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Abstract

Suppose we are given coins out of a collec-
tion of coins of two distinct weightsy, andwy,
true and counterfeit coins, respectively, where
of them are counterfeit coins. Assume we are al-
lowed to weigh subsets of coins in a spring scale.
Determine the counterfeit coins in a minimal num-
ber of weighing.

This problem is equivalent to the following learn-
ing problem: Given a linear functiofi = z;, +

Tiy + -+ xiy, wherel <ip <ig <+ <ig <

n and a substitution oracle of values in the do-
main {0, 1}" to f. Find f with minimal number
of substitution queries.

In this paper we give the first optintal (in the
number of weighing or substitutionpplynomial
timeadaptive algorithm that determines the coun-
terfeit coins.

We then extend our algorithm to the following
more general coin weighing problems with a spring
scale: Suppose we are givercoins out of a col-
lection of coins of unknown integer weights. De-
termine the weight of each coin in a minimal num-
ber of weighing. We give an optimal adaptive
polynomial time algorithm for this problem. This
algorithm is based on a new optimal adaptive al-
gorithm for reconstructing bounded weight vec-
tors in polynomial time. This solves the general
problem of learningnylinear function with bounded
integer coefficient in polynomial time with opti-
mal number of substitution queries.

To the best of our knowledge all the algorithms
in this paper are the first optimal polynomial time
adaptive algorithms for the problem of coin weigh-
ing in a spring scale.

Keywords: Computational Learning, Combinatorial Search
Problem.

*This research was done while the author was visiting Google
in Mountain View, California

YIn this paper optimal will mearc 2 x (lower bound. In very
few cases it means 5 x (lower bound

1

Thecoin weighing problem with a spring scakethe follow-

ing [S60]: Suppose we are givencoins out of a collection

of coins of two distinct weightsyy andw, true and coun-
terfeit coins, respective§Assume we are allowed to weigh
subsets of coins in a spring scale. Determine the weight of
each coin in a minimal number of weighing.

This problem has many applications and is also known
as the detection problem [SS63], determining collection [CM66],
counterfeit coins problem, distinguishing family problem [LV91]
and rigidity of then-dimensional Hamming space problem
[KLTOO] and is equivalent to the uniquely decodable codes
for noiseless:-user adder channel [CW79, MK87] and the
Mastermind game with two colors [K76]. See also [CK08]
for other applications for this problem.

A non-adaptive algorithm for the coin weighing problem
is equivalent to finding & x n (0,1)-matrix,M such that for
everyu,v € {0,1}"™ whereu # v we haveMv # Mu.

The weighing complexity ig, the number of rows of\/.
Such a matrix is called a search matrix. For the non-adaptive
algorithm to run in polynomial time we need that a search
matrix be built in polynomial time and givel' v wherev €

{0, 1}, one can find in polynomial time.

This problem was first introduced by Shapiro in 1960
for n = 5 [S60] and was solved (for = 5) by Fine and
many others [F60]. It was then studied for amyby Can-
tor [C62], Soderberg and Shapiro [SS63], &dnd Rnyi
[ER63], Lindstbm [L65, L66, L71, L75] and Cantor and
Mills [CM66]. See also [A88, MK87, DH93]. The infor-
mation theoretic lower bound for the number of weighing is
(asymptoticly}

Introduction

n

logn

that applies even for adaptive algorithms. &dand Rnyi
[ER63] and independently, Moser [M70] (see [L65]) proved
the lower bound

f> 20
~ logn

2Whenw; andw, are not known, we can find them adaptively
in 1 + [log n] weighings [CH84]. Whenv: andw- are known the
problem can be reduced to the cage= 0 andw; = 1.

SHere and throughout the paper we will only write the asymp-
totic weighing complexity of the problem. So by asymptotic bound
C we mearC(1 + o(1)).



for any k& x n search matrix. See also [CM66, L66, M70, ability. Their algorithm does not lead to a randomized poly-

L75, P77, A88, LV91]. This shows that any non-adaptive nomial time algorithm since it is not clear how to find the

algorithm for the coin weighing problem must make at least counterfeit coins from the results of the weighings.

2n/ log n weighing. The best polynomial time non-adaptive algorithm known
Lindstrom [L64, L65] and, independently, Cantor and for the d-coin weighting problem makes

Mills [CM66] presented a construction of a search matrix of

sizek x n wherek is dlogn

2n
weighings [L72, L75]. See also [H99] for anyand [A88]

logn ,
Then using the theory of Bbius functions, Lindstim [L71] Ii?:]g ;dgé?istecjg c?r(iatr?r): ir:‘cés\?nt?nzdlgsrhe best polynomial

gave another construction with the same asymptotic bound.
See also a simple construction in [L75, A88] and a simple
recursive construction in [CM66, MK87]. Although not ex-
plicitly indicated by the above papers, the search matfix
in Lindstrom construction and Cantor and Mills construc-
tion can be constructed in polynomial time. In Lindstr
constructions [L64, L65, L71] and in Cantor and Mills con-
struction [CM66, MK87],v can be extracted from/v in ied the problem forl = 2 [L71, L72, L75, C80, C83, A8G,
polynomial time. A8S, ng’ CLZ01]. ) . L

We give a new simple construction that is based on Fourier_ I this paper we give an adaptive polynomial time algo-
transform. The advantage of this construction is that we can fithm that makes
use Fourier transform to extractfrom Mv. Another ad- 2dlog 2 d d(loglog d) log
vantage is that our construction can be easily generalized to Tond Tond oz d)?
many other search matrices that can handle other coin weigh- 08 08 (log d)

n
dlog —
g~

weighings [C79, Ca79, TM78, M81, UTWO00] and chapter
10 in [DH93] . Those algorithms are asymptotically optimal
only whend is constant. Many papers in the literature stud-

ing problems. _ _ weighings. To the best of our knowledge this is the first poly-
When one allows adaptiveness, one can find the number,omial time optimal algorithm for this problem.
of counterfeit coins! (by findingw, andw, and then weigh- Our algorithm makes use of the following extension of

ing all the coins) and then solves the following problem. search matrices. Ady, do, . .., d,)-detecting matrix}/ is a
The d-coin weighing problem with a spring scaethe (0, 1)-matrix such that for eve’ry,ﬁ € [L{0.1,...,d;i—1},
foIIovymg [D75' L75, C80, AS85, A8G, A.88]: Suppo;e_ We 4 £ w we haveMv # Mu. Detecting matrices are known
are givenn coins out of a collection of coins of two distinct 0, the literature only whed, = d for all i [L71]. We
weightswy andws, true and coynte_rfeit coins, respectively, avtend our construction to build an optindh, d, .. ., dy,)-
whered of them are counterfen comns. _Assume we are "’,‘I' detecting matrix in polynomial time. We then use this con-
lowed to weigh subsets of coins in a spring scale. Determine g1, tion to show a new divide and conguer approach. We

the weight of each coin in a minimal number of weighing.  gjide the problem inta disjoint sub-problems and using
The information theoretic lower bound for this problem 14 ahove construction solve all the problemeift/ log t)

gives' dlog ™ times the average weighing complexity of the sub-problems.
08 d We then extend our algorithm to the following more gen-
logd eral coin weighing problems with a spring scale: Suppose we

weighing for any adaptive algorithm. For non-adaptive al- are givenn coins out of a collection of coins of unknown in-
gorithms, Djackov [D75] and Lindstm, [L75] showed that  teger weights. Assume we are allowed to weigh subsets of
any non-adaptive algorithm must make at least coins in a spring scale. Determine the weight of each coin in
a minimal number of weighing.

n
2612(;2‘1 An information-theoretic argument gives the lower bound
weighings. Then using the Kronecker product of matrices he W log(#+1) W <n
gave an optimal non-adaptive algorithm that runs in polyno- ., yr) — nlo;‘zgm‘/{il) - ) 1)
mial time for the case when we haresets of coins each of ’ “Togn . n<W<n
sizen/d and each set contains exactly one counterfeit coin. n W > n?
Grebinski and Kucherov [GK0OQ] showed non-constructively o _ .
that a non-adaptive algorithm exists that asks for the number of weighing wheii& is the sum of the weights.
Adlos o This problem was studied fdi’ < n in [P81, RV97,
€4 GKO00] and fori¥ > n in [GKO0O]. Pippenger [P81] showed
logd nonconstructively that fof¥’ = n there is a non-adaptive

h algorithm that make®(W/log W) weighings. Grebinski
and Kucherov [GK0O] extend this upper bound to &hy<
n. They gave a non-constructive non-adaptive algorithm that
“Again here we remind the reader that all the weighing com- asks
plexities in this paper are multiplied by+ o(1) 4W log (% + 1)
®In [D75] Djackov mention this bound without a proof. 1og—W

weighing$. They show that a randomized 0-1 matrix of suc
size is a search matrix for this problem with non-zero prob-



weighings. Ruszink and Vanroose [RV97] gave the first

for R{I=L+1}" |t is known thatB is orthonormal basis.

adaptive polynomial time algorithm that solves the problem Therefore, any function if € R{=%+1}" can be uniquely

whenW = nin O(W (loglog W)/ log W) weighings®
In this paper we give a polynomial time adaptive algo-
rithm that makes

cWlog (% +1)
logW
weighings where: = 2 for W = o(n) andc = 5 for W =
O(n).

WhenW > n the information theoretic lower bound for
this problem gives
Wlog (% +1)

)

logn

whenW < n? andn whenW > n2. So forW > n2

the optimal algorithm is to weigh each one of the coins.

Whenn < W < n?, Ruszinld and Vanroose [RV97] al-
gorithm can be extended to amy > n and is optimal for
W > n(logn)* for any constantv. Grebinski and Kucherov

[GKO0O0] gave a non-constructive non-adaptive algorithm that

makes
4nlog (Y +1)
logn

weighings.

In this paper we give an adaptive algorithm that finds all

the weights in polynomial time in

cnlog (% + 1)

logn
weighings where: = 2 whenn = o(W') and5 whenn =
o(W).
To the best of our knowledge this is the first polynomial
time optimal algorithm for this problem.

Our paper is organized as follows: In section 2 we give
the new construction of search matrix and detecting matrix.

In section 3 we give an optimal polynomial time algorithm
for the d-coin weighing problem and in section 4 we give

other coin weighing problems with a spring scale that can be

solved using our new technique.

2 Search Matrix and Detecting Matrix

In this section we use Fourier representation to build optimal

size search and detecting matrices.

2.1 Fourier Representation

Let f(z1,...,2,) : {-1,+1}* — R be a real function.
Define the basis

B:{Xa(x): H(Ll

a;=1

a € {0, 1}”}

®Ruszinko and Vanroose [RV97] claim, mistakenly, that Lind-
strom algorithm runs in exponential time. Lindstrom algorithm runs
in polynomial time and therefore their algorithm (that uses Lind-
strom algorithm) runs in polynomial time.

represented as

3 f@)xal)

ae{0,1}¥

The coefficientf (a) € R is called the Fourier coefficient of
X« and is equal to

> f@)Xalx).

ze{—1,+1}

Using the fast Fourier transform all the coefficiefita)
can be found from the values ¢fz), = € {-1,+1} and
can be ordered according to the lexicographic order ef
{0,1}" intime O(v2").

2.2 Search Matrix

A k x n (0,1)-matrix,M is calledsearch matrixf for every
u,v € {0,1}" whereu # v we haveMv # Mu.

Fora € {0, 1}” we denote bya| the Hamming weight
of a. We say that € S C {0,1}” is maximal elemenin
S if there is nob € S such thath > a (in the usual lattice
order).

Leta € {0,1}” and SUppPOS@, , aj,.; - - -
entries ofa that are one where < j; < jo < -
v. Forl < k < |a| we define the function

k
fak <2H$7L+1

i=1

aim are the
" <Jlal S

) Ljrr1Ljrqa " Lija

and .
k(@) +1
fa,k(l.) = f ,k(2) .
Let F, be the set of all functiong, 1 (z),1 < k < |a|.
The following properties are easy to prove

Lemma 1l We have

1. for(z): {-1,+1} — {0,1}.
2. |F,|=v2vL.
3. The Fourier coefficient of, in f, x(x) is27*.
4, For anyb £ a the Fourier coefficient of, in f, x(z)
Is 0.
The following lemma is the key for our construction

Lemma2 LetS = {(a™), ky),...
N and

(@, ke)y € {0,1} x

l
F=" Fur 1o (@)
1=1

Then, the following are equivalent

1. a(jl) = a(j2) = et = a(.jt) = and a(i) # a for
all ¢ ¢ {j1,J2,...,J¢} and a is maximal element in
S ={aM, ... a®}.



2. The Fourier coefficient of, in f is 27 %1 27k +
-+ +27ki: and for everyp > a the Fourier coefficient
of xp in fisO0.

Proof. (1) = (2) If a is maximal element it%’ then for any
elementh > a we haveb £ cfor all ¢ € S’. Therefore, by
(4) in Lemma 1 the Fourier coefficient gf inall f,¢) x, ()

is 0. This implies that the Fourier coefficient gf, in f is
0. Now sincea is maximal element irt’, for everyb € S,

b # a we havea £ b. Therefore, the only functions that
contribute to the coefficient, arefa(ji)7k7,_ (), < t. Now

by (3) in Lemma 1 this coefficient is equal2o*i +2*i> 4
cee 4 27k.7‘t .
(2) = (1) Suppose: is not maximal. Then there is>
a thatis maximal inS. By the above argument the coefficient
of x is not zero and we get a contradiction. Now sinds

time. To findv from Mv we use the same algorithm as in
the previous subsection.
Fora,b € {0,1}", b < a define the following function

_ bixi
fan(@) =[] (1)%
aizl

Notice thatf,, : {—1,+1}” — {0,1} and the Fourier co-
efficient of x, in f.5 is 27191 when|b| is even and-2~1/
when|b| is odd. Define

Gy =A{fap(x) | b < a,|b| = even}.

Itis easy to see tha6,| = (3 — 1)/2.
We now prove

Theorem4 Letl < d; < dy < --- < d, be integers and

maximal, then as above, the only functions that contribute to let v be the maximal integer where

the coefficienty, are all f,q,) ;. (z) wherea’) = a. By

(3) in Lemma 1 the result follows. |
Now to build the search matrix. Define a2” x v2v~!

matrix where for every € {—1,1} andf, , € F,, Mz, f ]

= fao.x(z). Here the matrix row are labeled with the elements

of {—1,+1}” and the columns are labeled with the elements p,qqf Sketch. We construct @2 x n

of F,,. We now prove
Theorem 3 We have

1. For any n there is a search matrid/ of sizek x n

where
_ 2n

~logn’
2. GivenMuw for v € {0, 1}™ the vector can be found in
timeO(n + d(n/logn)) whered is the weight ob.

Proof Sketch. Consider the minimal such thav2" =1 > n.
Build the matrix)/ as above. Let € {0,1}*2" . As we
did for the columns of\/, we will label the entries of with
fa,e and writevy, , for the value of this entry. The vector
Muv € N?", though, will be labeled wit{—1,1}". Notice
that M v gives a column vector which is the sum of thgeth
columns inM wherevy, , = 1. So this sum is equal to

f@) = (Mo)[a] = Y fael@)

’Lifm[:l

forall x € {—1,+1}". Using Fourier transform we can find
all Fourier coefficientsf(z) ordered in lexicographic order
according toz € {0,1}?" in time v2” = O(n). We search
for a maximalz wheref(z) # 0. By Lemma 2, at least one
fa,r can be detected. Thery, == 1. We then recursively
do the above for the Fourier representatiorf ef f, .

This construction gives = 4n/logn. In the full paper
we use a similar technique as in [L65, L75] to improve the
bound by a factor of. ]

2.3 Detecting Matrix

A (dy,ds,...,d,)-detecting matri¥\/ is a(0, 1)-matrix such
that for everyv,u € [,{0,1,...,d; — 1}, v # u we have
Mv # Mu. We extend the above construction to build
an optimal(dy, da, . . ., d,)-detecting matrix in polynomial

n—2Y

)

Thereis a(dy,ds, - - -, d,,)-detecting matrix of siz®” x n.

(v —2)2""1 <log (d?:zu

(0,1)-matrix M as
follows. The matrix) will be [M;|Ms] whereM; contains
n—2" columns and\/, contain®2” columns. For each vector
a € {0,1}” we construct, (specified below) columns in
M and one columnidZ,. We now show thé, +1 columns
that correspond ta € {0, 1}".

Foranya € {0,1}" suppose we have already constructed
columnsl1 to r in M; and columnsl to s in M,. Let/,
be such thatl,  1d, 42~ dyye, < 2%71 andd, 1d,o- -
drye,+1 > 21971, ConsiderG, = {f.p(z) : b<a,|b] =
even} C G,. We have|G,| = 2/*/=1. We take any subsets
Ga0,Ga1, -+, Gay, € G, Where|G,o| =1and|G, ;| =
dry1dpyo---dpyy fori = 1,2,...,4,. We construct/,
columns that will be the functioﬁ@w = Zhega . hfori=
0,...,¢,—1. Those willbe columns+1,r+2,...,r+/4,
of M; and therefore of\/. Then we put the columg, ¢, =
Zhegla h in M. This will be columns + 1 of M, and
therefore it will be columm — 2¥ + s + 1 of M.

It is easy to see thaj,; : {—1,+1}¥ — {0,1}, the
Fourier coefficient ofy, in g, iS dyy1dy1o -+ dpyi/219
and for everyb > a, the Fourier coefficient of; in gq s
is 0.

We do the above for all the vectoise {0,1}\{0}.
Since

dr+1dr+2 T dr+€a dp—ov >

-1
dry1dryo - drgp, 41 > 2lal
we have

glal-1 _

n—2"

H d; >
i=1 a€{0,1}*\{0}

9=D+(, 21 ) =2+ (, L) = 8) ()1 > g(v-2)27 7
which implies the bound.

21—’
a2,

"As before, the rows are labeled wifh-1,+1}". Rowz €
{—1,+1}" in this column is equal tgq ¢, (x).



Now M is (dy, da, - - -, d,,)-detecting matrix follows from
the fact that givem\,; < d,4; for1 < i < /¢, and any

Arito+1- Givend. 1 + A odp g + )\r+.3dr+ldr+2 +o
Artt,+1dr+1dr42 - - - dryp, ONE can uniquely determines all
)\r-&-i- u

Note: In the full paper we will use techniques from [L65,
L75] and show that & xn, (di, ds, - - -, d,,)-detecting matrix

exists wherg(log k — 4)(k/2) < log (dﬁ_k = di) for
any k (not only k that is a power of two). This improves the

above bound by a factor @f
We now show

Corollary5 Letl <d; <dy <---<d
ot d, = d. Therelsa(dl,dg,...,

of sizek x n where

» Whered; + ds +
) detecting matrix

d
(logk — 4)k < 2nlog e

Proof. By Theorem 4 and using the fact that the geometrlc !

mean is less than or equal the arithmetic mean, there is a
(di1,da,...,dy,)-detecting matrix of sizé x n where

n—k n
(logk — 4)k . d d
rTer R <« | | ) < Z) = =,
5 <log | d,_, 11 d; | <log - nlog -
This implies the result. |

3 Thed-Coin Weighing Problem

In this section we give a polynomial time optimal adaptive
algorithm for thed-coin weighing problem. As mentioned

above the problem can be reduced to the following problem:

Suppose we are givem coins out of a collection of coins
of two distinct weightsp and1, true and counterfeit coins,
respectively, wherd of them are counterfeit coins. Assume

we are allowed to weigh subsets of coins in a spring scale.

Determine the weight of each coin in a minimal number of
weighing.

Letv € {0, 1}" be the vector of the weights of the coins.
We will assume that is a power of2, otherwise take: the
smallest power of that is greater or equal to the number
of coins. In the full paper we handle amyto get the best
number of weighing possible. When we weigh cots=
{i1,42,...,i} C {1,2,...,n} we get the valuej(S) =
v;, +- - -+v;, . Notice that for a partitioly = .S;US2U- - -US;
we have

5(S) =8(S1) +6(S2) + -+ -+ d(Sy). 2

Our first (non-optimal) algorithm will define a sequence of
1 + logn sets of disjoint set8§y, S1, . .., Siogn. The initial
setisSy = {{1,2,...,n}}. At stagel, the algorithm takes
each sefS € S,_; splits it into two equal size disjoint sets
S = 51 U Sy and weigh to findy(S;). By (2) §(S2)
§(S) —3(S1). If 6(S;) # 0thenitaddsS; to S, . Itis easy
to see that the complexity of this algorithm is [UTWOO]

n
dlog —.
g -

This is not optimal for non-constant
Our (optimal) algorithm will exploit Corollary 5 to find
all6(S) forall S € S,.

We run the above algorithm as long as the number of
sets inS; is less thanv/d. When |S,| > Vd let S, =
{51,52,...,8,}andd, = |S;|fori = 1,...,q. We split
each seb; into two equal size disjoint sets = S; 1 U S, 2.

We construct dd, +1,d2+ 1, .. ., d, + 1)-detecting matrix
M of sizek x ¢q. Then for every row, M; in M we weigh
to find

§ Usjl

M; ;=1

q
= M;;6(S;1)
j=1

We then use the algorithm in the previous section to find all
0(S5;,1). Then allo(S;2) = d;j — 6(S;,1) can be found. We
put in Sy4+1 the nonempty sets; 1, S; » and recursively run
the above.

The reader may jump into conclusion that since we save
a factor oflog d weighing at each stage the complexity will
be (d/logd)logn/d. Well, this is not quite true. When
|S;| = V/d the number of weighing i©)(+/d), so no sav-
aing achieved at this level.

In the next section we give some inequalities that will
be used in the analysis of the algorithm and then we give the
analysis of the algorithm

3.1 Some Inequalities

In this section we give some inequalities that will be used in
the paper.
We first give the following trivial inequalities

Lemma6 1. Foranyo > 1land0 <z < "7*1 we have

1
l42< —— <1+z+o022
1—2x

We now would like to bound whenk log k < x where
x > 1. The following simple bound

f< 2
~ logx

®3)

can be derived as follows: Lét, be a real number such that
kolog ko = z. Thenk < kq. Sincek? > kologko = = we
havek, > z'/? and

2x
~ logz’

X

k<ky=

log ko

To get a better bound we prove the following

Lemma 7 Letz > 8 be areal number. I is an integer and

klogk <x

<1+
(1+0

for some constant < 5.

then

x log log x c

* log = >
loglog x
log = ’

k<
~ logx

log x

T

- log x



3.2 Analysis of the Algorithm

In this subsection we show that the weighing complexity of

the algorithm is

2dlog % d
log d logd

d(loglog d) log &
(logd? )
This complexity is

2dlog % 140 loglog d
logd log d
for d = o(n).

We first prove

Lemma8 For/ e RT,

((—4)2 < g
By=( 2% log (& +1) %<€glogd .
2d > logd

The number of weighings, at level? of the algorithm sat-
isfies:

(logCp — 4)Cy < Bqy.

Proof. First, it is easy to see thaB, is monotone non-
decreasing function if.

Since the algorithm splits the sets into two almost equal

size disjoint sets the size of the setsInis at most[n /2]
and the number of sets & is at most?’.

Suppose < (logd)/2. Since for < (logd)/2, 2¢ <
V/d the algorithm makes at mo8t weighings at stagé <
(log d)/2 and thereforélog C;, — 4)C, < (£ — 4)2° = B,
for £ < (logd)/2.

At stages(log d)/2 < ¢ < logd we have two cases. If

the number of sets i, is less that/d then the number of
weighingsC; is at mosty/d and sinceB, is monotone non-
decreasing function we have

(log Cp — 4)Cy < <IO§d

The other case is when the number of sets S, is greater

than+/d then sinceS, contains at most‘ sets, by Corollary
5 the number of weighings 5, where

d
2n log ( i n)
n
d+2°
22+1 log ( > )

= 2%llog (; + 1) = By,.

Now when/ > log d then, as above, sindg, is mono-
tone non-decreasing functiondrit is enough to consider the

case wheréS,| > v/d. Since the number of counterfeit coins
is bounded byl we haven = |S,;| < d and by Corollary 5
the number of weighings is at maSt where

2nlog (d;n)

2dlog (‘l;d> —2d.

logd
4) = Blogd < By.

(log Cp — 4)Cy

IN

IN

(log Cp — 4)Cy

IN

IN

This completes the proof. ]
We now count the total number of weighings.
For ¢ < (logd)/2 we haveC, < 2¢ and therefore the
total number of weighings in the firstlog d) /2| stages is at
most

5¢)
Y oof< 9" 54+ — 9v/4.

(=1

(4)

For 64 < ¢ < log d we have(log C; — 4)Cy < By. Since
(Ce/16)log(Ce/16) < (B,/16) and Biogu > Vd, by (3)

2B 2B 4B
0, < 4 [ ¢ )
log(B/16) ~ log Blogd -4~ logd 8
Now
|log d] llog d| d
B, = Z 241 Jog <2€ + 1>
¢=[(log d)/2] ¢=[(log d)/2]
d
< Z ot+1 log (2/ + 1>
¢ =logd,logd — 1
log d — [(log d) /2]
[(logd)/2]
log(2! + 1)
S Z d—r 21 1
log(2
S dz 21 1
< 8d.
Therefore, by (5),
|log d] [log d]
Yoo < A2 1= Togaym B
- logd — 8
(= (log d)/2] o8
32d
< -
— logd-—38

). 6)

4)Cy < 2d and there-

32 N d

~ logd (log d)?
Now for ¢ > log d we have(log Cy —
fore by Lemma 7

2d dloglogd
<
Ce < logd © < (log d)? )

Since the number of stages[isgn] we get

[log n]

2dlog &
S oo o< R ™
log d
{=[log d]
2d d(loglog d)log % ®
logd (log d)?

By (4), (6) and (7) the result follows.



4 A General Coin Weighing Problems

In this section we give an optimal polynomial time algorithm
for the following general coin weighing problem:

Suppose we are givencoins out of a collection of coins
of distinct unknown non-negative integer weights ws, - - -, w,

where
n
>
i=1

Assume we are allowed to weigh subsets of coins in a spring
scale. Determine the weight of each coin in a minimal num-

ber of weighings.

An information-theoretic argument gives the lower bound

Wlog(%+1) W <n
log“/VW —
].g(n7 W) = nlo%(7+l) n<W < nz (9)
ogn —
n W > n?

This problem was studied fdi < n in [P81, RV97,
GKO00] and foriW > n in [GKO0O0]. Pippenger [P81] showed
nonconstructively that folV = n there is a non-adaptive
algorithm that make® (W/log W) weighings. Grebinski
and Kucherov [GK0O] extend this upper bound to &hy<

n. They gave a non-constructive non-adaptive algorithm that

asks
4W log (% + 1)
log W

weighings. Ruszink and Vanroose [RV97] gave the first
adaptive polynomial time algorithm that solves the problem
whenW = n in O(W (loglog W)/ log W) weighings.

For W < n we give a polynomial time adaptive algo-
rithm that makes

2Wlog (% + 1)
logW
weighings wherlV = o(n) and
cgWlog (& + 1)

logW
weighings wherd?V = gn where for any constartt
2 log(27 +1)
e <o =) —p i =4.803048.
j=1

weighings.
Here we give an adaptive algorithm that finds all the
weights in polynomial time in
2nlog (% + 1)
logn
weighings forlV = w(n) and
cynlog (% +1)
logn
weighings forlV = n wherecj; < ¢; = 4.803048.

4.1 The Algorithm

Letw € N be the vector of the weights of the coins where
N is the set of non-negative integers where

i=1

When we weigh coin§ = {i1,i2,...,ix} € {1,2,...
we get the valuev(S) = w;, + -+ + w;, .

The algorithm is similar to the one in section 3.

We start with an initial seSy = {51, Ss,...,S5,} of ¢
disjoint subsets of1,2,...,n} where

;n}

1. Foreveryl <i,j <q,||Si| —[Sj|| < 1.
2. 51USQU~-~USq:{1,2,...,n}.

The constang depends om and will be determined later in
the analysis of the algorithm.

We findw(S;) forall: = 1,..., g and then run the non-
optimal algorithm in section 3 as long as the number of sets
in S, is less thani/ log® d whered = min(n, W). When
|Se| > d/log” d letS, = {S1,Ss, ..., S,} andw; = w(S;)
fori =1,...,q. We split each se$; into two almost equal
size disjoint setsS; = S, 1 U S; 2. We construct gw; +
1,ws +1,...,w, + 1)-detecting matrix)M of sizek x q.
Then for every rowi, M; in M we weigh to find

U Sia

Mi,jil

q
=" M jw(S;1).
=1

See the table at the end of this section for diferent values of We then use the algorithm in section 3 to find @llS; ;).

Cﬂ.
WhenW > n the information theoretic lower bound for
this problem gives

W log (% + 1)
logn
whenW < n? andn whenW > n?. So forWW > n?
the optimal algorithm is to weigh each one of the coins.
Whenn < W < n?, Ruszink and Vanroose [RV97] al-

gorithm can be extended to amy > n and is optimal for
W > n(log n)* for any constantv. Grebinski and Kucherov

)

Then allw(S;2) = w; — w(S;,1) can be found. We put
in Sg4+1 the nonempty sets; 1, .S, » and recursively run the
above.

For the analysis of the algorithm we will consider the
two case wher@/ > n andn > W. In this abstract we will
only give the analysis for the ca$¥ > n. The other case is
very similar and will be given in the full paper.

4.2 Analysis of the Algorithm whenW > n

In this subsection we give the analysis of the algorithm when
W > n. We will first assume thaj = 1 and then show how

[GKO00] gave a non-constructive non-adaptive algorithm that to choosey to achieve a better weighing complexity.

makes
4nlog (% + 1)

logn

Consider a binary tre& where each of its nodes is la-
beled with a subset o§, = {1,2,...,n}. The root of the
tree is labeled witt6, = {1,2,...,n} and when a node is



labeled withS; = {j,5 + 1,...,4 + p}, then this node is
a leaf if p = 0 and, otherwise, it is an internal node with
two children where the left child is labeled withy;,; =
{7, +1,...,5+ |p/2]} and the right child is labeled with
Saiva ={j+ [p/2] +1,...,p}.

We can regard algorithrd in the previous section (with
g = 1) as an algorithm that at stagdinds the weightv(S;)
for all S; at levell in the treeZ. The above algorithm do not
consider a node that is labeled withwhenw(S;) = 0. We
change the above algorithm to an algorithtithat considers
also those nodes. Obviously, the complexity4sfis greater
or equal to the complexity ofl.

Let n = 2t + n’ wheren’ < 2¢. Then the number
of nodes in leveld = 1,2,3,...,t + 2 of the tree7 are
de = 1,2,22,-..,2 20/, respectively. Algorithm4’ finds

It is easy to see that

(2a108 (2+1) + 52, 5r log (22 +1))
log(8 + 1)

— 2

¢(a7ﬁ) =

wheng — oo and therefore foll” = w(n) the bound is

lfg”n log (12/ + 1) (1+o(1)).

This bound give the worst case constant
$(0.825,1) = 5.28133.

We will now show how to get rid of the first term in

the weights of half of the sets in each level. Therefore, by and makex = 1 and then the constant will be

Corollary 5, the number of weighings for levéis k&, where
ke=dg/2if dg <n/ log® n and

2
ke(logky — 4) < dylog (;/V + 1) ,
14

otherwise. Let
W = pn
wherel < 3 < n. Let2! = an wherel > a > 1/2. Then
n' =n—-2"=(1-a)n.
If dpypo = 20" < 2n/log® nthenk, o = n' < n/log®n.
Otherwise, by Lemma 7,
2n’ log (2}3/ + 1)

log (2n’ log (2W + 1))

n’

2(1 - a)log (5 + 1) n

l1-—a logn

ktyo < (1+0(1))

(14 0(1))

— 2alog (g + 1> %(1 +o(1)),

wherea =1 — a.
Now at levelt+2—j,j =1,2,...we have ifd;1o_; <
2n/log® nthenk:,o_; < n/log® n. Otherwise, by Lemma7

dt+2_j log (dti‘;v—j + 1)

log (dt+2,j log (dt2+V2V—j + 1))

2017 log (5155 + 1)

IN

(1+0(1))

kiro—j

- ()
Zil log (2;5 + 1) %(1 +o(1)).

Therefore in the worst case the number of weighings is

t+2 o 5
_ I} «a 273
Zki < 2a10g(d+1 +Zgj—110g 74—1
=1 =1
n
1 1
(14 0(1)
(207 log (g + 1) + 3052 5T log (2%3 + 1))
N log(6+1)
w
1 —+1)(1 1)).
o og (5 +1) (1+o(1)

Py 71 log (2784 1)
log(B+1)

Theideais to choosp= |n/2" | wherek = [3loglogn] .
Then the first sef, contains

¢ = [n/2"] O<1o;n>'

Now we can write

n = 2% |n/2%| + 7’

¢(17ﬂ =

where
n < Qk: _ 2]’310g10g'fﬂ < 210g3 n.

Then the number nodes in levels= 1,2,3,...,k + 2 of
the tree7 ared, = 1,q,2q,23q,---,2%q,2n’, respectively.
Therefore for this case the first term will go into th@) of

the complexity and using the same analysis as above we get

the bound on the number of weighings.
The following table show diferent values of

L B8 [ ¢ |

1 4.803048

15 4.338263

2 4.060772

2.143311| 4.000000

13.56659| 3.000000

100 2.597891

1000000 | 2.200687
w(1) 2
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