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Abstract

We describe a novel family of PAC model algo-
rithms for learning linear threshold functions. The
new algorithms work by boosting a simple weak
learner and exhibit complexity bounds remarkably
similar to those of known online algorithms such
as Perceptron and Winnow, thus suggesting that
these well-studied online algorithms in some sense
correspond to instances of boosting. We show that
the new algorithms can be viewed as natural PAC
analogues of the onlinep-norm algorithms which
have recently been studied by Grove, Littlestone,
and Schuurmans [16] and Gentile and Littlestone
[15]. As special cases of the algorithm, by taking
p = 2 and p = 1 we obtain natural boosting-
based PAC analogues of Perceptron and Winnow
respectively. Thep = 1 case of our algorithm
can also be viewed as a generalization (with an im-
proved sample complexity bound) of Jackson and
Craven’s PAC-model boosting-based algorithm for
learning “sparse perceptrons” [20]. The analysis of
the generalization error of the new algorithms re-
lies on techniques from the theory of large margin
classification.

1 INTRODUCTION

One of the most fundamental problems in computational learn-
ing theory is that of learning an unknown linear threshold
function from labeled examples. Many different learning
algorithms for this problem have been considered over the
past several decades. In particular, in recent years many re-
searchers have studied simple online additive and multiplica-
tive update algorithms, namely the Perceptron and Winnow
algorithms and variants thereof [3, 5, 8, 14, 15, 16, 25, 26,
27, 28, 33, 36].

This paper takes a different approach. We describe a nat-
ural parameterized family of boosting-based PAC algorithms
for learning linear threshold functions. The weak hypotheses
used are linear functionals and the strong classifier obtained
is a linear threshold function. Although these new algorithms
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are conceptually and algorithmically very different from Per-
ceptron and Winnow, we establish performance bounds for
the new algorithms which are remarkably similar to those of
Perceptron and Winnow; we thus refer to the new algorithms
asPAC analogues of Perceptron and Winnow. We hope that
the analysis of these new algorithms will yield fresh insights
into the relationship between boosting and online algorithms.

We give a unified analysis of our Perceptron and Winnow
analogues which includes many other algorithms as well.
Grove, Littlestone and Schuurmans [16] have shown that
Perceptron and (a version of) Winnow can be viewed as the
p = 2 andp ! 1 cases of a general onlinep-norm lin-
ear threshold learning algorithm, wherep � 2 is any real
number. We present PAC-model boosting-based analogues
of these onlinep-norm algorithms for any value2 � p �

1: The PAC-model Perceptron and Winnow analogues men-
tioned above are respectively thep = 2 andp = 1 cases of
this general algorithm.

Thep = 1 case of our algorithm can also be viewed as
a generalization of Jackson and Craven’s PAC-model algo-
rithm for learning “sparse perceptrons” [20]. Their algorithm
boosts using weak hypotheses which are single Boolean lit-
erals; this is similar to what thep =1 case of our algorithm
does. Our analysis of thep =1 case generalizes their algo-
rithm to deal with real-valued rather than Boolean input vari-
ables and yields a substantially stronger sample complexity
bound than was established in [20].

Section 2 of this paper contains preliminary material, in-
cluding an overview of the onlinep-norm algorithms from
[15, 16]. In Section 3 we present a simple PAC-modelp-
norm algorithm and prove that it is a weak learning algorithm
for all 2 � p < 1: In Section 4 we apply techniques from
the theory of large margin classification to show how our
weak learning algorithm can be boosted to a strong learning
algorithm with small sample complexity. Finally, in Section
5 we compare our PAC algorithms with the analogous online
algorithms, extend our algorithm to the casep =1; and dis-
cuss the relationship between thep = 1 case of our algo-
rithm and the Jackson–Craven algorithm for learning sparse
perceptrons.

1.1 RELATED WORK

Several authors have studied linear threshold learning algo-
rithms which work by combining weak predictors. Freund
and Schapire [14] describe an algorithm which combines in-
termediate Perceptron algorithm hypotheses using a weighted
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majority vote (so the final classifier is a depth-2 threshold
circuit) and prove bounds on the generalization error of the
resulting classifier. Their algorithm does not use boosting to
combine the Perceptron hypotheses but rather weights them
according to their survival time. Ji and Ma [21] propose a
random-search-and-test approach to find weak classifier lin-
ear threshold functions and combine them by a simple major-
ity vote (thus also obtaining a depth-2 threshold circuit). Our
approach is closest to that of Jackson and Craven [20] who
use boosting to combine single literals into a strong hypo-
thesis linear threshold function. As described in Section 5,
the p = 1 case of our algorithm strengthens and general-
izes their results. More generally, we also note that Freund
and Schapire [12] and Schapire [32] have exhibited a close
relationship between boosting and online learning.

2 PRELIMINARIES

We start with some geometric definitions. For a point~x =

(x

1

; : : : ; x

n

) 2 <

n andp � 1 we writek~xk
p

to denote the
p-norm of~x; namely

k~xk

p

=

 

n

X

i=1

jx

i

j

p

!

1=p

:

The1-norm of~x is k~xk
1

= max

i=1;:::;n

jx

i

j: Forp; q � 1

the q-norm isdual to thep-norm if 1

p

+

1

q

= 1; hence the
1-norm and the1-norm are dual to each other and the2-
norm is dual to itself. In this paperp andq always denote
dual norms. The following facts are well known (e.g. [37]
pp. 203-204):

Hölder Inequality: j~u � ~vj � k~uk

p

k~vk

q

for all ~u; ~v 2 <

n

and1 � p �1:

Minkowski Inequality: k~u + ~vk

p

� k~uk

p

+ k~vk

p

for all
~u; ~v 2 <

n and1 � p �1:

Throughout this paper theexample space X is a subset
of <n

: A linear threshold function overX is a functionf
such thatf(~x) = sign(~u � ~x) for some~u 2 <

n (recall that
the function sign(z) takes value 1 ifz � 0 and takes value
�1 if z < 0). We note that the standard definition of a linear
threshold function allows a nonzero threshold, i.e.f(~x) =

sign(~u � ~x � �) where� can be any real number. However,
any linear threshold function of this more general form over
n variables is equivalent to a linear threshold function with
threshold 0 overn + 1 variables, so our definition incurs no
real loss of generality.

We writekXk
p

to denotesup
~x2X

k~xk

p

:We use the sym-
bol �

~u;X

to denote the quantity

�

~u;X

def

= inf

~x2X

(~u � ~x)(sign(~u � ~x));

which is a measure of the separation between examples inX

and the hyperplane whose normal vector is~u: We assume
throughout the paper thatkXk

p

< 1; i.e. the setX is
bounded, and that�

~u;X

> 0; i.e. there is some nonzero lower
bound on the separation between the hyperplane defined by
~u and the examples inX .

2.1 PAC LEARNING

For ~u 2 <n let EX(~u;D) denote anexample oracle which,
when queried, provides a labeled exampleh~x; sign(~u � ~x)i
where~x is drawn according to the distributionD overX: We
say that an algorithmA is astrong learning algorithm for ~u

onX if it satisfies the following condition: there is a function
m(�; �; ~u;X) such that for any distributionD overX; for
all 0 < �; � < 1; algorithmA makes at mostm(�; �; ~u;X)

calls toEX(~u;D); and with probability at least1� � algo-
rithm A outputs a hypothesish : X ! f�1; 1g such that
Pr

x2D

[h(~x) 6= sign(~u � ~x)] � �: We say that such a hypo-
thesish is an�-accurate hypothesis for ~u under D and that
the functionm(�; �; ~u;X) is thesample complexity of algo-
rithmA:

As our main result we describe a strong learning algo-
rithm and carefully analyze its sample complexity. To do this
we must consider algorithms which do not satisfy the strong
learning property but are still capable of generating hypothe-
ses that have some slight advantage over random guessing
(such so-called weak learning algorithms were first consid-
ered by Kearns and Valiant in [24]). Let

S = h~x

1

; sign(~u � ~x1)i; : : : ; h~xm; sign(~u � ~xm)i

be a finite sequence of labeled examples fromX and letD
be a distribution overS: For 0 < 
 < 1=2; we say that
h : X ! [�1; 1] is a(1=2� 
)-approximator for ~u underD
if

1

2

m

X

i=1

D(~x

i

) � jh(~x

i

)� sign(~u � ~xi)j �
1

2

� 
: (1)

We say that an algorithmA is a (1=2 � 
)-weak learning
algorithm for ~u underD if the following condition holds: for
any finite setS as described above and any distributionD on
S; if A is givenD andS as input thenA outputs a hypothesis
h : X ! [�1; 1] which is a(1=2 � 
)-approximator for~u
underD: Thus for our purposes a weak learning algorithm
is one which can always find a hypothesis that outperforms
random guessing on a fixed sample.

2.2 ONLINE LEARNING AND p-NORM
ALGORITHMS

In the online model, learning takes place over a sequence
of trials. Throughout the learning process the learner main-
tains a hypothesish which mapsX to f�1; 1g: Each trial
proceeds as follows: upon receiving an examplex 2 X the
learning algorithm outputs its prediction̂y = h(x) of the
associated labely: The learning algorithm is then given the
true labely 2 f�1; 1g and the algorithm can update its hypo-
thesish based on this new information before the next trial
begins. The performance of an online learning algorithm on
an example sequence is measured by the number of predic-
tion mistakes which the algorithm makes.

Grove, Littlestone and Schuurmans [16] and Gentile and
Littlestone [15] have studied a family of online algorithms
for learning linear threshold functions (see Figure 1). We re-
fer to this algorithm, which is parameterized by a real value
p � 2; as theonline p-norm algorithm. Like the well-known
Perceptron algorithm, the onlinep-norm algorithm updates
its hypothesis by making an additive change to a weight vec-
tor ~z:However, as shown in steps 4-5 of Figure 1, thep-norm
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Input parameter: real numberp � 2; initial weight vector~z0 = (z

0

1

; : : : ; z

0

n

) 2 <

n

; positive valuea > 0

1. set t = 0

2. while examples are availabledo
3. get unlabeled example~xt

4. for all i = 1; : : : ; n set wt

i

= sign(zt
i

)jz

t

i

j

p�1

5. predict ŷ
t

= sign( ~wt

� ~x

t

)

6. get labely
t

2 f�1;+1g

7. for all i = 1; : : : ; n set zt+1

i

= z

t

i

+ a(y

t

� ŷ

t

)x

t

i

8. set t = t+ 1

9. enddo

Figure 1: The onlinep-norm algorithm.

algorithm does not use the~z vector directly for prediction
but rather predicts using a vector~w which is a transformed
version of the~z vector, namelyw

i

= sign(z
i

)jz

i

j

p�1 for all
i = 1; : : : ; n: Note that whenp = 2 we have~z = ~w and
hence the online2-norm algorithm is the Perceptron algo-
rithm. In [16] it is shown that asp ! 1 the onlinep-norm
algorithm approaches a version of the Winnow algorithm.
More precisely, the following theorem from [16] gives mis-
take bounds for the onlinep-norm algorithms:

Theorem 1 Let S = h~x

1

; y

1

i; : : : ; h~x

m

; y

m

i be a sequence
of labeled examples where ~x 2 X and y = sign(~u � ~x) for
every example h~x; yi 2 S:

(a) For any 2 � p <1 and any a > 0; if the online p-norm
algorithm is invoked with input parameters (p; ~z

0

=

(0; : : : ; 0); a); then the mistake bound on the example
sequence S is at most

(p� 1)k~uk

2

q

kXk

2

p

�

2

~u;X

:

(b) For any 2 � p < 1; if ~z

0 satisfies ~u � ~z

0

> 0 and

a =

�

~u;X

k~z

0

k

2

p

(p�1)~u�~z

0

kXk

2

p

; then the mistake bound on S is at

most

(p� 1)k~uk

2

q

kXk

2

p

�

2

~u;X

 

1�

�

~u � ~z

0

k~uk

q

k~z

0

k

p

�

2

!

:

(c) Let ~z0 = (1; : : : ; 1) and suppose that u
i

> 0 for i =

1; : : : ; n: If p ! 1 and a is as described in part (b),
then the mistake bound given in (b) converges to

2k~uk

2

1

kXk

2

1

�

2

~u;X

 

logn+

n

X

i=1

u

i

k~uk

1

log

u

i

k~uk

1

!

:

2.3 FROM ONLINE TO PAC LEARNING

Various generic procedures have been proposed [1, 18, 22]
for automatically converting on-line learning algorithms into
PAC-model algorithms. In these procedures the sample com-
plexity of the resulting PAC algorithm depends on the mis-
take bound of the original on-line learning algorithm. The
strongest general result of this type (in terms of minimiz-
ing the sample complexity of the resulting PAC algorithm) is

the “longest-survivor” conversion due to Kearns, Li, Pitt and
Valiant1 [22]:

Theorem 2 Let A be an on-line learning algorithm which
is guaranteed to make at most M mistakes. Then there is a
PAC-model learning algorithm A

0 which uses

O

�

M

�

�

log

1

�

+ logM

��

examples and outputs an �-accurate hypothesis with proba-
bility 1� �:

Theorems 1 and 2 yield sample complexity bounds on
a generic PAC-model conversion of the onlinep-norm algo-
rithm. We now describe a completely different PAC-model
algorithm which has remarkably similar sample complexity
bounds.

3 A PAC-MODEL p-NORM WEAK

LEARNING ALGORITHM

Thep-norm weak learning algorithm is motivated by the fol-
lowing simple idea: Suppose thatS = h~x

1

; y

1

i; : : : ; h~x

m

; y

m

i

is a collection of labeled examples wherey
i

= sign(~u � ~xi)
for eachi = 1; : : : ;m: Now imagine replacing each nega-
tive exampleh~xi;�1i in S by the equivalent positive exam-
ple h�~x

i

; 1i to obtain a new collectionS0 of examples. Let
~z 2 <

n be the average location of an example inS

0

; i.e. ~z is
the “center of mass” ofS0: Since every example inS0 must
lie on the same side of the hyperplane~u � ~x = 0 as the vector
~u; it is clear that~z must also lie on this side of the hyper-
plane. One might even hope that~z; or some related vector,
points in approximately the same direction as the vector~u:

Ourp-norm weak learning algorithm, which we callWLA,
is presented in Figure 2. As in the onlinep-norm algorithm,
WLA transforms the vector~z to a vector~w using the map-
ping w

i

= sign(z
i

)jz

i

j

p�1

: We now show that this simple
algorithm is in fact a weak learner:

Theorem 3 WLA is a (1=2�
)-weak learning algorithm for

~u under D for 
 =

�

~u;X

2kXk

p

k~uk

q

:

1Littlestone [27] gives a conversion procedure which yieldsa
PAC sample complexity bound ofO(�

�1

(log �

�1

+M)):Although
this improves on the result of [22] by alogM factor, Littlestone’s
procedure requires the example spaceX to be finite, which is a
stronger assumption than we make in this paper.
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Input parameters: real numberp � 2; sequenceS = h~x

1

; y

1

i; : : : ; h~x

m

; y

m

i of labeled examples, distributionD
overS

1. set ~z =

P

m

j=1

D(~x

j

)y

j

~x

j

1. for all i = 1; : : : ; n set w
i

= sign(z
i

)jz

i

j

p�1

2. return hypothesish(~x) � ~w�~x

k ~wk

q

kXk

p

Figure 2: Thep-norm weak learning algorithmWLA.

Proof: Let S = h~x

1

; y

1

i; : : : ; h~x

m

; y

m

i be a sequence of
labeled examples where~x 2 X andy = sign(~u � ~x) for every
pair h~x; yi 2 S; and letD be a distribution overS: We will
show that the hypothesish whichWLA(p; S;D) returns is a
(1=2� 
)-approximator for~u underD:

To see thath mapsX into [�1; 1]; note that for any~x 2
X Hölder’s inequality implies

jh(~x)j =

j ~w � ~xj

k ~wk

q

kXk

p

�

k ~wk

q

k~xk

p

k ~wk

q

kXk

p

�

k ~wk

q

kXk

p

k ~wk

q

kXk

p

= 1:

Now we show that inequality (1) from Section 2.1 holds.
Sinceh(~xj) 2 [�1; 1] andy

j

2 f�1; 1gwe have that

jh(~x

j

)� y

j

j = 1� y

j

h(~x

j

);

and thus

1

2

m

X

j=1

D(~x

j

)jh(~x

j

)� y

j

j

=

1

2

m

X

j=1

D(~x

j

)(1� y

j

h(~x

j

))

=

1

2

�

1

2kXk

p

 

P

m

j=1

D(~x

j

)y

j

( ~w � ~x

j

)

k ~wk

q

!

:

Thus it suffices to show that
P

m

j=1

D(~x

j

)y

j

( ~w � ~x

j

)

k ~wk

q

�

�

~u;X

k~uk

q

:

We first note that

m

X

j=1

D(~x

j

)y

j

( ~w � ~x

j

) = ~w �

0

@

m

X

j=1

D(~x

j

)y

j

~x

j

1

A

= ~w � ~z =

m

X

j=1

jz

j

j

p

= k~zk

p

p

;

and hence the left-hand side of the desired inequality equals
k~zk

p

p

=k ~wk

q

: We also have

k ~wk

q

=

 

n

X

i=1

�

jz

i

j

p�1

�

q

!

1=q

=

 

n

X

i=1

jz

i

j

p

!

1=q

= k~zk

p=q

p

;

where in the second equality we used the fact that(p�1)q =

p: Consequently the left-hand side can be further simplified
to k~zkp

p

=k ~wk

q

= k~zk

p�p=q

p

= k~zk

p

; and thus our goal is to

show thatk~zk
p

� �

~u;X

=k~uk

q

: Since�
~u;X

� ~u � (y

j

~x

j

) for
j = 1; : : : ;m; we have

�

~u;X

�

m

X

j=1

D(~x

j

)~u � (y

j

~x

j

) = ~u �

0

@

m

X

j=1

D(~x

j

)y

j

~x

j

1

A

= ~u � ~z

� k~uk

q

k~zk

p

;

where the last line follows from the Hölder inequality, and
the theorem is proved.

4 FROM WEAK TO STRONG LEARNING

We have shown that the simpleWLA algorithm is a weak
learning algorithm for our halfspace learning problem. In
this section we use techniques from boosting and large mar-
gin classification to obtain a strong learning algorithm with
small sample complexity.

4.1 BOOSTING TO ACHIEVE HIGH ACCURACY

In a series of important papers Schapire [31] and Freund [10,
11] have givenboosting algorithms which transform weak
learning algorithms into strong ones. In this paper we use the
Adaboost algorithm from [13] which is shown in Figure 3;
our notation for the algorithm is similar to that of [34, 35].
The input toAdaboost is a sequenceS = hx

1

; y

1

i; : : : ;

hx

m

; y

m

i of m labeled examples, a weak learning algorithm
WL, and two parameters0 < 
; � < 1=2: Given a distri-
butionDt overS; algorithmWL outputs a hypothesish

t

:

S ! [�1; 1]: Adaboost successively generates new dis-
tributionsDt overS; usesWL to obtain hypothesesh

t

; and
ultimately outputs as its final hypothesis a linear threshold
function over theh

t

s.
In [13] Freund and Schapire prove that if the algorithm

WL is a(1=2� 
)-weak learning algorithm (i.e. each call of
WL in Adaboost generates a hypothesish

t

such that�
t

�

1=2� 
), then the fraction of examples inS which are mis-
classified by the final hypothesish is at most�: Given this
result, one straightforward way to obtain a strong learning al-
gorithm for our halfspace learning problem is to draw a suf-
ficiently large (as specified below) sampleS from the exam-
ple oracleEX(~u;D) and runAdaboost onS usingWLA as
the weak learning algorithm,
 as given in Theorem 3, and
� < 1=jSj: This choice of� ensures thatAdaboost’s fi-
nal hypothesis makes no errors onS; moreover, since each
hypothesis generated byWLA is of the formh

t

(~x) = ~v

t

� ~x

for some~vt 2 <

n

; Adaboost’s final hypothesis is of the
form h(~x) = sign(~v � ~x) for some~v 2 <

n

: Using the well-
known fact that the VC dimension of the class of zero-bias
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Input parameters: sequenceS = hx

1

; y

1

i; : : : ; hx

m

; y

m

i of labeled examples, weak learning algorithmWL: S !

[�1; 1]; two real values0 < 
; � < 1=2

1. set T =

1

2


2

log

1

�

2. for all i = 1; : : : ;m set D1

(x

i

) =

1

m

3. for t = 1; : : : ; T do
4. leth

t

be the output ofWL(Dt

; S)

5. set �
t

=

1

2

P

m

i=1

D

t

(x

i

)jh

t

(x

i

)� y

i

j

6. set �
t

=

1

2

ln((1� �

t

)=�

t

)

7. for all i = 1; : : : ;m set

D

t+1

(x

i

) =

D

t

(x

i

) exp(�y

i

�

t

h

t

(x

i

))

Z

t

whereZ
t

=

P

m

i=1

D

t

(x

i

) exp(�y

i

�

t

h

t

(x

i

)) is a normalizing factor (so thatDt+1 will be a distribution)
9. enddo
10. output as final hypothesish(x) � sign(f(x)); where

f(x) =

P

T

t=1

�

t

h

t

(x)

P

T

t=1

�

t

:

Figure 3: TheAdaboost algorithm.

linear threshold functions over<n is n; the main result of
[7] implies that with probability at least1� � the final hypo-
thesish is an�-accurate hypothesis for~u underD provided
thatjSj � c(�

�1

(n log(�

�1

)+ log(�

�1

))) for some constant
c > 0:

This analysis, though attractively simple, yields a rather
crude bound on sample complexity which does not depend
on the particulars of the learning problem (i.e.~u andX). In
the rest of this section we use recent results onAdaboost’s
ability to generate a large-margin classifier and the gener-
alization ability of large-margin classifiers to give a much
tighter bound on sample complexity for this learning algo-
rithm.

4.2 BOOSTING TO ACHIEVE A LARGE MARGIN

Suppose thath : X ! f�1; 1g is a classifier of the form
h(x) = sign(f(x)); wheref mapsX into [�1; 1]: We say
that themargin of h on a labeled examplehx; yi is yf(x);

note that this quantity is nonnegative if and only ifh cor-
rectly predicts the labely associated withx:

The following theorem, which is an extension of The-
orem 5 from [34], shows thatAdaboost generates large-
margin hypotheses.

Theorem 4 Suppose that Adaboost is run on an example
sequence S = hx

1

; y

1

i; : : : ; hx

m

; y

m

i using a weak learning
algorithm WL: S ! [�1; 1]: Then for any value � � 0 we
have

jfi 2 f1; 2; : : : ;mg : y

i

f(x

i

) � �gj

m

� 2

T

T

Y

t=1

q

�

1��

t

(1� �

t

)

1+�

:

The theorem stated in [34] only covers the case whenWL

mapsS to f�1; 1g: We need this more general version be-
cause the weak hypotheses of Theorem 3 mapS to [�1; 1]

rather thanf�1; 1g: The proof of Theorem 4 is given in Ap-
pendix A.

The results of Section 3 imply that ifWLA is used as the
weak learning algorithm inAdaboost, then the value�

t

will always be at most1=2� 
; and the upper bound of The-
orem 4 becomes((1�2
)

1��

(1+2
)

1+�

)

T=2

: The following
easy lemma is proved in Appendix B:

Lemma 5 (1� 4x)

1�x

(1+ 4x)

1+x

� 1� 4x

2 for 0 � x �

1=4:

If we set� = 
=2 and apply this lemma withx = �; the
upper bound of Theorem 4 becomes(1 � 


2

)

T=2 and we
obtain the following:

Corollary 6 If Adaboost is run on a sequence S of la-
beled examples drawn from EX(~u;D) using WLA as the
weak learner, 
 as defined in Theorem 3 and � < 1=jSj

4

;

then the hypothesis h which Adaboost generates will have
margin at least 
=2 on every example in S:

Proof: The bound on� causesT to be greater than2



2

log

1

jSj

;

and consequently the upper bound of Theorem 4 is less than
1=jSj:

In the next subsection we use Corollary 6 and the the-
ory of large margin classification to establish a bound on the
generalization error ofh in terms of the sample sizem:

4.3 LARGE MARGINS AND GENERALIZATION
ERROR

Let F be a collection of real-valued functions on a setX:

A finite setfx1; : : : ; xkg � X is said to be�-shattered by
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F if there are real numbersr
1

; : : : ; r

k

such that for allb =

(b

1

; : : : ; b

k

) 2 f�1; 1g

k

; there is a functionf
b

2 F such
that

f

b

(x

i

)

�

� r

i

+ � if b

i

= 1

� r

i

� � if b

i

= �1:

For � � 0; the fat-shattering dimension of F at scale �;

denoted fat
F

(�); is the size of the largest set which is�-
shattered byF ; if this is finite, and infinity otherwise. The
fat-shattering dimension is useful for us because of the fol-
lowing theorem from [4]:

Theorem 7 Let F be a collection of real-valued functions
on X and let D be a distribution over X � f�1; 1g: Let
S = h~x

1

; y

1

i; : : : ; h~x

m

; y

m

i be a sequence of labeled exam-
ples drawn from D: With probability at least 1 � � over the
choice of S; if a classifier h(x) � sign(f(x)) with f 2 F

has margin at least � > 0 on every example in S; then

Pr

(x;y)2D

[h(x) 6= y] �

2

m

�

d log

8em

d

log(32m) + log

8m

�

�

;

where d = fat
F

(�=16):

As noted in Section 4.1, the final hypothesish which
Adaboost outputs must be of the formh(~x) = sign(f(~x))
with f(~x) = ~v � ~x for some~v 2 <

n

: Furthermore, since
each invocation ofWLA generates a hypothesis of the form
h

t

(~x) = ~v

t

� ~x with k~vtk
q

�

1

kXk

p

; Minkowski’s inequality

implies that the vector~v must satisfyk~vk
q

�

1

kXk

p

: We thus
consider the class of functions

F =

�

~x 7! ~v � ~x : k~vk

q

�

1

kXk

p

; k~xk

p

� kXk

p

�

: (2)

If we can bound fat
F

(�); then given any sample sizem;

Theorem 7 immediately yields a corresponding bound on
Pr

x2D

[h(~x) 6= sign(~u � ~x)] for our halfspace learning prob-
lem. The following theorem proved in Appendix C gives the
desired bound on fat

F

(�) :

Theorem 8 Let X be a bounded region in <

n and let F
be the class of functions on X defined in (2) above. Then

fat
F

(�) �

2 log 4n

�

2

:

Combining Theorem 3, Corollary 6, and Theorems 7 and
8, it follows that if our algorithm uses a sample of sizejSj =
m; then with probability at least1�� the hypothesishwhich
is generated will satisfy

Pr

~x2D

[h(~x) 6= sign(~u � ~x)]

= O

 

1

m

 

k~uk

2

q

kXk

2

p

�

2

~u;X

logn log

2

m+ log

m

�

!!

:

Thus we have established the following (where the~

O-notation
hides log factors):

Theorem 9 The algorithm obtained by applyingAdaboost
to WLA using the parameter settings described in Corollary 6
is a strong learning algorithm for ~u on X with sample com-
plexity

m(�; �; ~u;X) =

~

O

 

1

�

�

k~uk

2

q

kXk

2

p

�

2

~u;X

!

:

5 DISCUSSION

The sample complexity of our boosting-basedp-norm PAC
learning algorithm is remarkably similar to that of the PAC-
transformed onlinep-norm algorithms of Section 2.1. Up to
log factors both sets of bounds depend linearly on�

�1 and
quadratically onk~uk

q

kXk

p

=�

~u;X

: Comparing the bounds in
more detail, we see that the online variant described in part
(a) of Theorem 1 has an extra factor ofp � 1 in its bound
which is not present in the sample complexity of our algo-
rithm. Variant (a) offers the advantage, though, that the user
does not need to know the values of any quantities such as
kXk

p

ork~uk
q

in advance in order to run the algorithm. Turn-
ing to part (b) of Theorem 1, we see that if the parametera

is set appropriately in the online algorithm then the online
bound differs from our PAC algorithm bound only by an ex-
tra factor of

(p� 1)

 

1�

�

~u � ~z

0

k~uk

q

k~z

0

k

p

�

2

!

(again ignoring log factors). Part (c) of Theorem 1 shows that
asp ! 1 this extra factor becomes quite small even when
~z

0 is chosen to be(1; : : : ; 1): We also note that whenp =


(logn) Gentile and Littlestone [15] have given alternative
expressions for the onlinep-norm bounds in terms ofkXk

1

andk~uk
1

: Using an entirely similar analysis the bounds of
our algorithm can be analogously rephrased in this case as
well.

5.1 p = 2 AND THE PERCEPTRON ALGORITHM

Since thep = 2 case of the onlinep-norm algorithm is pre-
cisely the Perceptron algorithm, thep = 2 case of our al-
gorithm can be viewed as a natural PAC-model analogue of
the online Perceptron algorithm. We note that whenp = 2

the upper bound given in Lemma 12 of Appendix C can be
strengthened to

p

d � kXk

2

(see Lemma 1.3 of [4] or Theo-
rem 4.1 of [2] for a proof). This means that the fat-shattering
dimension upper bound of Theorem 8 can be improved to
1

�

2

; which removes a log factor from the bound of Theorem
9; however this bound will still contain various log factors
because of the log terms in Theorem 7.

5.2 p =1 AND THE JACKSON-CRAVEN
ALGORITHM

At the other extreme, we now define a naturalp =1 version
of our algorithm. Consider the vectors~z and ~w which are
computed by the weak learning algorithmWLA. If we let r
be the number of coordinatesz

i

of ~z such thatjz
i

j = k~zk

1

;

then for anyi we have

lim

p!1

�

w

i

k ~wk

q

�

= lim

p!1

�

sign(z
i

)jz

i

j

p�1

(

P

n

i=1

jz

i

j

(p�1)q

)

1=q

�

=

�

sign(z
i

)=r if jz
i

j = k~zk

1

0 otherwise.

Hence it is natural to consider ap = 1 version ofWLA,
which we denoteWLA0, in which the vector~w is defined by
takingw

i

= sign(z
i

) if jz
i

j = k~zk

1

andw
i

= 0 other-
wise. All of our analysis continues to hold (with minor mod-
ifications described in Appendix D) and we obtain ap = 1

strong learning algorithm:
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Claim 10 Theorem 9 holds for p =1 with WLA0 in place of
WLA.

There is a close relationship between thisp = 1 algo-
rithm and the work of Jackson and Craven on learning sparse
perceptrons [20]. Note that ifr = 1; i.e. only one coor-
dinate of~z hasjz

i

j = k~zk

1

; then theWLA0 hypothesis is
h(~x) =

`

kXk

1

where` is the signed variable from

fx

1

; : : : ; x

n

;�x

1

; : : : ;�x

n

g

which is most strongly correlated under distributionD with
the value of sign(~u�~x): This is very similar to the weak learn-
ing algorithm used by Jackson and Craven in [20], which
takes the single best-correlated literal as its hypothesis (break-
ing ties arbitrarily).

The proof that this “best-single-literal” algorithm used
in [20] is a weak learning algorithm is due to Goldmann,
Håstad and Razborov [17]. However, the proof in [17] as-
sumes that the example spaceX is f0; 1gn and the target
vector~u has all integer coefficients; thus, as noted by Jack-
son and Craven in [20], their algorithm for learning sparse
perceptrons only applies to learning problems which are de-
fined over discrete input domains. In contrast, ourp = 1

algorithm can be applied on continuous input domains – the
only restrictions are that the example spaceX and the target
vector~u satisfykXk

1

<1 and�
~u;X

> 0:

We also observe that Theorem 9 establishes a tighter sam-
ple complexity bound for ourp = 1 strong learning algo-
rithm than was given in [20]. To see this, letX = f0; 1g

n

and suppose that the target vector~u 2 <

n has all integer
coefficients, so the algorithm from [20] can be applied. For
this learning problem we have�

~u;X

= 
(1) andkXk
1

= 1;

letting s = k~uk

1

; Theorem 9 implies that ourp = 1 strong
learning algorithm has sample complexity roughlys

2

=� (ig-
noring log factors). This is a substantial improvement over
the roughlys4=� sample complexity bound given in [20].
More generally, the sample complexity bound given in [20]
for learning “s-sparsek-perceptrons” is roughlyks4=�; the
analysis of this paper can easily be extended to establish a
sample complexity bound of roughlyks2=� for learnings-
sparsek-perceptrons.

6 OPEN QUESTIONS

Our results give evidence of the broad utility of boosting al-
gorithms such as Adaboost. A natural question is how much
further this utility extends: are there simple boosting-based
PAC versions of other standard learning algorithms? We note
in this context that Kearns and Mansour [23] have shown that
various heuristic algorithms for top-down decision tree in-
duction can be viewed as instantiations of boosting. Another
goal is to construct more powerful boosting-based PAC algo-
rithms for linear threshold functions. All of the algorithms
discussed in this paper have an inverse quadratic dependence
on the separation parameter�

~u;X

; linear-programming based
algorithms for learning linear threshold functions (see, e.g.,
[6, 7, 9, 29, 30]) do not have such a dependence. Is there
a natural boosting-based PAC algorithm for linear threshold
functions with performance bounds similar to those of the
linear-programming based algorithms?
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A PROOF OF THEOREM 4

The proof combines ideas from [34], where it is shown that
Adaboost with binary valued hypotheses generates a large
margin classifier, and [35], where an analysis is given for
Adaboost with real valued hypotheses. As in Theorem 5
of [34], if y

i

f(x

i

) � � then

y

i

T

X
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t
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which implies that
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Following [34], we thus have
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(3)

where the second equality follows from the definition ofD

t+1

and the final equality is becauseDT+1 is a distribution and
hence sums to 1. Our goal is thus to bound the right side of
inequality (3).

If we let

r

t

=

m

X

i=1

D

t

(x

i

)y

i

h

t

(x

i

)

then using the fact that

jh(x

j

)� y

j

j = 1� y

j

h(x
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)

we find that�
t

=

1�r

t

2

: Substituting into the definition of�
t

we obtain

�
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2
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1 + r

t

1� r
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:

Following [35] for simplicity of notation we now fixt
and letu

i

= y

i

h

t

(x

i

); Z = Z

t

; D = D

t

; � = �

t

; r = r

t

;

and� = �

t

: As noted in [35] a simple convexity argument
shows that

e

��u
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1� u

2

e

�



156

for any� 2 < and anyu 2 [�1; 1]: Sinceu
i

always lies in
the interval[�1; 1]; we can apply this inequality to obtain

Z =

m

X

i=1

D(x

i

)e

��u

i
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i=1

D(x

i
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�

1 + u
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2
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+
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2

e

�

�

: (4)

As in Section 3.5 of [35], substituting� into inequality (4)
yields

Z

t

�

q

1� r

2

t

=

p

1� (1� 2�

t

)

2

= 2

p

�

t

(1� �

t

): (5)
Substituting inequality (5) into inequality (3) and using the
definition of�

t

yields the desired bound of the theorem.

B PROOF OF LEMMA 5

We show that
(1� 4x)

1�x

(1 + 4x)

1+x

� 1� 4x

2

for 0 � x � 1=4: Using a simple convexity argument, it
can be verified that�r � 1 � (1 � �)r for any� � 0 and
any0 � r � 1: This inequality implies that(1 � 4x)

1�x

�

1� 4x+ 4x

2 and(1 + 4x)

x

� 1 + 4x

2

; so consequently

(1�4x)
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(1+4x)

1+x

� (1�4x+4x

2

)(1+4x)(1+4x

2

);

which is at most1� 4x

2 for 0 � x � 1=4:

C PROOF OF THEOREM 8

The theorem is a variant of Theorem 1.6 from [4]. The proof
follows from combining the inequalities proved in the fol-
lowing two lemmas.

Lemma 11 Let

F =

�
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q
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Proof: Suppose thatf~x1; : : : ; ~xdg is �-shattered byF as
witnessed by the real numbersr
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d

: Then for every
b = (b
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Summing thesed inequalities and rearranging, we obtain

~v

b

�

 

d

X

i=1

b

i

~x

i

!

� �d+

d

X

i=1

b

i

r

i

: (6)

There are two cases to consider. Case 1 is if
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(where the first inequality is by the definition ofF ; the sec-
ond inequality is Hölder’s, and the third is from inequality
(6)), which yields the desired inequalityk
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In the second case,
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; and the lemma follows since
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:

Lemma 12 For any set f~x1; : : : ; ~xdg with each k~x

i

k

p

�

kXk

p

; if p � 2 then there is some b = (b

1

; : : : ; b

d

) 2

f�1; 1g

d such that
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2d log 4n � kXk
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:

Proof: The proof uses the probabilistic method. We consider
the random variable~z =

P

d

i=1

b

i

~x

i where(b
1

; : : : ; b

d

) is
uniformly distributed overf�1; 1g

d

: For any coordinatej 2
f1; : : : ; ng we havez

j

=

P

d

i=1

b

i

x

i

j

and henceE[z

j

] = 0:

LetY
j

= jx

1

j

j

2

+� � �+jx

d

j

j

2; Hoeffding’s bound [19] on sums
of independent random variables states that for anyt > 0 we
have

Pr[jz

j

j > t] � 2 exp

�

�t

2

2Y

j

�

:

As a consequence, takingt =

p

2Y

j

log 4n we have that
Pr[jz

j

j � t] � 1=2n: Using the union bound acrossj =

1; 2; : : : ; n; we have that with probability at least1=2 every
coordinatez

j

of ~z satisfiesjz
j

j <

p

2Y

j

log 4n; and hence
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=
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�
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1

A
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p

2 log 4n �
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B

@

0

@

n

X

j=1

�

jx

1

j

j

2

+ � � �+ jx

d

j

j

2

�

p=2

1

A

2=p

1

C

A

1=2

(7)

Sincep � 2; we havep=2 � 1 and hence Minkowski’s in-
equality implies that
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3
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2

4
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2=p
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1

k

2

p
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d

k

2

p

� dkXk

2

p

: (8)
The lemma follows by combining inequalities (7) and (8).
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We first show that Theorem 3 still holds in the casep =

1 with WLA
0 in place ofWLA. The proof is unchanged up

through the point where we must show that
P

m

i=1

D(~x

i

)y

i

( ~w � ~x

i

)

k ~wk

1

�

�

~u;X

k~uk

1

:

The left-hand side of this inequality can be rewritten as

~w � ~z

k ~wk

1

=

P

jz

i

j=k~zk

1

sign(z
i

)z

i

P

jz

i

j=k~zk

1

1

=

P

jz

i

j=k~zk

1

k~zk

1

P

jz

i

j=k~zk

1

1

= k~zk

1

;

and hence it suffices to prove thatk~zk
1

� �

~u;X

=k~uk

1

: This
is established at the end of the proof of Theorem 3, so Theo-
rem 3 holds withp =1 andWLA0 substituted forWLA.

The rest of the analysis goes through unchanged except
for inequalities (7) and (8) of Lemma 12. SincekXk

1

=

sup

~x2X

max

j=1;:::;n

jx

j

j; we have thatY
j

� dkXk

2

1

for all
j; and hence in place of inequalities (7) and (8) we have

k~zk

1

= max

j

jz

j

j � max

j

p

2Y

j

log 4n

�

p

2d log 4n � kXk

1

;

which proves the lemma.


