more general and easier to understand.

Proof. Using the same argumentation as in the proof of The-
orem 4, after a finite number of stepsve have a gradient
with respect to a sub-vectar of « satisfying:

Acknowledgments: We thank Alex Smola, Bob William-
son and Bernhard Scholkopf for valuable discussions. This
work was partially funded by DFG under contract JA 379/91,
J Y| VgEs(ah)|s < B. JA 379/71 and by EU in the NeuroColt2 project. Manfred
] . . Warmuth and a visit of Gunnar Ratsch to UC Santa Cruz
Moreover, leth;, be the hypothesis found in theth iter- were partially funded by the NSF grant CCR-9821087. Gun-

ation by a base learndi(X, w') fulfilling condition (46).  nar Ratsch would like to thank CRIEPI, ANU and UC Santa
Suppose there would exist a hypothdsisuch that Cruz for warm hospitality.

Va, Esla)] > K§.

Then the base learner is enforced to rethsnbefore is
decreased. Thus, the coordinate descent iterations wilkfo  A.1  Regression using a Bias
on directions with large gradients. Thus after a finite numbe
of iterations the gradient is reduced for such hypothesis as
well, until

A Extensions

In some cases it might be useful to have a bias term. One
way to achieve this is using a hypothesis class that includes
the constant function. But then — depending on the definition
IVaEs(@h)]loo < K||[VaEs(a!)|lw of the regularizer — the bias is penalized, too. Therefdre, i
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Figure 1: Toy example: The left panel shows the fit of the sinc
function without noise (training samples: dots, fit: linépaa large
number of iterations without any regularization. It is abhperfect,
i.e. empirically the algorithm converges to the optimalusioin of
the unregularized linear program. The right panel shows f fit
noisy sinc function with regularization paramet&r = 4.0 (train-
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ing samples: dots, fit: solid-tube: dotted, true function: dashed).

is worth investigating how to explicitely introduce it to
Boost.

In regression with bias one has to find some function
fa,b € aH(H)afa,b X = R

J
fap(®) = D ajhi(x)+b
j=1

with acR xeX beR,

Thus, we only need to change (32) and all referring equa-
tions. In particular one needs to change the definitiof),of

J
Op :=Yn—b— Z a;hi(xy,)
j=1

However, the problem is how to find the minimizidgor
(40) in each iteration. One way is to optimizeeparately in
each iteration, e.g. after finding;, (cf. Algorithm 1). An-
other approach, likely to be more efficient in the number
of boosting iterations, would be to findand a;, simulta-
neously. Certainly, optimizing two variables instead oéon
is much more computationally expensive than for one. But
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standard methods like the Newton algorithm or Conjugate
Gradient algorithms work quite fast for two variables. Note
that for both approaches Theorem 4 and Corrolary 5 can be
easily extended.

A.2 Adaptive c-Boost

One problem of the-insensitive loss used #rBoost is that
it has a free parameterspecifying the tube size. Tuning
needs some knowledge about the problem at hand. In [42]
a way for automatically tuning for SVMs was proposed:
given a constant € (0, 1), the tube-size is automatically
chosen such that approximately a fractiorvopatterns lie
outside thes-tube.

This idea was extended in [45] for SVM regression us-
ing linear programming. It turns out to be a straightforward
extension of (36):

min  ve+ & 30 & +&5,6 >0

with &, eRY, a e R’
yn_fa,b(xn)gg_'_fn; ’I'L:].,...,N (47)
—Yn + fap(xn) <e+&, n=1,...,N
lleef] < C

Hence the difference between (36) and (47) lies in the
fact thate has become a positively constrained variable of the
optimization problem itself. The property for (47), stated
below (see [45, 37]) can be shown straight forward.

Proposition 6 ([45]). Assume € > 0. Suppose we run (47)
The following statements hold:

(i) v is an upper bound on the fraction of errors (i.e. points
outside the e-tube).

(ii) v is a lower bound on the fraction of points not inside
(i.e. outside or on the edge of) the ¢ tube.
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