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Abstract

We describe a novel family of PAC model algo-
rithms for learning linear threshold functions. The
new algorithms work by boosting a simple weak
learner and exhibit complexity bounds remarkably
similar to those of known online algorithms such
as Perceptron and Winnow, thus suggesting that
these well-studied online algorithms in some sense
correspond to instances of boosting. We show that
the new algorithms can be viewed as natural PAC
analogues of the onling-norm algorithms which
have recently been studied by Grove, Littlestone,
and Schuurmans [16] and Gentile and Littlestone
[15]. As special cases of the algorithm, by taking
p = 2 andp = oo we obtain natural boosting-
based PAC analogues of Perceptron and Winnow
respectively. The = oo case of our algorithm
can also be viewed as a generalization (with an im-
proved sample complexity bound) of Jackson and
Craven’s PAC-model boosting-based algorithm for
learning “sparse perceptrons”[20]. The analysis of
the generalization error of the new algorithms re-
lies on techniques from the theory of large margin
classification.

are conceptually and algorithmically very different from Per-
ceptron and Winnow, we establish performance bounds for
the new algorithms which are remarkably similar to those of
Perceptron and Winnow; we thus refer to the new algorithms
asPAC analogues of Perceptron and Winnow. We hope that
the analysis of these new algorithms will yield fresh insights
into the relationship between boosting and online algorithms.

We give a unified analysis of our Perceptron and Winnow
analogues which includes many other algorithms as well.
Grove, Littlestone and Schuurmans [16] have shown that
Perceptron and (a version of) Winnow can be viewed as the
p = 2andp — oo cases of a general onlinrenorm lin-
ear threshold learning algorithm, whepe> 2 is any real
number. We present PAC-model boosting-based analogues
of these onlingp-norm algorithms for any valug < p <
0o. The PAC-model Perceptron and Winnow analogues men-
tioned above are respectively the= 2 andp = oo cases of
this general algorithm.

Thep = oo case of our algorithm can also be viewed as
a generalization of Jackson and Craven’s PAC-model algo-
rithm for learning “sparse perceptrons” [20]. Their algorithm
boosts using weak hypotheses which are single Boolean lit-
erals; this is similar to what the = co case of our algorithm
does. Our analysis of the= oo case generalizes their algo-
rithm to deal with real-valued rather than Boolean input vari-
ables and yields a substantially stronger sample complexity
bound than was established in [20].

Section 2 of this paper contains preliminary material, in-

1 INTRODUCTION cluding an overview of the onling-norm algorithms from

One of the most fundamental problems in computational learrit>, 16]. In Section 3 we present a simple PAC-mogel

ing theory is that of learning an unknown linear threshold Norm algorithmand prove thatitis a weak learning algorithm
function from labeled examples. Many different learning for all2 < p < cc. In Section 4 we apply techniques from
algorithms for this problem have been considered over the the theory of large margin classification to show how our
past several decades. In particular, in recent years many re¥veak learning algorithm can be boosted to a strong learning
searchers have studied simple online additive and multiplica- 2/g0rithm with small sample complexity. Finally, in Section
tive update algorithms, namely the Perceptron and Winnow 5 we compare our PAC algorithms with the analogous online

algorithms and variants thereof [3, 5, 8, 14, 15, 16, 25, 26, &lgorithms, extend our algorithm to the case: oo, and dis-
27,28, 33, 36]. cuss the relationship between the= oo case of our algo-

This paper takes a different approach. We describe a nat.fithm and the Jackson—Craven algorithm for learning sparse
ural parameterized family of boosting-based PAC algorithms PErceptrons.
for learning linear threshold functions. The weak hypotheses 1.1 RELATED WORK

used are linear functionals and the strong classifier obtained

is a linear threshold function. Although these new algorithms Several authors have studied linear threshold learning algo-
rithms which work by combining weak predictors. Freund

*Supported in part by an NSF Graduate Fellowship, by NSF and Schapire [14] describe an algorithm which combines in-
grant CCR-95-04436 and by ONR grant N00014-96-1-0550. termediate Perceptron algorithm hypotheses using a weighted
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majority vote (so the final classifier is a depth-2 threshold 2.1 PAC LEARNING

circuit) and prove bounds on the generalization error of the oo ¢ 17 et EX (@, D) denote arexample oracle which,
resulting classifier. Their algorithm does not use boosting to \; hen queried, proviaes a labeled exam@e sign(i - #))
combine the Perceptron hypotheses but rather weights themypere; is drawn according to the distributid over X. We
according to their survival time. Ji and Ma [21] propose a say that an algorithrd is astrong learning algorithm for @
random-search-and-test approach to find weak classifier lin-;,,"y it jt satisfies the following condition: there is a function
ear threshold functions and combine them by a simple MaJor- (¢ 5,4, X) such that for any distributio® over X, for
ity vote (thus also obtaining a depth-2 threshold circuit). Our 4 <’ 57,5 < 1, algorithm A makes at mostu(e, 5, aj,X)
approach is closest to that of Jackson and Craven [20] who 4|5 toEX (@, D), and with probability at least — § algo-
use boosting to combine single literals into a strong hypo- ithm 4 outpljts a hypothesis : X — {—1,1} such that
thesis linear threshold function. As described in Section 5, Proeplh(i) # sign(a - )] < e. We say that such a hypo-
thep = oo case of our algorithm strengthens and general- \wesish, is ane-accurate hypothesis for i under D and that

izes their results. More generally, we also note that Freund ihe function 5.4, X) is the I lexity of alao-
and Schapire [12] and Schapire [32] have exhibited a close jthm 4. m(e,9, % ) sampte compiexity d

relationship between boosting and online learning. As our main result we describe a strong learning algo-
rithm and carefully analyze its sample complexity. To do this
2 PRELIMINARIES we must consider algorithms which do not satisfy the strong
) ] o . learning property but are still capable of generating hypothe-
We start with some geometric definitions. For a paint ses that have some slight advantage over random guessing
(x1,...,2n) € " andp > 1 we write[|Z||, to denote the  (such so-called weak learning algorithms were first consid-
p-norm of z, namely ered by Kearns and Valiant in [24]). Let
n 1/p S = (&, sign(@ - &h)), ..., (@™, sign(i - ™))
zll, = (Z |wi|p> be a finite sequence of labeled examples ftEnand letD
i=1 be a distribution ovelS. For0 < v < 1/2, we say that

Theco-norm of is ||| = maxi_s... . |z:|. Forp,q > 1 h: X — [-1,1]is a(1/2 — v)-approximator for G under D

the g-norm isdual to thep-norm if £ + L = 1; hence the

1-norm and thexo-norm are dual to each other and the 1 ¢ ~i ~i S 1
norm is dual to itself. In this paperandq always denote 2 ;D(x )+ In(@) — sign(a - )] < 2 T @)
dual norms. The following facts are well known (e.g. [37] ! ) _
pp. 203-204): We say that an algorithm is a (1/2 — v)-weak learning
algorithm for @ under D if the following condition holds: for

Hélder Inequality: |a - 0| < ||a||,]|0]|, for all @, o € R™ any finite setS as described above and any distributidion
andl < p < 0. S, if Ais givenD andS as input therd outputs a hypothesis

. . . o B ~ h : X — [-1,1] which is a(1/2 — ~)-approximator fori
Minkowski Inequality: ||@ + o[, < [|a[l, + [|3]|, for all underD. Thus for our purposes a weak learning algorithm
4,0 € R andl < p < oo. is one which can always find a hypothesis that outperforms

Throughout this paper thecample space X is a subset random guessing on a fixed sample.

of R™. A linear threshold function over X is a functionf 2.2 ONLINE LEARNING AND p-NORM
such thatf(z) = sign(a - ) for somea € R" (recall that ALGORITHMS

the function sig(z) takes value 1 it > 0 and takes value
—1if z < 0). We note that the standard definition of a linear
threshold function allows a nonzero threshold, iféz) =
sign(a - £ — #) wheref can be any real number. However,
any linear threshold function of this more general form over
n variables is equivalent to a linear threshold function with
threshold O over. + 1 variables, so our definition incurs no
real loss of generality.

In the online model, learning takes place over a sequence
of trials. Throughout the learning process the learner main-
tains a hypothesid which mapsX to {—1,1}. Each trial
proceeds as follows: upon receiving an example X the
learning algorithm outputs its predictigh = h(z) of the
associated label. The learning algorithm is then given the
true labely € {—1, 1} and the algorithm can update its hypo-
X d . h thesish based on this new information before the next trial
b Q;Afe Wtr't?j”X”tP t'?h enotest%[piex [12]]- We use the sym- begins. The performance of an online learning algorithm on
019z, x o denote the quantity an example sequence is measured by the number of predic-
def o m tion mistakes which the algorithm makes.
da,x = Inf (a-&)(sign(a - ), Grove, Littlestone and Schuurmans [16] and Gentile and
Littlestone [15] have studied a family of online algorithms

which is a measure of the separation between exampl€sin for learning linear threshold functions (see Figure 1). We re-
and the hyperplane whose normal vectozisWe assume  fer to this algorithm, which is parameterized by a real value
throughout the paper thaitX||, < oo, i.e. the setX is p > 2, as theonline p-norm algorithm. Like the well-known
bounded, and that, x > 0, i.e. there is some nonzero lower Perceptron algorithm, the onlinenorm algorithm updates
bound on the separation between the hyperplane defined byts hypothesis by making an additive change to a weight vec-
@ and the examples iX . tor Z. However, as shown in steps 4-5 of Figure 1,jtheorm
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Input parameter: real numbep > 2, initial weight vectorz® = (27, ..
1. sett=0
2. while examples are availabti
3. get unlabeled examplg’
4 foralli =1,...,nsetw! = sign(zf)|z{P—!
5. predict j; = sign(w? - #t)
6. get labely, € {—1,+1}
7 foralli =1,...,nsetz/t =2t + a(y, — o)
8 sett=t+1
9. enddo

.,2%) € R™, positive valuez > 0

Figure 1: The onling-norm algorithm.

algorithm does not use thevector directly for prediction
but rather predicts using a vectérwhich is a transformed
version of thez vector, namelyw; = sign(z;)|z;|?~* for all

i = 1,...,n. Note that wherp = 2 we havez = @ and
hence the onlin@-norm algorithm is the Perceptron algo-
rithm. In [16] it is shown that ap — oo the onlinep-norm

algorithm approaches a version of the Winnow algorithm.

More precisely, the following theorem from [16] gives mis-
take bounds for the onlingnorm algorithms:

Theorem 1 Let S = (3,y1),...,(Z™,ym) be a sequence
of labeled examples where & € X and y = sign(a - &) for
every example (Z,y) € S.

(a) Forany?2 < p < oo and any a > 0, if the online p-norm
algorithm is invoked with input parameters (p, z°
(0,...,0),a), then the mistake bound on the example
sequence S is at most

(p — DNl IXII5
03, x '

(b) For any 2 < p < oo, if 3° satisfies @ - 2° > 0 and
da,x 12012

=D X then the mistake bound on S is at
p

. ( i3 )2
lallgllz®ll, ) )
(c) Let 2° = (1,...,1) and suppose that u; > 0 for i =

1,...,n. If p = oo and a is as described in part (b),
then the mistake bound given in (b) converges to

- Uj (173
logn + —log —— | .
( s ;uunl g||u||1>

2.3 FROM ONLINE TO PAC LEARNING

a =
most

(p = DllalZIXI
62
a,X

2AlallFll X1
0, x

Various generic procedures have been proposed [1, 18, 22

for automatically converting on-line learning algorithms into

plexity of the resulting PAC algorithm depends on the mis-
take bound of the original on-line learning algorithm. The
strongest general result of this type (in terms of minimiz-
ing the sample complexity of the resulting PAC algorithm) is
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1& under D for y =
PAC-model algorithms. In these procedures the sample com-

the “longest-survivor” conversion due to Kearns, Li, Pitt and
Valiant [22]:

Theorem 2 Let A be an on-line learning algorithm which
is guaranteed to make at most M mistakes. Then there is a
PAC-model learning algorithm A' which uses

0 <% <log1 +logM>>
€ 4]

examples and outputs an e-accurate hypothesis with proba-
bility 1 — 4.

Theorems 1 and 2 yield sample complexity bounds on
a generic PAC-model conversion of the onlgaorm algo-
rithm. We now describe a completely different PAC-model
algorithm which has remarkably similar sample complexity
bounds.

3 A PAC-MODEL p-NORM WEAK
LEARNING ALGORITHM

Thep-norm weak learning algorithm is motivated by the fol-
lowing simple idea: Suppose théit= (z',y1), ..., (Z™, ym)
is a collection of labeled examples wheje= sign(i - #%)
for eachi = 1,...,m. Now imagine replacing each nega-
tive example(z¢, —1) in S by the equivalent positive exam-
ple (=%, 1) to obtain a new collectios’ of examples. Let
Z € ™ be the average location of an exampléini.e. z is
the “center of mass” of’. Since every example i’ must
lie on the same side of the hyperplanei = 0 as the vector
@, it is clear thatZ must also lie on this side of the hyper-
plane. One might even hope thator some related vector,
points in approximately the same direction as the vegtor
Ourp-norm weak learning algorithm, which we callLa,
is presented in Figure 2. As in the onlipenorm algorithm,
WLA transforms the vectof to a vectorw using the map-
ping w; = sign(z;)|z;|P~. We now show that this simple
algorithm is in fact a weak learner:

Theorem 3 WLA is a (1/2 —~)-weak learning algorithm for
a,X
2XTpMallq *

!Littlestone [27] gives a conversion procedure which yiedds
PAC sample complexity bound 6f(e ™ (log 6 ~* -+ M)). Although
this improves on the result of [22] bylag M factor, Littlestone’s
procedure requires the example spa€do be finite, which is a
stronger assumption than we make in this paper.



Input parameters: real numbep > 2, sequences = (!, y1),...,{(Z™,y,) of labeled examples, distributich

overS
1. setz=3"" D(i)y;&’
1. foralli=1,...,nsetw; =sign(z;)|z "~

2. return hypothesisi(z) = Tl

Figure 2: Thep-norm weak learning algorithmLa.

Proof: Let S = (@', y1),...,(Z™,ym) be a sequence of  show that|z||, > da x/||@ll,. Sinceds x < @ - (y;&’) for
labeled examples whefiee X andy = sign(a - ) for every j=1,...,m,we have
pair (Z,y) € S, and letD be a distribution oves. We will - -
show that the hypothesiswhich WLA(p, S, D) returns is a N B )y
(1/2 — ~)-approximator forz underD. Z ) = Z #)y;t
To see thah mapsX into[—1, 1], note that for anyt € =t =1
X Holder’s inequality implies = u-z
S s ~ < all,lz
h@) = 0 ol N@llXly _ < lalyllzllp, |
1@, X1, = T8l 1X1, = T@lX1, where the last line follows from the Holder inequality, and

the theorem is proved.
Now we show that inequality (1) from Section 2.1 holds.

i 7J _ . _
Sinceh(z7) € [-1,1] andy; € {—1,1} we have that 4 FROM WEAK TO STRONG LEARNING

[P(@) —yjl = 1 = y;h(&), We have shown that the simpieL.a algorithm is a weak
and thus learning algorithm for our halfspace learning problem. In
m this section we use techniques from boosting and large mar-
1 Z D(E)|h(F) — m gin classification to obtain a strong learning algorithm with
24 small sample complexity.

.
I
-

4.1 BOOSTING TO ACHIEVE HIGH ACCURACY

In a series of important papers Schapire [31] and Freund [10,
11] have givenboosting algorithms which transform weak

Z )(1 - y;h(&))

l\DIr—\

1 1 ity D@ )y (w - &) learning algorithms into strong ones. In this paper we use the
- 97 21 X1, @l : Adaboost algorithm from [13]_Whi_ch_ is shown in Figure 3;

our notation for the algorithm is similar to that of [34, 35].
Thus it suffices to show that The input toAdaboost is a sequencé = (zt,41),...,

™, y,,) of m labeled examples, a weak learning algorithm
2y D(@)y;(@- &) ax é\]L, aynd>two parameter® <p7,u < 1/2. Given% d?stri-
@], ~ lally” bution D* over S, algorithmwI. outputs a hypothesis; :

We first note that S — [-1,1]. Adaboost successively generates new dis-

tributions Dt over S, usesWL to obtain hypothesek;, and
m ) , m , ) ultimately outputs as its final hypothesis a linear threshold
S D(@)y(w-#) = @ |y D@ )y’ function over theys.

Jj=1

j=1 In [13] Freund and Schapire prove that if the algorithm
m WwLis a(1/2 — y)-weak learning algorithm (i.e. each call of
— W-5= Z 2P = 12|12, WL in Adaboost generates a hypothedis such that; <

1/2 — ), then the fraction of examples Bwhich are mis-
classified by the final hypothestsis at mostu. Given this
and hence the left-hand side of the desired inequality equalsresult, one straightforward way to obtain a strong learning al-

12[5/]l@]lq- We also have gorithm for our halfspace learning problem is to draw a suf-
1/q 1/q ficiently large (as specified below) sampﬂérom_the exam-
[ b1 B - » ple oracleE X (@, D) and runadaboost on S usingwLA as
@], = Z |Zt| = Z |2l the weak learning algorithmy as given in Theorem 3, and
=1 p < 1/]S|. This choice ofu ensures thahdaboost'’s fi-
= ||2||§/‘1, nal hypothesis makes no errors Sfmoreover, since each
i i hypothesis generated by.A is of the formh(Z) = ot - &
where in the second equality we used the factthat1)q = for somedt € R", Adaboost’s final hypothesis is of the

p. Consequently the left-hand side can be further simplified form n () = S|gr‘(v i) for somed € R". Using the well-
to ||z[15/lwll, = (1215 P/ = = ||Z]|p, and thus our goal isto  known fact that the VC dimension of the class of zero-bias
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Input parameters: sequenceS = (z!,y),...
[—1,1], two real value$) < v, u < 1/2

1. setT = #log%

foralli =1,...,m set D!(z?)

fort=1,...,T do
leth; be the output oWL(D*, S)
sete; =55 ;" D'(2")|he(2') — il
set oy = 2 In((1— &) /er)
foralli =1,...,m set

1
m

No agrwN

,{z™,yn) of labeled examples, weak learning algoritm: S —

D' (") exp(—yichs (a*))

'Dt+1(.ri) —

9. enddo

f(z)

whereZ, = 3" | D'(z") exp(—y;c b (z")) is a normalizing factor (so tha*** will be a distribution)
10. output as final hypothesis(z) = sign(f(z)), where

_ S arhy(x)
Zf:l Q

Zy

Figure 3: Theadaboost algorithm.

linear threshold functions ove®™ is n, the main result of
[7] implies that with probability at leadt— ¢ the final hypo-
thesish is ane-accurate hypothesis far underD provided
that|S| > c(e !(nlog(e 1) +log(6!))) for some constant
c>0.

This analysis, though attractively simple, yields a rather

The theorem stated in [34] only covers the case whien
mapsS to {—1,1}. We need this more general version be-
cause the weak hypotheses of Theorem 3 $idp [—1, 1]
rather than{ —1, 1}. The proof of Theorem 4 is given in Ap-
pendix A.

The results of Section 3 imply thatWfLa is used as the

crude bound on sample complexity which does not dependweak learning algorithm imdaboost, then the value,

on the particulars of the learning problem (iteand X). In
the rest of this section we use recent resultda@aboost’s

will always be at most /2 — +, and the upper bound of The-
orem 4 become§1—27)' ~?(1+27)'*%)*/2_ The following

ability to generate a large-margin classifier and the gener-easy lemma is proved in Appendix B:

alization ability of large-margin classifiers to give a much
tighter bound on sample complexity for this learning algo-
rithm.

4.2 BOOSTING TO ACHIEVE A LARGE MARGIN

Suppose that : X — {—1,1} is a classifier of the form
h(z) = sign(f(x)), wheref mapsX into [—1, 1]. We say
that themargin of h on a labeled examplér, y) is y f(z);
note that this quantity is nonnegative if and onlyhifcor-
rectly predicts the label associated with:.

The following theorem, which is an extension of The-
orem 5 from [34], shows thatdaboost generates large-
margin hypotheses.

Theorem 4 Suppose that Adaboost is run on an example
sequence S = (x',y1), ..., {(x™, ym) using a weak learning
algorithm WL: S — [—1,1]. Then for any value 8 > 0 we
have

Hie{1,2,....,m} :y:f(z") < 6}

m
T
< 27 H Vet (1 —e)ito,
t=1
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Lemma 5 (1—4z)'7%(1+42)'** <1-4a?for0 <z <
1/4.

If we setd = ~/2 and apply this lemma with: = 6, the
upper bound of Theorem 4 becom@s— ~2)7/2 and we
obtain the following:

Corollary 6 If Adaboost is run on a sequence S of la-
beled examples drawn from EX (i,D) using WLA as the
weak learner, v as defined in Theorem 3 and y < 1/|S|*,
then the hypothesis h which Adaboost generates will have
margin at least y/2 on every example in S.

Proof: The bound on caused’ to be greater thagh log ﬁ,
and consequently the upper bound of Theorem 4 is less than
1/]5]. |

In the next subsection we use Corollary 6 and the the-

ory of large margin classification to establish a bound on the
generalization error af in terms of the sample siza.

4.3 LARGE MARGINS AND GENERALIZATION
ERROR

Let F be a collection of real-valued functions on a Sét
A finite set{z!,..., 2%} C X is said to bet-shattered by



F if there are real numbers, ..., r; such that for alb =

(by,...,br) € {—1,1}* there is a functionf, € F such
that
i >r+ & if b=1
(@) { <r—€ if by=—1.
For & > 0, the fat-shattering dimension of F at scale &,

denoted fat(€), is the size of the largest set which §s
shattered byF, if this is finite, and infinity otherwise. The
fat-shattering dimension is useful for us because of the fol-
lowing theorem from [4]:

Theorem 7 Let F be a collection of real-valued functions
on X and let D be a distribution over X x {—1,1}. Let
S = (&, y1),..., (™, ym) be a sequence of labeled exam-
ples drawn from D. With probability at least 1 — § over the
choice of S, if a classifier h(z) = sign(f(x)) with f € F

has margin at least £ > 0 on every example in S, then
2 8em 8m
Pr [k < — | dlog —— log(32 log —
b (@) # y] < m( og —— log(32m) +log — >

where d = fatr(£/16).

As noted in Section 4.1, the final hypothegisvhich
Adaboost outputs must be of the fora(z) = sign(f(z))
with f(#) = ¢ - & for somev € R". Furthermore, since
each invocation oWLA generates a hypothesis of the form
he(z) = ot - & with ||t]], < HXII , MlnkOWSkIS inequality

implies that the vectos must satisfy|7||, < . We thus
consider the class of functions

F= {ac = 0-T |0, < ||X|| Nzl < ||X||p} 2)
P

If we can bound fat(¢), then given any sample size,
Theorem 7 immediately yields a corresponding bound on
Pr.ep[h(Z) # sign(a - Z)] for our halfspace learning prob-
lem. The following theorem proved in Appendix C gives the
desired bound on fa{¢) :

Theorem 8 Let X be a bounded region in R" and let F
be the class of functions on X defined in (2) above. Then

fat (&) < 2iogin,

Combining Theorem 3, Corollary 6, and Theorems 7 and
8, it follows that if our algorithm uses a sample of sjs¢ =
m, then with probability at least— § the hypothesié which
is generated will satisfy

;g;h(@ # sign(i - 7)]
m

Thus we have established the following (wherethaotation

hides log factors):

IIXH

lall; IIXII}‘Z1
27 ognlog? m-l-log
6u,X

Theorem 9 The algorithm obtained by applying Adaboost
to WLA using the parameter settings described in Corollary 6
is a strong learning algorithm for @ on X with sample com-

plexity
~ 1 ~112 X 2
m(fam,X):O(_.M).
€

2
5a,X
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S DISCUSSION

The sample complexity of our boosting-bagedorm PAC
learning algorithm is remarkably similar to that of the PAC-
transformed onling-norm algorithms of Section 2.1. Up to
log factors both sets of bounds depend linearlyoh and
quadratically ofj|@||4|| X ||p/0a,x - Comparing the bounds in
more detail, we see that the online variant described in part
(a) of Theorem 1 has an extra factorf- 1 in its bound
which is not present in the sample complexity of our algo-
rithm. Variant (a) offers the advantage, though, that the user
does not need to know the values of any quantities such as
[|X ||, or||@||q in advance in order to run the algorithm. Turn-
ing to part (b) of Theorem 1, we see that if the parameter

is set appropriately in the online algorithm then the online
bound differs from our PAC algorithm bound only by an ex-

tra factor of
a2\
p—1 1—<7~ — >
( )< Tl =1,

(againignoring log factors). Part (c) of Theorem 1 shows that
asp — oo this extra factor becomes quite small even when
z% is chosen to bél,...,1). We also note that whep =
Q(logn) Gentile and Littlestone [15] have given alternative
expressions for the onlinenorm bounds in terms ¢fX || -
and||z||;. Using an entirely similar analysis the bounds of
our algorithm can be analogously rephrased in this case as
well.

5.1 p=2AND THE PERCEPTRON ALGORITHM

Since thep = 2 case of the onling-norm algorithm is pre-
cisely the Perceptron algorithm, tlpe= 2 case of our al-
gorithm can be viewed as a natural PAC-model analogue of
the online Perceptron algorithm. We note that wipes 2

the upper bound given in Lemma 12 of Appendix C can be
strengthened t&/d - || X || (see Lemma 1.3 of [4] or Theo-
rem 4.1 of [2] for a proof). This means that the fat-shattering
dimension upper bound of Theorem 8 can be improved to
g%, which removes a log factor from the bound of Theorem
9; however this bound will still contain various log factors
because of the log terms in Theorem 7.

5.2 p = oo AND THE JACKSON-CRAVEN
ALGORITHM

At the other extreme, we now define a natyrat oo version
of our algorithm. Consider the vectogsandw which are
computed by the weak learning algorithm.a. If we let r

be the number of coordinatesof z such thatz;| = ||Z]|,

then for anyi we have

. w; . sign(z;)|z;|P~!
| — = 1
pirco <||w||q> prrco ((22;1 ERDEE
sign(z;)/r if || = [|Z]|
0 otherwise.

Hence it is natural to considera = oo version of WLA,
which we denoteira’, in which the vectorw is defined by
takingw; = sign(z;) if |z;] = ||Z]|cc andw; = 0 other-
wise. All of our analysis continues to hold (with minor mod-
ifications described in Appendix D) and we obtaip & oo
strong learning algorithm:
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A  PROOF OF THEOREM 4

The proof combines ideas from [34], where it is shown that
Adaboost with binary valued hypotheses generates a large
margin classifier, and [35], where an analysis is given for
Adaboost with real valued hypotheses. As in Theorem 5

of [34], if y; f(z%) < 0 then

T

D o

t=1

T
Yi Zatht(aci) <40
t=1
which implies that
r ) T
€xp (‘yi Z ache(z*) + 6 Z at> > 1.
t=1 t=1

Following [34], we thus have
Hie{1,2,...,m}:y:f(z?) <6}

m 1 T ) T
< X lexp (“‘“ > ach(e) + 92‘“)]
exp (6 Zle ap) ) .
= ( — ) Zexp (—inatht(azl)>
. z;l - t=
= exp (920t> (H Zt> ZDT'H (")

w10 (11) o

where the second equality follows from the definitiordf!
and the final equality is becau®® +! is a distribution and
hence sums to 1. Our goal is thus to bound the right side of
inequality (3).

If we let

re= Y DHaYyihe (o)
i=1
then using the fact that

|h(a’) —y;| =1 —y;h(z’)
we find thate; = 1;—” Substituting into the definition af;
1 + Tt
Qy = —

we obtain
n .
2 (]. — Tt>

Following [35] for simplicity of notation we now fix
and letu; = y;hi(2'), Z = Z;, D = D', e = e, 7 = 1y,
anda = «;. As noted in [35] a simple convexity argument
shows that

1
1

6—auS 1-|2-u6—a_'_

1—u
2

ea



for anya € R and anyu € [—1,1]. Sinceu; always lies in
the interval[—1, 1], we can apply this inequality to obtain

ip(aﬂ)e
ZD ( +%e“>. (4)

As in Section 3.5 of [35], substituting into inequality (4)

—QU;

VA

14w R

IN

yields
Zy < M
= V1-(1-2¢)?
= 2Vea(l —¢). (5)

Substituting inequality (5) into inequality (3) and using the

definition ofa; yields the desired bound of the theorerll

B PROOF OF LEMMA 5

We show that
(1 —4z)' 7% (1 4 42)"* < 1 — 422

for 0 < x < 1/4. Using a simple convexity argument,
can be verified that” < 1 — (1 — a)r for anya > 0 and
any0 < r < 1. This inequality implies thafl — 4z)!=* <
1 — 4z + 422 and(1 + 42)® < 1 + 422, so consequently
(1—42)' 7% (1+42)'T < (1 -4z +42%) (1 +42) (1 +42?),
which is at mostl — 422 for0 < x < 1/4. [ |

C PROOF OF THEOREM 8

it

(where the first inequality is by the definition &, the sec-
ond inequality is Holder’s, and the third is from inequality
(6)), which yields the desired inequality>"¢ | b;#', >
§df| X{[p-

In the second cas@le bir; < 0. If this is the case
then letc = (c1,...,¢q) = (=b1,...,—bg). We then have
S0 ciri > 0, so Case 1 implies thaty"! | c;&|, >
&d|| X |p, and the lemma follows since

E C,‘fl —E b,‘f’
i=1 i=1

d

>

i=1

ii

p p p

Lemma 12 For any set {Z',..., &%} with each ||Z||,
| X||p, if p > 2 then there is some b = (by,...,bq)

{—1,1}¢ such that Hzgzl bt ) < V2dlogdn - || X]||,.

Proof: The proof uses the probabilistic method. We consider
the random variablé = Zle bzt where(by,...,by) is
uniformly distributed ovef —1, 1}¢. For any coordinatg €
{1,...,n} we havez; = 37 | bzt and hence[z;] = 0.
LetY; = |} |*+-- -+ |z] | Hoeffdlngsbound [19] onsums

of mdependent randomn variables states that fortanyd we
have

miA 1

—¢2
Pr[|zj| > t] < 2exp <m> .
As a consequence, taking= /2Y;log4n we have that
Pr[|z;| > t] < 1/2n. Using the union bound acrogs=

1,2 n, we have that with probability at leasy2 every

gLy ey

The theorem is a variant of Theorem 1.6 from [4]. The proof coordinate:; of Z satisfiesz;| < 1/2Y; log 4n, and hence
follows from combining the inequalities proved in the fol-

lowing two lemmas.
Lemma 11 Let

F={r o2l < el < 11

If the set {7*,
(b1, ...,bq) € {—1,1}4 satisfies

, &} is E-shattered by F then every b =
Vim bid| > Ed|Xlp.

., &%} is ¢&-shattered byF as
,Tq. Then for every

Proof: Suppose tha{z*
witnessed by the real numbers, ..

b=(by,... bd) € {-1,1}4, thereis avectovb € R™ with
[1T]l4 < IIXH such thab (Op-Z*—r;) > Efori=1,...,d.
Summing thesd inequalities and rearranging, we obtaln
d d
By - (Z bm) >&d+ ) biri (6)
i=1 i=1

There are two cases to consider. Case 1Ejf:1 bir; > 0;
if this is true, we have

d
o Asea| = pan|>obe
p =1 p =1 p
d
> (S ’)
> &d -

156

1121l

. 1/p
>zl
j=1

1/p
(z (m)p)

v/ 2log4n -
n 2/p
(Z [|x |2 o |x;i|2]l’/2>
j=1

Sincep > 2, we havep/2 > 1 and hence Minkowski’s in-
equality implies that

2/p
[z} +-- -+ Ia:d|2]p/2>

1/2

()

n

=

IN

n 2/p " 2/p
[Z |$;|2p/2] I [Z |w;!|2p/2]
j=1 j=1
||£1~71 2

I+ -+l
< d||X]f;. (8)

The lemma follows by combining inequalities (7) and ().



D PROOF OF CLAIM 10

We first show that Theorem 3 still holds in the case=
oo with wLA' in place ofwLA. The proof is unchanged up
through the point where we must show that

ey D(E )y (w - &) S da,x
@]y ~ lallx

The left-hand side of this inequality can be rewritten as

W X)) S1ON(zi)zi
[ F— 2 zl=ll o L
2z = 2w 2o
2 zel=lelloe |
= |IZ]e,

and hence it suffices to prove tht||c > dz, x/||@]|1. This
is established at the end of the proof of Theorem 3, so Theo-
rem 3 holds withp = co andwLA’ substituted fowLA.

The rest of the analysis goes through unchanged except
for inequalities (7) and (8) of Lemma 12. Sini& ||, =
Sup; ey max;—1, ., |z;|, we have that; < d||X||2, for all
j, and hence in place of inequalities (7) and (8) we have

2]l = max|z;| < max \/2Yjlogn
< V2dlogdn - || X]|e,

which proves the lemma. |
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