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Abstrat

The present paper deals with the average-

ase omplexity of various algorithms for learn-

ing univariate polynomials. For this purpose

an appropriate framework is introdued. Bas-

ed on it, the learnability of univariate polyno-

mials evaluated over the natural numbers and

of univariate polynomials de�ned over �nite

�elds is analyzed.

Our results are manifold. In the �rst ase,

onvergene is measured not relative to the de-

gree of a polynomial but with respet to a mea-

sure that takes the degree and the size of the

oeÆients into aount. Then standard inter-

polation is proved not to be the best possible

algorithm with respet to the average number

of examples needed.

In general, polynomials over �nite �elds are

not uniquely spei�ed by their input-output-

behavior. Thus, as a new form of data repre-

sentation the remainders modulo other poly-

nomials is proposed and the expeted example

omplexity is analyzed for a rather rih lass

of probability distributions.

1 Introdution

Learning onepts eÆiently has attrated onsider-

able attention during the last deade. However, within

the �eld of indutive inferene traditionally the main

emphasis has been put on analyzing the update time,

i.e., the e�ort to ompute a single new hypothesis. On

the other hand, starting with Valiant's [21℄ pioneer-

ing paper, the total amount of examples and/or time

needed to solve a given learning problem has beome

quite popular. Nevertheless, the omplexity bounds
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proved within the PAC model are usually worst-ase

bounds.

Sine experimental studies have shown quite often a

large gap between the worst-ase bounds proved and the

atual runtime observed, several authors advoated to

analyze the average-ase behavior of learning algorithms

(f., e.g., [7, 10, 12, 14, 15, 16, 17, 18℄). We ontinue

along this line of researh.

Within this paper we deal with the problem to learn

eÆiently univariate integer valued polynomials as well

as univariate polynomials over �nite �elds from two dif-

ferent soures of information. The underlying model is

Gold [9℄-style learning in the limit, i.e., the learner has

to produe a sequene of hypotheses that stabilizes to a

orret and �nite desription of the target polynomial.

We always hoose the target lass of all relevant poly-

nomials as hypothesis spae.

Classially, the soure of information are inremen-

tally growing sequenes of pairs argument{value. An-

gluin and Smith [2℄ desribe two methods for learning

integer valued polynomials in this setting. The �rst

method is identi�ation by enumeration (f. Gold [9℄).

Here, a anonial enumeration of all target polynomials

is assumed and the learner searhes on every input for

the �rst polynomial in the enumeration that mathes

the data. Clearly, it then onverges to the �rst enumer-

ated polynomial that equals the target.

The seond method is learning by interpolation, i.e.,

the learner always omputes the interpolation polyno-

mial from the data given. Polynomial interpolation

is a widely studied and well understood problem (f.,

e.g., Bini and Pan [4℄). So in the general ase, there

are algorithms whih synthesize a formula for a desired

polynomial over the rational or real numbers from n+1

pairs (x; g(x)) where g is the desired polynomial and

n is its degree.

We aim to ompare these methods with respet to

their average-ase example and time omplexity. Part

of our motivation is a result obtained by Gold [9℄ and

generalized by Jantke and Beik [13℄ stating that iden-

ti�ation by enumeration is an optimally data eÆient

method. Here, the data eÆieny of a learner is mea-

sured by the quantity of data it needs to onverge to a



60

orret hypothesis. If L

1

and L

2

are two learning algo-

rithms, then L

1

is as data eÆient as L

2

i�, for every

admissible information presentation and every target,

L

1

does not need more data than L

2

to onverge. L

1

is stritly more data eÆient than L

2

if L

1

is as data

eÆient as L

2

but there is a target and a data presenta-

tion for it suh that L

1

needs stritly less data than L

2

until onvergene. Finally, a learning method is alled

optimally data eÆient if there is no other learner that

is stritly more data eÆient.

While these investigations have been undertaken in

a setting where learning is required from every infor-

mation presentation, our goal is to analyze the average-

ase omplexity of these two methods. We de�ne our

average-ase model by speifying a rather rih lass of

probability distributions over the natural numbers (f.

Setion 2). Then, every datum x will be drawn inde-

pendently at random with a ertain probability. Thus,

one obtains randomly generated sequenes ((x; g(x)))

and the learner is fed inrementally growing initial seg-

ments of the sequene generated.

Then we onsider the problem of learning polynomi-

als over a �nite �eld. For seeing the main two di�er-

enes, let us assume that we have to learn polynomials

de�ned over the �nite �eld IF

2

.

(1) Now, the polynomials onsidered are de�ned only

for two inputs, i.e., input 0 and input 1 . Therefore

they are not fully desribed by the mapping x ! g(x)

for x 2 f0; 1g and one has to look for other ways to

desribe them. The way hosen in the present paper is

to supply the data as a random sequene of pairs (a; b)

where b is the remainder polynomial obtained when

the target polynomial g is divided by polynomial a .

This generalization reintrodues a mode to desribe the

whole polynomial. We refer to this model as to learning

from remainder sequenes.

(2) In the standard ase, all data fed to the learner

are of the form (x; g(x)) and have the same information

ontent. Thus, n+ 1 di�erent data items | whatever

they are | desribe exatly the target polynomial g

while n do not do it. This beautiful property is lost in

the model onsidered here, i.e., when learning from re-

mainder sequenes. Taking for example a produt g

1

g

2

;

then all pairs (a; b) where a is dividing g

1

do not on-

tribute any knowledge about g

2

, but there might be 2

n

divisors for some polynomial g

1

of degree n

2

| for ex-

ample obtained by multiplying n oprime polynomials

of length n . So the degree is not an upper bound on

the number of data-items needed to learn a polynomial.

On the other hand, a single data-item an give a full

desription of the polynomial: if deg(a) > n then the

b in the pair (a; b) is already the orret polynomial

wanted.

For de�ning our average-ase model, we have to in-

trodue a lass of probability distributions over the set

IF

q

[x℄ of all relevant polynomials (where IF

q

is a �nite

�eld of order q ). Clearly, this lass should be hosen in-

dependently of the target polynomial. That is, we �rst

�x the lass of admissible probability distributions D

and then analyze the expeted omplexity of learning

from remainder sequenes drawn with respet to some

distribution from the lass D .

For de�ning D , all polynomials from IF

q

[x℄ should

have a non-zero probability exept the zero polynomial.

Sine IF

q

[x℄ is in�nite, the limit superior (as n tends to

in�nite) of the probability to show up for a polynomial

of degree n has to be zero. That is, high degree poly-

nomials have low probability and the higher the degree

the smaller is the relevant probability. On the other

hand, there is no reasonable ause to assume di�erent

probabilities for polynomials of the same degree. Thus,

the distributions in D onsidered in the present work

are all of a quasi uniform type.

The omplexity of our learning algorithms is ana-

lyzed with respet to two average measures: The exam-

ple omplexity is the average number of examples used

by the learning algorithm until it omes up with the

orret hypothesis. The time omplexity is the average

number of omputation steps until the orret polyno-

mial g is found. Naturally, the example omplexity is

also a lower bound for the time omplexity.

Next, we introdue some notions and notations used

within the present paper.

By IN = f0; 1; 2; : : :g we denote the set of all natural

numbers, and we set IN

+

= IN n f0g . The symbol ZZ

is used for the set of all integers. Any �nite �eld is

denoted by IF . If IF is a �nite �eld, we write p for its

harateristi and q for its order. Note that p is always

a prime and q = p

`

for some ` 2 IN

+

. Therefore, we

usually write IF

q

for the, up to isomorphism, unique

�eld of order q . For more information onerning �nite

�elds the reader is referred to Berlekamp [3℄.

If g is any polynomial; then we use deg(g) to de-

note its degree.

Finally, we reall the following important proposi-

tion from probability theory that will be used frequently.

Proposition 1 (Feller [8℄). Assume that there is

a soure of examples suh that every example has with

probability r > 0 a ertain property u . Then the aver-

age number of examples to be drawn until some example

satisfying u omes up is just

1

r

. The average number

of examples neessary to draw n suh examples is

n

r

.

This paper is organized as follows. In Setion 2

we present a new algorithm for learning integer valued

polynomials from sequenes argument-value and ana-

lyze its average-ase omplexity with respet to a rather

large lass of probability distributions. The average-

ase omplexity of learning polynomials over �nite �elds

from remainder sequenes is studied in Setion 3. Fi-

nally, we outline onlusions.
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2 Learning Polynomials on Natural

Numbers

Throughout this setion, the target lass is the set

of all integer-valued polynomials. For learning a target

polynomial g , the soure of information given to the

learner are pairs (x; g(x)) , where x 2 IN . Next, we

have to speify the lass of admissible probability dis-

tributions D over IN . That is, a datum x will then be

drawn with probability p(fxg) , and the learner is fed

(x; g(x)) . For de�ning a rather rih lass of probability

distributions, we make only the following two assump-

tions about p . First, p(fxg) > 0 for all x 2 IN , sine

we have no reason to distinguish any x 2 IN by assign-

ing probability 0 to it. Seond, p(fxg) � p(fyg) for

all x; y 2 IN with x � y . The motivation for the se-

ond assumption is as follows. Sine IN is in�nite, the

limit superior of p(fxg) (as x tends to in�nite) has

to be zero. That means, large numbers must have low

probability and the larger x is the lower is the relevant

probability.

As we shall see later, it will be more onvenient to

deal with the probability that some datum from the

set fx; x + 1; x+ 2; : : :g has been drawn rather than a

partiular one. Therefore, we speify the lass D via

funtions f de�ned by f(x) = p(fx; x + 1; : : :g) , i.e.,

f desribes the probability to draw some datum from

fx; x+ 1; x+ 2; : : :g . Now, one easily veri�es that f is

dereasing, and the following properties are ful�lled:

(1) f(0) = 1 ,

(2) lim

x!1

f(x) = 0 ,

(3) f(x) > 0 for all x 2 IN , and

(4) f(x)� f(x+ 1) � f(x+ 1)� f(x+ 2) .

So f is very parallel to the parameter funtion f

used in the next setion. D is now the set of all prob-

ability distributions generated by a dereasing funtion

f satisfying (1) through (4) above.

Interpolation is the best known method for learning

polynomials. It returns to all data-items a hypothesis

in polynomial time and its average-ase omplexity is a

bit below

1

f(0)�f(1)�:::�f(n)

(f. [20℄):

� There are polynomial time algorithms to ompute

a formula for a polynomial g of least degree inter-

polating given data (x

0

; y

0

); (x

1

; y

1

); (x

2

; y

2

); : : : ;

(x

n

; y

n

) .

� It needs n+ 1 di�erent examples for identifying a

polynomial of degree n ; the average example om-

plexity is just the number of draws neessary un-

til n + 1 di�erent values are obtained. An upper

bound of the expeted example omplexity of learn-

ing polynomials by interpolation is then

1

f(0) � f(1) � : : : � f(n)

:

Gold [9℄ as well as Jantke and Beik [13℄ showed that

learning by enumeration is optimally data-eÆient. The

same is true also for interpolation.

Proposition 2. Interpolation is optimally data-

eÆient.

Proof. Interpolation returns to any n+ 1 di�erent

data-items a polynomial of degree n and keeps that

hypothesis until some data omes up showing that it

is inorret. Assume by way of ontradition that some

other algorithm M would be stritly more data-eÆient

than interpolation. Then M learns some polynomial g

before it is interpolated, that is, M outputs a orret

hypothesis for g on some data (x

0

; y

0

); (x

1

; y

1

); : : : ;

(x

n

; y

n

) although deg(g) > n . As a onsequene, M

does not identify the polynomial g

0

interpolating this

sequene from these n + 1 data-items, whih ontra-

dits the fat that M is at least as data-eÆient as

interpolation.

So alternatives to interpolation are more inompa-

rable to it than better on all possible polynomials and

data-sequenes. The main axiom of interpolation is that

the easiest way to desribe a set of data is to take the

polynomial of least degree interpolating it. That is, in-

terpolation is based on the assumption that a data-item

of the form

(10000; 100020001)

is more likely to desribe the polynomial

g(x) = 100020001

than the polynomial

h(x) = x

2

+ 2x+ 1 ;

so the size of the oeÆients is totally ignored. The

subsequent model therefore tries to �nd for given data

rather a polynomial having small absolute values of the

oeÆients rather than being of small degree. This ap-

proah leads us to a de�nition of the size of a polynomial

that takes into aount not only the degree but also the

absolute value of the oeÆients. Integer valued poly-

nomials may have rational oeÆients, for example the

learly integer-valued polynomial

x! 0 + 1 + : : :+ x

has the formula

1

2

x

2

+

1

2

x :

Every integer-valued polynomial of degree k is of the

form

g(x) = a

0

�

x

0

�

+ a

1

�

x

1

�

+ : : :+ a

k

�

x

k

�

;

where all a

i

2 ZZ ; a

k

6= 0 and

�

x

h

�

=

x � (x� 1) � : : : � (x � h+ 1)

1 � 2 � : : : � h

is the binomial oeÆient for x and h . Note that

�

x

h

�

= 0 for all x < h :
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For example,

g(x) =

1

2

x

2

+

1

2

x

has then the form

g(x) =

�

x

1

�

+

�

x

2

�

;

i.e., a

0

= 0 , a

1

= a

2

= 1 .

Using this general form, a natural de�nition of the

size of a polynomial g is

size(g) = maxf1; deg(g); ja

0

j; ja

1

j; : : : ; ja

k

jg:

Here deg(g) � k , and equality holds in the ase that

a

k

6= 0 . The next theorem shows that | with high

probability | every polynomial of size n an be learned

within polynomial time from logarithmially many ex-

amples.

Theorem 3. Let g be any target polynomial whose

size is unknown to the learner. Then, an optimal al-

gorithm learning g from data-items drawn at random

with respet to f needs

(1) at least (f(size(g)))

�1

and

(2) at most (f(5 � (size(g))

2

))

�1

many examples until

onvergene.

Proof. For proving Assertion (1), onsider the two

polynomials x!

�

x

n

�

and x! �

�

x

n

�

. They have size

n and do not di�er at the plaes 0; 1 : : : ; n� 1 . Thus,

the learner has to see some pair (x; g(x)) with x � n

to make up its mind. So, the expeted number to draw

examples until suh a pair omes up is

1

f(size(g))

.

For proving Assertion (2), onsider the following al-

gorithm:

Let (x; g(x)) be the data-item with the largest

x seen so far.

Let n be the largest natural number suh that

5n

2

� x .

Initialize a

0

; a

1

; : : : ; a

n

with the value �n .

For m = n; n � 1; : : : ; 0 inrement a

m

until

either a

m

= n or g

0

(x) +

�

x

m

�

> g(x) for the

polynomial g

0

de�ned by the urrent values of

the oeÆients a

0

; a

1

; : : : ; a

n

.

Output g(x) = a

0

+ a

1

�

x

1

�

+ : : :+ a

n

�

x

n

�

.

It is easy to see, that this algorithm onverges. Sine

eah a

m

is inreased at most 2n times and sine there

are only n variables, the whole algorithm needs to om-

pute the urrent values of g

0

(x) +

�

x

m

�

at most 2n

2

times.

Next, it is shown that the output is orret under

the assumption that size(g) � n .

Assume now by way of ontradition, that the algo-

rithm terminates with some g

00

suh that g

00

6= g . Let

b

0

; b

1

; : : : ; b

n

be the oeÆients of g and a

0

; a

1

; : : : ; a

n

those of g

00

. There is a largest m suh that b

m

6= a

m

.

If a

m

< b

m

, then the algorithm stops at the m -

th loop before inrementing a

m

to b

m

, in partiu-

lar, �n

�

x

0

�

� n

�

x

1

�

� : : : � n

�

x

m�1

�

+ (a

m

+ 1)

�

x

m

�

+

a

m+1

�

x

m+1

�

+ : : : + a

n

�

x

n

�

> g(x) . This implies by

a

k

= b

k

for k > m that �n

�

x

0

�

�n

�

x

1

�

�: : :�n

�

x

m�1

�

+

(a

m

+ 1)

�

x

m

�

> b

0

�

x

0

�

+ b

1

�

x

1

�

+ : : : + b

m�1

�

x

m�1

�

+

b

m

�

x

m

�

. This assumption ontradits to the fat that

the a

m

+ 1 � b

m

and �n � b

k

for all k . So this ase

does not our.

Otherwise a

m

> b

m

. This implies that �n

�

x

0

�

�

n

�

x

1

�

� : : :�n

�

x

m�1

�

+(b

m

+1)

�

x

m

�

� b

0

�

x

0

�

+ b

1

�

x

1

�

+

: : : + b

m�1

�

x

m�1

�

+ b

m

�

x

m

�

sine otherwise a

m

ould

never been inremented to a value greater than b

m

.

So one gets that

�

x

m

�

� (b

0

+ n)

�

x

0

�

+ (b

1

+ n)

�

x

1

�

+

: : : + (b

m�1

+ n)

�

x

m�1

�

. Using b

k

� n , m �

x

5

and

that, for k <

x

5

,

�

x

k

�

<

1

2

�

x

k+1

�

one gets that

�

x

m

�

�

2n � (2

1�m

+ 2

2�m

+ : : : + 2

0

)

�

x

m�1

�

� 4n �

�

x

m�1

�

. In

partiular x + 1 � m � 4nm whih ontradits the

requirements m � n and x � 5n

2

from the hoie of

m and n . Thus, a

m

> b

m

is impossible either.

So, it follows from the ase-distintion that g

00

= g

whenever the parameter n is an upper bound for the

size of g . In partiular the example omplexity of the

algorithm is (f(5 � (size(g))

2

))

�1

.

Before disussing further onsequenes of our Theo-

rem 3, we shortly illustrate the learner desribed in the

proof above.

Example 4. Let g with g(x) = 1 for all x be

the target polynomial to be learned by the algorithm

given in the proof above. Thus, size(g) = 1 and we

therefore onsider the data item (5; 1) whih has the

smallest possible x .

Now, �rst the algorithm omputes n = 1 , and there-

fore g

0

1

(x) = �x�1 . During the �rst loop, i.e., m = 1 ,

only the oeÆient a

1

is possibly hanged while the a-

tual a

0

= �1 remains unhanged.

Sine a

1

= �1 6= 1 = n , the algorithm then tests

�5� 1 + 5 > 1 whih is false. Therefore, g

0

2

(x) = �1 .

Sine 0 6= 1 , it tests �1 + 5 > 1 whih is true. This

�nishes the loop for a

1

with a

1

= 0 , and the seond

loop, i.e., m = 0 , is started with g

0

2

(x) = �1 . Now,

the ondition to be heked is �1 = 1 or �1 + 1 > 1

whih returns false. Thus, g

0

3

(x) = 0 . Sine 0 6= 1 , it

tests 0 + 1 > 1 whih is false. Finally, g

0

4

(x) = 1 , and

the algorithm terminates, sine 1 = 1 . Hene, it has

orretly learned the target g .

Note that the time-omplexity of the algorithm pre-

sented in the proof of Theorem 3 ould be improved by

searhing the a

m

via interval searh; the main reason

for giving the algorithm as above was to get an eas-

ier veri�ation. The following example gives onrete
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bounds for the ase that the distribution is given by

f(n) =

1

log(n+ 2)

:

Example 5. There is an algorithm whih learns

polynomials with example omplexity

log(2 + 5 � (size(g))

2

)

where the distribution is given by f(n) =

1

log(n+2)

.

Next, we ompare the latter result to learning by in-

terpolation. Let n > 1 ; there are (2n + 1) � (2n+ 1)

n

many polynomials having size at most n . Among these

polynomials, there are 2n � (2n+1)

n

many polynomials

that have degree n . For these polynomials of degree n

the standard interpolation proedure requires n+1 dif-

ferent data-items. On the other hand, for the distribu-

tion desribed by f(n) =

1

log(n+2)

, our algorithm needs

for all polynomials of size at most n only log(5n+2)

2

many examples. So the example omplexity of the al-

gorithm presented above is for the great majority of

the polynomials of size at most n better than standard

interpolation when measured with respet to the dis-

tribution desribed by f(n) =

1

log(n+2)

and taking the

size instead of the degree as a key parameter.

On the other hand, interpolation beats this algo-

rithm if the underlying probability distribution is given

by f(n) = 2

�n

. Then the example omplexity to get

all values g(0); g(1); : : : ; g(n) is 2

n(n+1)=2

while the ex-

ample omplexity to get one value g(x) with x � 5n

2

is 2

5n

2

.

Next, we turn our attention to the problem that an-

alyzing only the expeted number of examples needed

until onvergene is not so interesting. As often riti-

ized by statistiians, expeted values alone are not so

informative. Thus, we are interested in knowing on how

often the example omplexity exeeds the average sub-

stantially.

For that purpose, we �rst note that the learner pre-

sented in Theorem 3 has two important properties, i.e.,

it is onservative and set-driven. A learner is set-driven,

if its output depends only on the range of its input (f.

Wexler and Culiover [22℄), while onservative learners

maintain their atual hypotheses at least as long as they

have not seen data ontraditing them (f. Angluin [1℄).

Now, let X be a random variable standing for the ex-

ample omplexity of the algorithm in the proof of The-

orem 3, and let E[X ℄ denote the expetation of X .

Then, using a result by Rossmanith and Zeugmann [19℄,

we diretly obtain the following orollary.

Corollary 6. Pr(X � 2tE[X ℄) � 2

�t

for all

t 2 IN .

Consequently, our learner additionally possesses ex-

ponentially shrinking tail bounds for the example om-

plexity. We an therefore transform the above algorithm

into one that probably exatly identi�es every target

polynomial of size at most n provided a omputable

upper bound

^

f for f is available to the learner. Prob-

ably exat learning is de�ned in the same way as PAC

learning, exept that the hypothesis output has to be

orret rather than approximately orret. Addition-

ally, it assumes a bit knowledge onerning the under-

lying distributions.

Theorem 7. Let n 2 IN , and let

^

f be a omputable

upper bound for f . Then there is an algorithm probably

exatly learning every target polynomial of size at most

n for every distribution f 2 D with f(x) �

^

f(x) for

all x 2 IN using (2

^

f(5n

2

))

�1

log

1

Æ

many examples.

Proof. The desired learner takes any Æ 2 (0; 1) as

additional input. Now, using the algorithm de�ned in

the proof of Theorem 3, the learner performs log(1=Æ)

many rounds.

In eah round it requests (2

^

f(5n

2

))

�1

many exam-

ples. During the �rst round, it omputes a hypothesis

by using the learner from Theorem 3. By Corollary 6,

this hypothesis is already orret with probability at

least 1=2 . In the remaining rounds, a new hypothesis

is only omputed if a data item (x; g(x)) is reeived

suh that x > y for all y in the data items (y; g(y))

reeived so far. The last hypothesis omputed is then

output.

Therefore, the probability that none of the omputed

hypotheses is orret an be bounded by Æ , i.e., with

probability 1� Æ the learner outputs a orret hypoth-

esis after having proessed (2

^

f(5n

2

))

�1

log(1=Æ) many

examples. Sine

^

f is an upper bound for f , the theo-

rem follows.

We �nish this setion by omparing the latter result

to PAC learning. Clearly, the PAC model is distribution

free, and therefore, the best one an hope for is to get

better bounds on the number of examples needed for

speial lasses of distributions. This is indeed the ase

as we shall see.

Assuming n to be again a bound on the size of all

target polynomials, one an easily determine the VC

dimension of the lass of all these polynomials to be n .

Thus, a PAC learner needs at least O(

1

"

log

1

Æ

+

n

"

) many

examples. Compared to the bound in Theorem 7, this

bound is worse provided

^

f(n) <

1

p

n+1

.

Further generalizations are possible by removing the

parameter n for the upper bound of the size. For the

PAC model, this has been shown in [11℄. Their teh-

nique an be generalized to the setting onsidered in

Theorem 7.

3 Learning from Remainder Sequenes

Next, we turn our attention to learning univariate

polynomials over �nite �elds. As already mentioned in
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the introdution, now the situation is slightly di�erent

from that studied in the previous subsetion, sine even

omplete sequenes of pairs argument-value do not pro-

vide enough information to learn the target polynomial.

Therefore, we propose a new soure of information,

i.e., learning from remainder sequenes. That is, now

the learner has aess to pairs (a; b) , where a is any

polynomial and b is the remainder of the target polyno-

mial when divided by a . Again, we require the learner

to infer the target in the limit from any suh sequene.

This information shares some nie properties with

the standard soure of information given by sequenes

of argument-value. First, it is also easy to ompute

(only a bit more ompliated than polynomial evalua-

tion). Seond, it ontains enough information to learn

the target polynomial. Third, though one an learn the

target from this information, learning does not beome

easier in the sense that learning in the limit ould be

replaed by �nite learning. Here, �nite learning means

that the learner an deide whether or not it has already

suessfully �nished its learning task (f. Gold [9℄).

In some sense, learning even beomes harder. As

we have already said, in the standard ase it is always

suÆient to have n + 1 data items argument-value to

learn any polynomial of degree n . This nie property

is lost in our new model. Taking into onsideration

that there are (q� 1)q

m

di�erent polynomials in IF

q

[x℄

of degree preisely m , it is easy to see that it may

take exponentially many examples (in the degree n of

the target polynomial) until onvergene. On the other

hand, a single data item is suÆient in the best-ase (if

deg(a) > deg(g) , where g is the target polynomial).

Consequently, in the new setting the best-ase and

worst-ase are overly optimisti and pessimisti, respe-

tively. Therefore, we study the average-ase omplexity

of this learning task. This requires the introdution of

a lass of probability distributions over the whole set

IF

q

[x℄ of polynomials. Sine IF

q

[x℄ is in�nite, there is

no uniform distribution. We therefore onsider a rather

rih lass of quasi uniform distributions over IF

q

[x℄ de-

�ned as follows.

Definition 8. For every �nite �eld IF

q

we de�ne

the lass D of quasi uniform distributions over IF

q

[x℄

to be the set of all probability distributions generated

by any dereasing funtion f satisfying

(1) f(0) = 1 ,

(2) lim

n!1

f(n) = 0 ,

(3) f(n) 6= 0 for all n � 1 , and

(4) f(n)� f(n+ 1) � f(n+ 1)� f(n+ 2) .

The probability of a non-zero polynomial a is then

just

(f(deg(a))� f(deg(a) + 1)) �

1

(q � 1) � q

deg(a)

Conditions (1) and (2) in De�nition 8 are neessary

to obtain a probability distribution. For seeing this,

note that there are preisely (q� 1) � q

m

many polyno-

mials of degree m . Thus, the probability to draw some

polynomial a of degree d is (f(deg(a)) � f(deg(a) +

1)) . Now, looking at the sequene (S

m

)

m2IN

of partial

sums, we get that

S

m

=

m

X

d=0

(f(d) � f(d+ 1)) = f(0)� f(d+ 1) ;

and hene lim

m!1

S

m

= f(0) = 1 .

Furthermore, Condition (3) ensures that all polyno-

mials have a non-zero probability. Finally, Condition

(4) formalizes the requirement that all polynomials of

degree n + 1 have a lower probability than those of

degree n .

First, we establish lower and upper bounds for learn-

ing from remainder sequenes. In the following, when-

ever talking about learning algorithms for polynomials

from IF

q

[x℄ , it is assumed that all these algorithms infer

to whole target lass IF

q

[x℄ .

Theorem 9. Let g 2 IF

q

be any target polynomial

of degree n ( where n is unknown to the learner ) .

Then we have:

(1) Every algorithm learning the target polynomial g

from remainder sequenes drawn at random with

respet to f needs at least

(f(log

q

(n)� 2 log

q

log

q

(n)))

�1

many examples until onvergene.

(2) There exists an algorithm learning g from remain-

der sequenes drawn at random with respet to f

that needs at most (f(n + 1))

�1

many examples

until onvergene.

Proof. For proving Assertion (1), hoose the unique

m suh that mq

m+1

< n � (m + 1)q

m+2

. Let g

1

be

the produt of all polynomials of degree up to m . There

are preisely (q�1) �q

d

many polynomials of degree d ;

thus the degree of g

1

an be upper bounded by

m � (q � 1) �

m

X

d=1

q

d

� m � q

m+1

:

Let g

2

be any polynomial of degree n � deg(g

1

) .

Now the lower bound is obtained by analyzing the ex-

peted number of examples neessary for learning the

polynomial g = g

1

g

2

. Any polynomial of degree up

to m is a divisor of g

1

. Therefore, no data (a; b)

with deg(a) � m gives any information on the par-

tiular form of g

2

. Hene, the learner annot su-

eed before seeing at least one data item (a; b) with

deg(a) > m . Suh a polynomial a ours with prob-

ability at most f(m + 1) and therefore, the example

omplexity is at least (f(m+ 1))

�1

whih is an upper

bound for (f(log

q

(n)� 2 log

q

log

q

(n)))

�1

.
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For proving Assertion (2) onsider the learning al-

gorithm that always onjetures b for the pair (a; b)

seen so far where a has the highest degree. Note that

b = p whenever deg(a) > deg(p) . Sine suh an a

has to be drawn up eventually, the algorithm onverges.

It remains to show the example bound given by this

algorithm mathes the bound given in (2). The event

that deg(a) > n has probability f(n + 1) and thus,

by Proposition 1, the expeted number of examples is

(f(n+ 1))

�1

until suh a polynomial a shows up.

Next, we disuss the bounds obtained in Theorem 9

by looking at very slowly and very rapidly dereasing

funtions f . For the former, let f(2

n

) =

1

2

f(n) and

require f to be uniformly dereasing for all arguments

inbetween two onseutive powers of 2 . That is, f(0) =

1 by Condition (1) in De�nition 8, f(1) = 1=2 , f(2) =

1=4 f(3) = 3=16 , f(4) = 1=8 , f(5) = 15=128 , f(6) =

14=128 , f(7) = 13=128 , f(8) = 3=32 , . . . , f(16) =

1=16 , . . . , and so on. Now, it is easy to see that the

di�erene between the bounds given in Theorem 9 is

only a onstant fator.

But for distributions given by other funtions f like

f(n) = q

�n

the gap is large. Now, the upper bound

q

n+1

and the lower bound

q

log(n)�2 log log(n)

= n � (log(n))

�2

di�er exponentially.

Consequently, while the gap between lower and up-

per bound in Theorem 9 an be large for some distri-

bution in D , one an expet better bounds for parti-

ular distributions. So the next two results improve the

bounds for the distribution given by f(n) = q

�n

.

Theorem 10. Let g 2 IF

q

[x℄ be any target polyno-

mial of degree n ( n again unknown to the learner ) .

Then every algorithm learning g from remainder se-

quenes drawn at random with respet to the distribution

generated by f(n) = q

�n

has at least example omplex-

ity q

�4

�

n

2

log(n)

for suÆiently large n .

Proof. (Sketh) This lower bound is obtained by

adapting the previous proof and by exploiting speial

knowledge on the distribution. Let m be the unique

number with (q+m+1)q

m+1

< n � (q+m+2)q

m+2

.

As in the proof of Theorem 9 let g

1

be the produt of

all moni polynomials of degree less than or equal to m

and g

2

is some polynomial of degree n�deg(g

1

) . Sine

the degree of g

1

is at most mq

m+1

, the degree of g

2

is at least q

m+2

. As in the previous lower bound proof,

again only polynomials whose degree is at least m + 1

ontribute to some knowledge on g

2

. The expeted

degree of these polynomials an be upper bounded by

m+3 . In order to reonstrut g

2

the sum of the degrees

of these polynomials must be q

m+2

and so at least

q

m+2

m+3

examples are needed to do the job. Also only one out of

q

m

examples quali�es to have at least degree m , so a

lower bound for the example omplexity is

q

2m+2

m+3

. Sine

n � (q+m+2)q

m+2

and log(n) � m , one an estimate

q

2m+2

m+3

� n

2

� q

�3

� (q +m+ 2)

�1

� q

�4

�

n

2

log(n)

and get

that, for suÆiently large n , q

�4

�

n

2

log(n)

examples are

neessary to learn any given polynomial of degree n .

Theorem 9 gives for f(n) = (n + 1)

�k

, k 2 IN

+

,

diretly an algorithm whih learns every polynomial g

of degree n with average example omplexity (n+2)

k

.

Considering that every example has to be read through

one, the time omplexity of the algorithm is (n+2)

k+1

.

This does not longer work for distributions like f(n)

= q

�n

. Here the lower bound is polynomial, but the

upper bound is exponential. Therefore, the next theo-

rem shows how to improve the upper bound from ex-

ponential to polynomial time. So both bounds are un-

der this partiular distribution quadrati modulo some

poly-logarithmi term.

Theorem 11. There is an algorithm that learns ev-

ery polynomial from IF

q

[x℄ from remainder sequenes

drawn at random with respet to the probability distri-

bution generated by f(n) = q

�n

that needs on average

at most q

7

n

2

many examples and time O(n

2

log(n))

until onvergene on target polynomials of degree n .

Proof. The learner does not use all data-items (a; b)

but only those whih belong to irreduible polynomi-

als a . Furthermore, one an divide the polynomial a

by its leading oeÆient. Note that this division does

not hange the remainder b . Thus, we an assume a

to be moni without hanging the remainder b . This

normization enfores that equivalent irreduible polyno-

mials like x

2

+ 1 and 2x

2

+ 2 our only in the form

x

2

+ 1 . So one makes the polynomials moni and per-

forms a test for irreduibility before further proessing.

As a onsequene the learning algorithm avoids fator-

ing and similar work. Furthermore before updating its

hypothesis, the learner �rst heks whether it has al-

ready seen the data oming in. This hek allows to

proess eah irreduible polynomial at most one and to

establish the low time omplexity of the learning pro-

ess. All data, whih pass these two heks, are then

used in order to onstrut a hypothesis about the poly-

nomial to be learned by applying the Chinese Remain-

der Theorem. As soon as the learner has aumulated a

suÆient large basis of oprime (even irreduible) poly-

nomials, the target is fully desribed by its orrespond-

ing remainders. We ontinue with a formal desription.

Within the algorithm, (a; b) denotes the urrent in-

put data, h is a variable standing for the hypothesis

about the polynomial to be learned, L is just the set of

all irreduible polynomials for whih the orresponding

remainder of the target is known and d is the produt

of all polynomials in L . The variable d just keeps this

produt in order to avoid doing the same multipliation

several times. Now the formal algorithm is presented.

Note that this algorithm outputs only �nitely many hy-
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potheses the last of whih will orretly desribe the

target to be learned.

Initialize h = 0 , d = 1 and L = ; and do

the following for ever:

Read (a; b) .

Make a moni, that is, divide a by its leading

oeÆient.

If a is irreduible and a =2 L then

Compute the remainder  of h mod-

ulo a .

Let L = L [ fag .

If b 6=  then

Compute the smallest e suh

that e � d has the remainder

b�  modulo a .

Let h = h+ e � d .

Output the new hypothesis h .

Let d = a � d .

Continue the loop with reading the next data-

items.

First note that the polynomials in L are all moni

and irreduible and thus o-prime. Furthermore, d is

always the produt of these polynomials and h satis�es

(9q) [h = aq + b℄ for all irreduible polynomials a and

the orresponding b seen so far. This an be proved,

for every a 2 L and the orresponding b , as follows:

At some step, the algorithm proesses (a; b) in the loop

and the innermost loop guarantees that the new h has

the orret remainder by hoosing e suh that e �d has

the remainder b� ; then the sum h+e �d , whih gives

the new h , has the remainder + (b � ) = b modulo

a . In all later steps, a divides d and only terms having

the remainder 0 modulo a are added to h so that the

orret remainder modulo a is preserved.

Seond, it is an invariant of the onstrution that

deg(h) < deg(d) : It holds at the initialization (by de�n-

ing deg(0) < 0 ) and whenever the values of h and d

are updated to h + ed and ad , respetively, then the

property is preserved sine deg(h+ed) < deg(ad) . This

an be seen as follows: The degree of ad is the sum

deg(a) + deg(d) . Furthermore, the degree of h + ed

is bounded by maxfdeg(h); deg(ed)g where deg(h) <

deg(d) < deg(a) + deg(d) and deg(ed) = deg(e) +

deg(d) < deg(a) + deg(d) . This last relation is based

on the fat that deg(e) < deg(a) and this fat is the

onsequene of the observations, that a is irreduible

and so e an be hosen as the smallest representative of

the quotient (b� )=d in the �eld of polynomials mod-

ulo a ; this quotient is well-de�ned sine a and d are

o-prime. Note that e = 0 is the solution for the ase

b� = 0 , therefore one an abstain from proessing the

inner-most loop in this ase.

Third, if h

0

is the target polynomial and deg(d) >

deg(h

0

) , that is, deg(d) > n , then h = h

0

sine, by the

Chinese Remainder Theorem, h and h

0

are both the

unique polynomial of degree below deg(d) whih has,

for all a 2 L , the orresponding remainder b when

divided by a .

Fourth, there are in�nitely many irreduible moni

polynomials a and eah a is eventually presented to-

gether with the orresponding remainder b . So the

event deg(d) > n must happen eventually and the al-

gorithm onverges to the orret hypothesis.

It remains to verify the time bound given and to es-

timate the expeted number of examples neessary until

onvergene.

First, we ompute the number of examples neessary.

For that purpose it suÆes to ask how many examples

are neessary until d has reahed some degree greater

than n . To get suh an estimation, let m be the least

degree suh that there are

2n

m

irreduible polynomials

of degree m in IF

q

[x℄ . Using the lower bound

I

m

>

q

m

� q

m=2+1

m

on the number I

m

of moni irreduible polynomials

of degree m in IF

q

[x℄ (f. Berlekamp [3℄), we obtain

that 2n is near to q

m

, more preisely, that q

m�2

<

2n < q

m+2

. As long as less than n of the irreduible

polynomials of degree m have ourred in the data

seen so far, the probability of getting one further one

of them is

n

m

� q

�2m�1

where q

�m�1

is the probabil-

ity of getting a polynomial of degree at least m and

n

m

q

�m

is a lower bound for the probability that this

polynomial is among the still unseen irreduible poly-

nomials of degree at least m . The expeted number of

examples neessary to reeive

n

m

di�erent irreduible

polynomials of degree at least m an therefore be es-

timated by the upper bound q

2m+1

. The degree of

their produt is n so that after q

2m+1

many examples

the size of d is n . Note that 2n > q

m�2

and thus

q

2m+1

� 4n

2

� q

5

� q

7

n

2

. So q

7

n

2

is an upper bound

on the expeted number of examples needed until on-

vergene.

Now the omplexity of eah step is analyzed. There

are two parts, whih have to be dealt separately with:

(a) the part whih is done for every data-item, and

(b) the part within the �rst \if"-statement after the

\then" whih is not exeuted for most of the data-

items.

The part (a) onsists of reading the hypothesis of

(a; b) , the hek whether a is irreduible and the test

whether a 2 L . The test whether a 2 L has the time

omplexity deg(a) log(jLj) by keeping L as an ordered

list. The size of L does not exeed n . So for eah data-

item, the omputations of type (a) need with probabil-

ity q

�k�1

the time p(k) log(n) for some polynomial p .

Sine the sum over q

�k�1

p(k) onverges to some on-

stant r , the step has time omplexity r log(n) for eah
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single data item and time omplexity rq

7

n

2

log(n) in

total.

In part (b) let k denote the degree of a . The degree

of d and the size of L do not exeed n when entering

this part of the algorithm. Now omputing the remain-

der  needs O(nk) time steps and gives a polynomial of

degree below k . b� is omputed in O(k) time steps,

e is omputed in O(nk) steps where e is obtained by

taking the smallest representative of the quotient

b�

d

in the �eld generated by the irreduible polynomial a ,

the multipliation e � d needs O(nk) time steps, the

addition to and update of h needs O(n) steps, the

produt ad is omputed within O(nk) time steps, the

update of d to ad needs O(n) time steps and the up-

date of L needs O(n) time steps (f. [4℄). So a single

run through part (b) needs r

0

nk time steps where r

0

is some onstant. During the whole time, the degrees of

the polynomials summed up satisfy k

1

+k

2

+: : :+k

last

�

n + k

last

. Hereby it an be estimated that k

last

does

not exeed n with reasonable probability. So one has

that all runs through part (b) together have time om-

plexity r

0

(k

1

+ k

2

+ : : :+ k

last

)n � 2r

0

n

2

.

The total example omplexity of the algorithm has

the upper bound q

7

n

2

and the time omplexity has up-

per bound (rq

7

log(n)+2r

0

)n

2

, that is, O(n

2

log(n)) .

The next example illustrates the learning algorithm

of Theorem 11 for a onrete polynomial over the �nite

�eld with three elements.

Example 12. Assume that the polynomial x

3

in

IF

3

[x℄ should be learned; note that �1 = 2 in IF

3

.

Consider some data-sequene starting with (x

2

; 0) ,

(x

2

+ 2; 2x) , (x+1; 2) , (x+2; 1) , (x

2

+1; 2x) , (x+1;

2) , (x; 0) , (a(x); b(x)) would be the initial part of the

data-sequene where a(x) is an irreduible and moni

polynomial not seen before. From these data-items,

(x

2

; 0) and (x

2

+ 2; 2x) do not qualify sine x

2

and

x

2

+2 are not irreduible in IF

3

. Furthermore, the se-

ond ourrene of (x+1; 2) also does not qualify, sine

x + 1 2 L after the �rst ourrene of (x + 1; 2) . The

following table gives now an overview on the values of

the other variables of the algorithm after exeuting the

interior loop where data, whih did not qualify, is omit-

ted. The urrent value of h is also always the urrent

hypothesis.

data-item  e d h

� � � 1 0

(x+ 1; 2) 0 2 x+ 1 2

(x+ 2; 1) 2 1 x

2

+ 2 x

(x

2

+ 1; 2x) x x x

4

+ 2 x

3

(x; 0) 0 0 x

5

+ 2x x

3

(a(x); b(x)) b(x) 0 (x

5

+ 2x)b(x) x

3

If d

0

and h

0

are the values of d and h from the pre-

vious row, then the update rule for these two variables

is d = a�d

0

and h = h

0

+e�d

0

. So, the updates of h are

from 0 to 0+2�1 = 2 , then from 2 to 2+1�(x+1) = x

and �nally from x to (x+1)+x � (x

2

+2) = x

3

. From

then on, b �  and thus also e are always 0 and no

further updates are done, that is, the learner has sta-

bilized on the orret hypothesis x

3

. After proessing

some data-item, L ontains all moni and irreduible

polynomials proessed from the beginning up to the ur-

rent data-item, so after proessing (a(x); b(x)) , the on-

tent of L are the polynomials x + 1 , x + 2 , x

2

+ 1 ,

x and a(x) .

Sine q = 3 and n = 3 , the average number of

examples needed until suessful learning has the up-

per bound 3

9

= 19683 . On the one hand, this bound

is not optimal, but on the other hand, the above sam-

ple sequene was also a bit unrealisti in the sense that

it ontained muh more useful data than a randomly

distributed sequene of this length would give.

4 Conlusions

The learnability of univariate intervalued polynomi-

als over the natural numbers and univariate polynomials

over �nite �elds has been investigated. For both ases,

we gave lower and upper bounds of the average exam-

ple omplexity. Measuring the onvergene not relative

to the degree of a polynomial but relative to a mea-

sure whih takes into aount also the size of the oeÆ-

ients, standard interpolation is not any more the best

possible algorithm. We found a quite natural distribu-

tion where the new learning algorithm gives a speed-up

from polynomial to logarithmi example omplexity on

polynomials with small oeÆients. Nevertheless, we

show that interpolation is an optimally data-eÆient

strategy; so no other learning algorithm behaves on all

input-sequenes better than interpolation.

Sine polynomials over IF

q

are not uniquely spei-

�ed by their input-output-behavior, we hose as data-

representation the remainder modulo other polynomi-

als. In this model, the general gap between lower and

upper bound of the example omplexity obtained by

optimal learning still is large for many distributions |

we hope that future work might narrow this gap. But

we ould obtain muh tighter results for the onrete

distribution on the remainders indued by f(n) = q

�n

.
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