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Abstract

Teaching is inextricably linked to learning, and there
are many studies on the complexity of teaching as
well as learning in computational learning theory.
In this paper, we study the complexity of teach-
ing in the situation that the number of examples is
restricted, especially less than its teaching dimen-
sion. We formulate a model of teaching by a re-
stricted number of examples, where the complex-
ity is measured by the maximum error to a target
concept. We call a concept class isoptimally in-
crementally teachableif the teacher can optimally
teach it to the learner whenever teaching is termi-
nated.

We study the complexity of the three concept classes
of monotone monomials, monomials without the
empty concept, and monomials in our model. We
show that the boundary of optimally incremental
teachability is different from that of polynomial
teachability in the classical model. We also show
that inconsistent examples help to reduce the max-
imum error in our model.

1 Introduction

Computational learning theory aims to mathematically for-
mulate a model oflearning, which is an intellectual behav-
ior of humans, and finally bring out its nature. In the do-
main, there are many studies using models such as inductive
inference [Gol67], PAC learning [Val84], and query learn-
ing [Ang88]. On the other hand, there are also many studies
on teaching[SM91, GK95, JT92, Heg95, Mat97, LSW07,
Han07, Bal08, ZLHZ08], which is inextricably linked to learn-
ing. In this paper, we formulate a new model of teaching and
discuss the complexity of teaching in the model.

We assume the situation that the number of examples is
restricted to some integer, especially less than its teaching di-
mension. This situation brings teaching theory closer to the
real world, since time is limited in general when we teach
something to someone. For example, a teacher in a school
should preferably make the students understand his/her les-
son within course hours. Self-introduction in a job interview
and presentation of research results are good instances of the
situation, which many people may experience. In addition,

interactive learning of robots is another instance of the situ-
ation, since the number of trials is often restricted due to the
issue of cost.

We formulate a model of teaching in the situation that the
number of examples is restricted. In our model, we measure
the teaching complexity of a concept class by the minimum
teaching error. Teaching error is informally the worst case
error between a target concept and any concept consistent
with a setS of examples. If the teaching error is zero, then
the setS specifies the target concept uniquely, andS is called
a teaching set. The size of the minimum teaching set was of
interest in the standard model of teaching, and it is called
the teaching dimension[GK95]. In this paper, we are inter-
ested in a situation that only a smaller number of examples
are allowed to use than the teaching dimension of the target
concept. The goal of the teacher is to minimize the misun-
derstanding of learners to the target concept, which cannot
be zero, by selecting a good setS′ of examples. Some ques-
tions arise. Is an optimal teaching set in this situation always
a subset of the standard teaching set, i.e.S′ ⊆ S? Is it pos-
sible to reduce the teaching error by allowing the teacher to
use inconsistent examples? We prove some theorems which
answer these questions. Theorem 3 in Section 3 answers to
the first question negatively. We show a simple and concrete
concept class that the optimal teaching set in restricted num-
bers of examples is not a subset of the standard teaching set.
It implies that a good teaching strategy within a restricted
number of examples is different from the standard one. The-
orem 4 answers to the second question affirmatively. We
show another simple and concrete concept class for which
the optimal teaching set is inconsistent with the target con-
cept. It supports our intuitions thatit is sometimes necessary
to lie.

Moreover, we define that a concept isoptimally incre-
mentally teachable, if there exists a sequence of examples
such that any prefix of the sequence is always an optimal
teaching set at that moment. When a concept is optimally
incrementally teachable, it should be easy to teach in our
model in the sense that we do not need to change its teach-
ing algorithm depending on the restriction of the number of
examples. We address the three concept classes of mono-
tone monomials, and monomials without the empty concept,
monomials and bring out their properties in our model.

Our model is inspired by the study of Balbach and Zeug-
mann [BZ06]. They formalized a model for randomized
learners and measured the complexity of a concept class by



its expected teaching time. In the study, interestingly, they
showed that inconsistent teachers can be more powerful than
consistent teachers using self-made concept classes with only
positive examples. It supports the same intuitions that it is
sometimes necessary to lie.

Our model is not categorized in exact learning differently
from most other studies and relatively closer to PAC learn-
ing. However, our model has not the notion of probability
as in PAC learning. In this paper, we adopt the style assum-
ing the worst case learner in the same way as the classical
model [SM91, GK95].

2 Preliminaries

We denote the size of a setS by either#S or |S|. Let N be a
set of natural numbers. We define[i, j] := { i, i + 1, · · · , j }
for any integersi, j ∈ N with i ≤ j.

Let Σ be an alphabet. For any stringu ∈ Σn, we denote
a character at a positioni ∈ [1, n] by u[i], and we define
u[i : j] := u[i]u[i+1] · · ·u[j−1] for any integersi, j ∈ [1, n]
with i ≤ j. For any two stringsu1, u2 ∈ Σn of the same
lengthn, we denote the Hamming distance betweenu1 and
u2 by H(u1, u2).

We now consider the caseΣ = {0, 1}. For any binary
stringu ∈ Σn, we denote the set of binary strings such that
its Hamming distance tou is 1 by

N1(u) := {u′ ∈ Σn | H(u, u′) = 1}.

2.1 Concept Class

Let X be a set ofinstances, or an input space. Let X :=
X × {0, 1}, and we call a pair(x, b) ∈ X anexample. We
call C ⊆ 2X a concept classandc ∈ C a concept. A concept
c is consistentwith an example(x, b) ∈ X iff (x, b) ∈ X (c),
where

X (c) := {(x, b) ∈ X | x ∈ c ⇔ b = 1} .

We denote the set of concepts in a concept classC that are
consistent with a setS of examples by

CONS(S,C) := {c ∈ C | S ⊆ X (c)} .

For any two conceptsc1, c2 ∈ C, we denote thesymmet-
ric differencebetweenc1 andc2 by

c1∆c2 := (c1 − c2) ∪ (c2 − c1).

For any two conceptsc1, c2 ∈ C, theerror betweenc1 andc2

with respect to a distributionD is calculated bydD(c1, c2) :=∑
x∈c1∆c2

PrD(x). In this paper, we assume that an input
spaceX is finite, and a distributionD is uniform, so that
we omit D and calculate the error by the following simple
formula

d(c1, c2) :=
|c1∆c2|
|X|

.

2.2 Teaching Dimension

A setS of examples is called ateaching setof a conceptc
with respect to a concept classC if c is the only concept in
C that is consistent withS, that isCONS(S, C) = {c}. We
denote the set of all teaching sets by

TS(c, C) := {S ⊆ X | CONS(S, C) = {c}} .

The teaching dimensionof c with respect toC is defined by
the minimum size of its teaching set:

TD(c, C) := min {|S| | S ∈ TS(c, C)} .

The teaching dimension ofC is defined by the maximum
teaching dimension over all concepts:

TD(C) := max
c∈C

TD(c, C).

We denote the set of all minimum teaching sets ofc with
respect toC by

MinTS(c, C) := {S ∈ TS(c, S) | |S| = TD(c, C)} .

3 Teaching Complexity by a Restricted
Number of Examples

In our model, a learner often fails to identify a target con-
cept exactly, since the number of examples that a teacher can
give to the learner is restricted. We measure the teaching
complexity of a concept class by the worst case error of the
target concept. In this case, we assume the worst case learner
in the same way as the classical teaching model. We define
the worst case error of the target concept as follows.

Definition 1 (Teaching Error). LetC be a concept class and
c ∈ C be a target concept. For any setS of examples, we
definethe teaching error ofc with respect toC by S as

TE(c, C, S) :=

{
max

c′∈CONS(S,C)
d(c, c′) (CONS(S, C) ̸= ∅),

1 (otherwise).

We define the teaching complexity of a concept class in
the situation that the number of examples is restricted as fol-
lows.

Definition 2 (Optimal Teaching Error). Let C be a concept
class andc ∈ C be a target concept. We definethe optimal
teaching error ofc with respect toC by at mostk examples
as

OptTEk(c, C) := min
S⊆X :|S|≤k

TE(c, C, S).

We also definethe optimal teaching error ofC by at mostk
examplesas

OptTEk(C) := max
c∈C

OptTEk(c, C).

We define that a set of at mostk examples is ak-optimal
teaching set if the set achieves the optimal teaching error.
We denote the set ofk-optimal teaching sets by

OptTSk(c, C) :=
{

S ⊆ X
∣∣∣∣ |S| ≤ k,

TE(c, C, S) = OptTEk(c, C)

}
.

An optimal teaching error ranges between 0 and 1, and
the smaller the better. Whenk ≥ TD(c, C), the optimal
teaching error is always zero, i.e.,OptTEk(c, C) = 0, since
we can uniquely specify the target concept by any teaching
setS in MinTS(c, C). Therefore, this paper focuses on the
case ofk < TD(c, C).

We now prove the next two important theorems.



Table 1: Concept class used in the proof for Theorem 3.
h x1 x2 x3 d(c0, h)
c0 1 1 1 0/3
c1 1 0 1 1/3
c2 1 0 0 2/3
c3 0 1 1 1/3
c4 0 1 0 2/3

Theorem 3. There exists a concept classC, a target concept
c ∈ C, and a positive integerk such that

∀S1 ∈ OptTSk(c, C), ∀S2 ∈ MinTS(c, C), S1 * S2.

Proof: Let us consider a concept classC = {c0, · · · , c4}
over an input spaceX = {x1, x2, x3} shown in Table 1 and
a target conceptc0 ∈ C, and let us takek = 1.

The setS1 := {(x3, 1)} is the only1-optimal teaching
set ofc0 with respect toC. That is

OptTS1(c0, C) = {S1}.
Its optimal teaching error isOptTE1(c0, C) = 1/3. For any
other setS of examples,S is not optimal since eitherc2 ∈
CONS(S, C) or c4 ∈ CONS(S, C), i.e.,TE(c0, C, S) ≥ 2/3.
On the other hand, the setS2 := {(x1, 1), (x2, 1)} is the only
minimum teaching set. That is

MinTS(c0, C) = {S2}.
However,

S1 * S2.

Theorem 4. There exists a concept classC, a target concept
c ∈ C, and a positive integerk such that

∀S ∈ OptTSk(c, C), c /∈ CONS(S, C).

Proof: Let us consider a concept classC = {c0, · · · , c5}
over an input spaceX = {x1, · · · , x5} shown in Table 2
and a target conceptc0 ∈ C, and let us takek = 1.

The setS1 := {(x1, 0)} is the only 1-optimal teaching
set. That is

OptTS1(c0, C) = {S1}.
Its optimal teaching error isOptTEk(c0, C) = 1/5. For
any other setS of examples,S is not optimal, sinceci ∈
CONS(S, C) for somei ∈ [2, 5], i.e., TE(c0, C, S) ≥ 3/5.
However,c0 is inconsistent withS1, that is

c0 /∈ CONS(S1, C).

Theorem 3 and Theorem 4 indicate that a teaching strat-
egy in our model can be much different from that in the clas-
sical model. In other words, we need an appropriate teaching
algorithm to obtain the maximum teaching effect in the situa-
tion that the number of examples is restricted. Although we
use simple self-made concept classes in the proofs of The-
orem 3 and Theorem 4 for illustrative purposes, the natural
concept class of monomials also has the same properties as
them, as shown in Theorem 36.

If for a concept class, there exists a teaching algorithm
that achieves the optimal teaching error whenever teaching is
terminated, we can regard such a concept class as somewhat
easy to teach in our model. We formalize the idea as follows.

Table 2: Concept class used in the proof for Theorem 4.
h x1 x2 x3 x4 x5 d(c0, h)
c0 1 1 1 1 1 0/5
c1 0 1 1 1 1 1/5
c2 1 1 0 0 0 3/5
c3 1 0 1 0 0 3/5
c4 1 0 0 1 0 3/5
c5 1 0 0 0 1 3/5

Definition 5 (Optimally Incremental Teachability). LetC be
a concept class andc ∈ C be a target concept. We say thatc
is optimally incremental teachable with respect toC if there
exists a listL := ⟨z1, z2, · · · ⟩ of examples such that

∀k ∈ [1, TD(c, C)], {z1, · · · , zk} ∈ OptTSk(c, C).

We also say thatC is optimally incrementally teachableif
everyc ∈ C is optimally incrementally teachable with respect
to C.

4 Complexity of Teaching Monomials

4.1 Preliminaries

We deal with Boolean concepts over an input spaceXn =
{0, 1}n, expressed by Boolean expressions. A concept ex-
pressed by a Boolean expressionf is the set of inputs inXn

which satisfiesf . A monomialon n variablesv1, · · · , vn is
a Boolean expression represented by a conjunction of some
literals,vi’s andvi’s. A concept represented by an unsatisfi-
able expression, such asvi ∧ vi is called theempty concept
and denoted byce := ∅.

We denote byMn the class of all monomial concepts.
Let M′

n := Mn − {ce}. Any conceptc ∈ M′
n is uniquely

represented by a stringr ∈ {0, 1, ∗}n defined as follows.
r[i] is 1 if there existsvi in a corresponding Boolean expres-
sion,0 if there existsvi, and∗ otherwise. For instance, for
the monomialv1 ∧ v2 on three variables, the corresponding
conceptc is {100, 101}, and its representation is10∗. For
the sake of simplicity, we identify a concept inM′

n with its
representation:

c = {100, 101} = 10 ∗ .

For any conceptc ∈ M′
n, we denote the number of distinct

variables in a corresponding Boolean expression by

var(c) := #{i | c[i] ̸= ∗}.

A monomial consisting of only positive literals is called a
monotone monomial. We denote the concept class of mono-
tone monomials byM+

n . ObviouslyM+
n ⊆ M′

n.
For any two conceptsc1, c2 ∈ M′

n, we say thatc1 and
c2 have a strong difference at positioni if either c1[i] = 1
andc2[i] = 0, or c1[i] = 0 andc2[i] = 1. We denote the
number of strong differences betweenc1 andc2 by

s(c1, c2) := #{i | c1[i] ̸= ∗, c2[i] ̸= ∗, c1[i] ̸= c2[i]}.

We say thatc1 and c2 have a weak difference at positioni
if either c1[i] = ∗ and c2[i] ∈ {0, 1}, or c2[i] = ∗ and
c1[i] ∈ {0, 1}. Two weak differences at positioni andj are
calledthe same kindif either c1[i] = c1[j] = ∗ or c2[i] =
c2[j] = ∗, and calleddifferent kindotherwise. We denote



the number of weak differences of the same kind betweenc1

andc2 by

w(c1, c2) := #{i | c1[i] ̸= ∗, c2[i] = ∗}.
The total number of weak differences betweenc1 andc2 is
w(c1, c2) + w(c2, c1). We say thatc1 andc2 have an arbi-
trary match at positioni if c1[i] = c2[i] = ∗. We denote the
number of arbitrary matches by

a(c1, c2) := #{i | c1[i] = c2[i] = ∗}.

4.2 Monotone Monomials

Shinohara and Miyano [SM91], and Goldman and Kearns [GK95]
independently studied the concept class of monotone mono-
mials and proved that its teaching dimension isn. Gold-
man and Kearns moreover analyzed the teaching dimension
for every concept in the classM+

n and proved the following
theorem.

Theorem 6([GK95]). For any conceptc ∈ M+
n , the teach-

ing dimension ofc with regard toM+
n is calculated as

TD(c,M+
n ) = min{var(c) + 1, n}.

The setSℓ of examples defined by the following formula is
one of the minimum teaching sets of the concept1ℓ∗n−ℓ with
regard toM+

n .

Sℓ :=
{
{(u, 0) | u ∈ N1(1ℓ)} (ℓ = n),
{(u1n−ℓ, 0) | u ∈ N1(1ℓ)} ∪ {(1ℓ0n−ℓ, 1)} (ℓ < n).

From the view point of our study, the above theorem de-
scribes the complexity of teaching without restriction of the
number of examples to use. On the other hand, this paper fo-
cuses on the complexity of teaching by a restricted number
of examples.

The next lemma shows the formula calculating the error
between any two concepts inM+

n . Note that we do not con-
sider the exceptions forn ≤ 2 in our proofs, assuming that
n is relatively large.

Lemma 7. For any two conceptsc1, c2 ∈ M+
n ,

d(c1, c2) =
(2w̃1 + 2w̃2 − 2)2ã

2n
,

wherew̃1 = w(c1, c2), w̃2 = w(c2, c1), andã = a(c1, c2).

Proof: By the definition,|c1∆c2| is the number of instances
x ∈ Xn such that eitherx ∈ c1 andx /∈ c2, or x /∈ c1 and
x ∈ c2.

We first count the number of instancesx such thatx ∈ c1

andx /∈ c2. The number of instancesx ∈ c1 is 2w̃2+ã, where
w̃2 + ã means the number of∗ in c1, since for any integer
i ∈ [1, n],

c1[i] ̸= ∗ ⇒ x[i] = c1[i],
in order to satisfy the Boolean expression corresponding to
c1. In those instances, however, there are2ã instances such
thatx ∈ c2, since the Boolean expression corresponding to
c2 is satisfied if for anyi ∈ [1, n],

c2[i] ̸= ∗ ⇒ x[i] = c2[i].

Therefore, the number of instancesx such that bothx ∈ c1

andx /∈ c2 is (2w̃2 − 1)2ã.

In the same way, we can verify that the number of in-
stancesx such that bothx /∈ c1 andx ∈ c2 is (2w̃1 − 1)2ã.

The formula ford(c1, c2) is obtained by adding(2w̃2 −
1)2ã and(2w̃1 − 1)2ã, and dividing it by|Xn| = 2n.

We prove the following five lemmas for the proof of The-
orem 13 which exactly shows the optimal teaching error of
M+

n .

Lemma 8. For any instancex ∈ N1(1n) and any integer
i ∈ [1, n],

x[i] = 0 ⇒ ∀c ∈ CONS({(x, 0)},M+
n ), c[i] = 1

Proof: Suppose that

∃c ∈ CONS({(x, 0)},M+
n ), c[i] = ∗ ̸= 1.

Sincex ∈ N1(1n) and x[i] = 0, the instancex satisfies
the Boolean expression corresponding toc. In other words,
c /∈ CONS({(x, 0)},M+

n ). This is a contradiction.

Lemma 9. LetS be a set of examples with CONS(S,M+
n ) ̸=

∅. For any integerk ∈ [1, n],

|S−| < k ⇒ ∃c ∈ CONS(S,M+
n ), var(c) < k,

whereS− := {(x, b) ∈ S | b = 0}.

Proof: We prove the contraposition[
∀c ∈ CONS(S,M+

n ), var(c) ≥ k
]

⇒ |S−| ≥ k.

SinceCONS(S,M+
n ) ̸= ∅, there exists at least one con-

ceptc satisfying the assumption of the contraposition. We
define such a concept asc := 1ℓ∗n−ℓ without loss of gener-
ality, whereℓ := var(c).

Let ci := 1i−1 ∗ 1k−i∗n−k for i ∈ [1, k]. By the defini-
tion, var(ci) = k−1. From the assumption of the contrapo-
sition,ci /∈ CONS(S,M+

n ). That is,∃z ∈ S, z /∈ X (ci). On
the other hand,∀z ∈ S, z ∈ X (c), sincec ∈ CONS(S,M+

n ).
An examplezi such thatzi /∈ X (ci) andzi ∈ X (c) must be
negative, sincec ⊆ ci. Then,zi must be of the form

zi = (1i−101k−iu, 0),

whereu ∈ {0, 1}n−k. Therefore,

|S−| ≥ #{zi | i ∈ [1, k]} = k.

Lemma 10. Let c := 1ℓ∗n−ℓ ∈ M+
n . For any integerk ∈

[1, TD(c,M+
n ) − 1] and the setS := {(u1n−k, 0) | u ∈

N1(1k)},

TE(c,M+
n , S) ≤


2n−k − 2n−ℓ

2n
(k < ℓ),

2n−k − 1
2n

(k = ℓ).

Proof: By Lemma 8,

CONS(S,M+
n ) = {1ku | u ∈ {1, ∗}n−k}.

For anyc′ ∈ CONS(S,M+
n ),

0 ≤ a(c, c′) ≤ n − ℓ,

0 ≤ w(c, c′) ≤ ℓ − k, and

a(c, c′) + w(c′, c) = n − ℓ.



Therefore,

TE(c,M+
n , S) ≤ max

0≤ã≤n−ℓ
0≤w̃≤ℓ−k

(2w̃ + 2n−ℓ−ã − 2)2ã

2n

=


2n−k − 2n−ℓ

2n
(k < ℓ)

2n−k − 1
2n

(k = ℓ)

whereã := a(c, c′) andw̃ := w(c, c′).

Lemma 11. For any conceptc ∈ M+
n and any integerk ∈

[1, TD(c,M+
n ) − 1],

∀S ∈ OptTSk(c,M+
n ), ∀(x, b) ∈ S, b = 0.

Proof: Suppose that

∃S ∈ OptTSk(c,M+
n ), ∃(x, b) ∈ S, b = 1.

Let S− := {(x, b) ∈ S | b = 0}. Obviously, |S−| < k.
SinceS ∈ OptTSk(c,M+

n ), we haveCONS(S,M+
n ) ̸= ∅.

By Lemma 9,

∃c′ ∈ CONS(S,M+
n ), var(c′) < k.

Let ℓ′ := var(c′). For the conceptc′,

a(c, c′) + w(c, c′) = n − ℓ′,

a(c, c′) + w(c′, c) = n − ℓ, and

a(c, c′) ≤ n − ℓ.

Therefore, we obtain a lower bound ofOptTEk(c,M+
n ) as

OptTEk(c,M+
n ) ≥ d(c, c′)

≥ min
ã≤n−ℓ

(2n−ℓ′−ã + 2n−ℓ−ã − 2)2ã

2n

=
2n−ℓ′ − 2n−ℓ

2n
,

whereã := a(c, c′).
Whenk < ℓ. By Lemma 10, we obtain an upper bound

of OptTEk(c,M+
n ) as

OptTEk(c,M+
n ) ≤ 2n−k − 2n−ℓ

2n
<

2n−ℓ′ − 2n−ℓ

2n
,

sinceℓ′ < k. This is a contradiction.
Whenℓ = k. By Lemma 10, we obtain an upper bound

of OptTEk(c,M+
n ) as

OptTEk(c,M+
n ) ≤ 2n−k − 1

2n
<

2n−ℓ

2n
≤ 2n−ℓ′ − 2n−ℓ

2n
,

sinceℓ′ < k = ℓ. This is a contradiction.

Lemma 12. For any conceptc ∈ M+
n and any integerk ∈

[1, TD(c,M+
n ) − 1],

OptTEk(c,M+
n ) =


2n−k − 2n−ℓ

2n
(k < ℓ),

2n−k − 1
2n

(k = ℓ),

whereℓ := var(c).

Proof: Let c = 1ℓ∗n−ℓ without loss of generality. The for-
mula in Lemma 10 gives an upper bound ofOptTEk(c,M+

n ).
We show that a lower bound ofOptTEk(c,M+

n ) is equal to
the upper bound.

In the caseℓ ̸= k, for anyS ∈ OptTSk(c,M+
n ), we have

CONS(S,M+
n ) ̸= ∅ and|S| < k + 1. By Lemma 9,

∃c′ ∈ CONS(S,M+
n ), var(c′) < k + 1.

Let ℓ′ := var(c′). Obviouslyℓ′ ≤ k < k + 1. By using
the same argument in Lemma 11, we obtain a lower bound
of OptTEk(c,M+

n ) as

OptTEk(c,M+
n ) ≥ 2n−ℓ′ − 2n−ℓ

2n
≥ 2n−k − 2n−ℓ

2n
.

In the caseℓ = k, for anyS ∈ OptTSk(c,M+
n ), (1n, 0) /∈

S sinceCONS(S,M+
n ) ̸= ∅. From Lemma 11 and(1n, 0) /∈

S,
c1 := 1n ∈ CONS(S,M+

n ).
For the conceptc1,

a(c, c1) = 0,

w(c, c1) = 0, and

w(c1, c) = n − ℓ.

Then we obtain an lower bound ofOptTEk(c,M+
n ) as

OptTEk(c,M+
n ) ≥ d(c, c1) =

2n−ℓ − 1
2n

=
2n−k − 1

2n
.

The next theorem shows the optimal teaching error of
M+

n .

Theorem 13. For any integerk ∈ [1, TD(M+
n ) − 1],

OptTEk(M+
n ) =

2n−k − 1
2n

.

Proof: Let ck be a concept withvar(ck) = k. By Lemma 12,
for any conceptc ∈ M+

n ,

OptTEk(ck,M+
n ) ≥ OptTEk(c,M+

n ).

The next theorem shows the optimally incremental teach-
ability of M+

n .

Theorem 14. The concept classM+
n of monotone monomi-

als is optimally incrementally teachable.

Proof: We prove that for any conceptc ∈ M+
n , c is opti-

mally incrementally teachable. Letc = 1ℓ∗n−ℓ without loss
of generality, whereℓ := var(c).

We define a list⟨z1, z2, · · · ⟩ of examples as

zi :=
{

(1i−101n−i, 0) (i ≤ ℓ),
(1n, 1) (i > ℓ).

Whenk ∈ [1, TD(c,M+
n )− 1], since the set{zi | i ∈ [1, k]}

is equal toS in Lemma 10,

{zi | i ∈ [1, k]} ∈ OptTSk(c,M+
n ).

Whenk = TD(c,M+
n ), from Theorem 6,

{zi | i ∈ [1, k]} ∈ MinTS(c,M+
n ) = OptTSk(c,M+

n ).
Therefore, everyc ∈ M+

n is optimally incrementally teach-
able.



4.3 Monomials Without the Empty Concept

Goldman and Kearns [GK95] proved the following theorem
that the teaching dimension ofM′

n is n + 1. The setSℓ in
the theorem is obtained by adding one positive example to
the setSℓ in Theorem 6.

Theorem 15([GK95]). For any c ∈ M′
n, the teaching di-

mension is calculated by

TD(c,M′
n) = min{var(c) + 2, n + 1}.

The following setSℓ is one of the minimum teaching sets for
a conceptc = u∗n−ℓ such thatu ∈ {0, 1}ℓ.

Sℓ :=


{(u′, 0) | u′ ∈ N1(u)} ∪ {(u, 1)} (ℓ = n),

{(u′1n−ℓ, 0) | u′ ∈ N1(u)}
∪{(u0n−ℓ, 1)} ∪ {(u1n−ℓ, 1)} (ℓ < n).

The next lemma shows a formula calculating the error
between any two concepts inM′

n.

Lemma 16. For any two conceptsc1, c2 ∈ M′
n,

d(c1, c2) =
(2w̃1 + 2w̃2 − p(s̃))2ã

2n
,

wheres̃ = s(c1, c2), w̃1 = w(c1, c2), w̃2 = w(c2, c1), ã =
a(c1, c2), and

p(s̃) =
{

2 (s̃ = 0),
0 (s̃ > 0).

Proof: Whens̃ = 0, by the same argument in Lemma 7, the
formula ofd(c1, c2) is obtained.

Whens̃ > 0, we count the number of instancesx ∈ Xn

such thatx ∈ c1 andx /∈ c2. Using the same argument in
Lemma 7, there are2w̃22ã instances such thatx ∈ c1. In this
case, sincec1 and c2 have a strong difference at the some
positions, there is no instance such thatx ∈ c2. Therefore,
the number of instancesx such thatx ∈ c1 andx /∈ c2 is
2w̃22ã.

In the same way, the number of instancesx such that
x /∈ c1 andx ∈ c2 is 2w̃12ã.

Therefore, wheñs > 0, the formula ofd(c1, c2) is ob-
tained by adding2w̃22ã and2w̃12ã, and dividing it by|Xn| =
2n.

We prove the following six lemmas for the proof of The-
orem 23 which shows the optimal teaching error ofM′

n.

Lemma 17. For any setS− of negative examples,

|S−| < k ⇒ ∃c ∈ CONS(S−,M′
n), var(c) = ⌈log k⌉.

Proof: We prove the contraposition

∀c ∈ CONS(S−,M′
n), var(c) ̸= ⌈log k⌉ ⇒ |S−| ≥ k.

Let cu := u∗ such thatu ∈ {0, 1}⌈log k⌉. By the assumption
of the contraposition,cu /∈ CONS(S−,Mn). In this case,
S− must contain a negative example(uu′, 0) such thatu′ ∈
{0, 1}n−⌈log k⌉. Therefore,

|S−| ≥ #{(u1n−⌈log k⌉, 0) | u ∈ {0, 1}⌈log k⌉}
= 2⌈log k⌉ ≥ 2log k = k.

Lemma 18. For any setS− of negative examples and any
conceptc with ℓ := var(c) ≥ 1,

|S−| < 2n − 2n−ℓ ⇒ ∃c′ ∈ CONS(S−,M′
n), s(c, c′) ≥ 1.

Proof: We prove the contraposition

∀c′ ∈ CONS(S−,M′
n), s(c, c′) = 0 ⇒ |S−| ≥ 2n − 2n−ℓ.

Let c := 1ℓ∗n−ℓ without loss of generality. From the as-
sumption of the contraposition, for any stringu ∈ {0, 1}ℓ −
{1ℓ} andu′ ∈ {0, 1}n−ℓ,

uu′ /∈ CONS(S−,M′
n).

Therefore,

|S−| ≥ #{uu′|u ∈ {0, 1}ℓ − {1ℓ}, u′ ∈ {0, 1}n−ℓ}
= (2ℓ − 1)2n−ℓ = 2n − 2n−ℓ.

Lemma 19. For any conceptc ∈ M′
n with ℓ := var(c) ≥ 1,

any setS− of negative examples, and any positive integer
k ≤ 2n − 2n−ℓ.

|S−| < k ⇒ TE(c,M′
n, S−) ≥ 2n−⌈log k⌉ + 2n−ℓ

2n
.

Proof: From Lemma 17,

∃ck ∈ CONS(S−,M′
n), var(ck) = ⌈log k⌉.

For two conceptsc andck,

a(c, ck) + w(c, ck) = n − ⌈log k⌉,
a(c, ck) + w(ck, c) = n − ℓ, and

n − ℓ − ⌈log k⌉ ≤ a(c, ck) ≤ n − ℓ.

By Lemma 18,
s(c, ck) ≥ 1.

Therefore,

TE(c,M′
n, S−) ≥ d(c, ck)

=
(2n−⌈log k⌉−ã + 2n−ℓ−ã)2ã

2n

=
2n−⌈log k⌉ + 2n−ℓ

2n
,

whereã := a(c, ck).

Lemma 20. Let c := u∗n−ℓ ∈ M′
n such thatu ∈ {0, 1}ℓ.

For any integerk ∈ [1, TD(c,M′
n) − 1] and the setS :=

{(u1n−ℓ, 1)}∪{(u′u[k : ℓ+1]1n−ℓ, 0) | u′ ∈ N1(u[1 : k])},

TE(c,M′
n, S) ≤


2n−k+1 − 2n−ℓ

2n
(k < ℓ + 1),

2n−k+1 − 1
2n

(k = ℓ + 1).

Proof: For any positive examplez+ := (x, 1) ∈ X , we can
identify CONS({z+},M′

n) with M+
n , since

∀c ∈ CONS({z+},M′
n),∀i ∈ [1, n], c[i] ∈ {x[i], ∗}.

Therefore, we obtain the formula by using the same argu-
ment in Lemma 10.



Lemma 21. For any conceptc ∈ M′
n with ℓ := var(c) ≥ 2

and any integerk ∈ [3, TD(c,M′
n) − 1],

∀S ∈ OptTSk(c,M′
n), ∃(x, b) ∈ S, b = 1.

Proof: Suppose that

∃S ∈ OptTSk(c,M′
n), ∀(x, b) ∈ S, b = 0.

Since|S| < k + 1 andℓ ≥ 2, by Lemma 19, we obtain a
lower bound ofOptTEk(c,M′

n),

OptTEk(c,M′
n) = TE(c,M′

n, S) ≥ 2n−⌈log(k+1)⌉ + 2n−ℓ

2n
.

The casek < ℓ + 1. Sincek ≥ 3, we obtain an upper
bound ofOptTEk(c,M′

n) from Lemma 20,

OptTEk(c,M′
n) ≤ 2n−k+1 − 2n−ℓ

2n
<

2n−⌈log(k+1)⌉ + 2n−ℓ

2n
.

This is a contradiction.
The casek = ℓ + 1. We also obtain an upper bound of

OptTEk(c,M′
n),

OptTEk(c,M′
n) ≤ 2n−k+1 − 1

2n
<

2n−⌈log(k+1)⌉ + 2n−ℓ

2n
.

This is a contradiction.

Lemma 22. For any conceptc ∈ M′
n with ℓ := var(c) ≥ 2

and integerk ∈ [3, TD(c,M′
n) − 1],

OptTEk(c,M′
n) =


2n−k+1 − 2n−ℓ

2n
(k < ℓ + 1),

2n−k+1 − 1
2n

(k = ℓ + 1).

Proof: From Lemma 21,

∀S ∈ OptTSk(c,M′
n), ∃(x, b) ∈ S, b = 1.

We can identifyCONS({(x, 1)},M′
n) withM+

n for the same
reason in Lemma 20. Therefore the formula ofOptTEk(c,M′

n)
is obtained by the same argument in Lemma 12.

The next theorem shows the optimal teaching error of the
concept classM′

n of monomials except the empty concept.

Theorem 23. For any integerk ∈ [1, TD(M′
n) − 1],

OptTEk(M′
n) =

2n−k+1 − 1
2n

.

Proof: Whenk ≥ 3, the formula ofOptTEk(M′
n) is ob-

tained by the same argument in Theorem 13.
Let us consider the casek = 1. Let c1 := ∗n. Obviously,

for anyz ∈ X ,

∃c′ ∈ CONS({z},M′
n), var(c′) = n.

Thus, we have a lower bound ofOptTE1(c1,M′
n),

OptTE1(c,M′
n) ≥ d(c1, c

′) =
2n − 1

2n
.

The value is the worst case error by the definition of optimal
teaching errors forM′

n. Therefore, for anyc ∈ M′
n,

OptTE1(c,M′
n) ≤ OptTE1(c1,M′

n) =
2n − 1

2n
.

We now consider the casek = 2. Let c2 = u∗n−1 such
that u ∈ {0, 1}. Since we can use the same argument for
k = ℓ + 1 in Lemma 22,

OptTE2(c2,M′
n) =

2n−1 − 1
2n

.

From Lemma 20, for any conceptc ∈ M′
n with var(c) ≥ 2,

we obtain an upper bound ofOptTE2(c,M′
n) as

OptTE2(c,M′
n) ≤ OptTE2(c2,M′

n) =
2n−1 − 1

2n
.

We prove the following lemmas for the proof of the opti-
mally incremental teachability ofM′

n.

Lemma 24. Let c := 1n andS1 := {(0n, 0)}.

OptTS1(c,M′
n) = {S1}.

Proof: For any conceptc′ ∈ CONS(S1,M′
n),

s(c, c′) ≥ 0,

a(c, c′) = 0,

0 ≤ w(c, c′) ≤ n − 1, and

w(c′, c) = 0.

Therefore,

TE(c,M′
n, S1) = d(c, 1∗n−1) =

2n−1 − 1
2n

.

We just have to show that for any example(x, b) ∈ X −
S1,

TE(c,M′
n, {(x, b)}) > TE(c,M′

n, S1).
Whenb = 0, sincex ̸= 0n,

∃i ∈ [1, n], x[i] = 1.

For the integeri,

∗i−10∗n−i ∈ CONS({(x, b)},M′
n).

Therefore,

TE(c,M′
n, {(x, b)}) ≥ d(c, ∗i−10∗n−i) =

2n−1

2n

> TE(c,M′
n, S1).

Whenb = 1,

∗n ∈ CONS({(x, b)},M′
n).

Therefore,

TE(c,M′
n, {(x, b)}) ≥ d(c, ∗n) =

2n − 1
2n

> TE(c,M′
n, S1).

Lemma 25. Let c := 1n andSopt := {(1n, 1)} ∪ {(u, 0) |
u ∈ N1(1n)}.

MinTS(c,M′
n) = {Sopt}.



Proof: From Theorem 15,

Sopt ∈ MinTS(c,M′
n).

We show that there is no other minimum teaching sets
of c with regard toM′

n. Suppose that there existsS ∈
MinTS(c,M′

n) such thatS ̸= Sopt. Let ci := 1i−1 ∗ 1n−i

such thati ∈ [1, n]. SinceS ∈ MinTS(c,M′
n),

ci /∈ CONS(S,M′
n).

Letzi := (1i−101n−i, 0). By the same argument in Lemma 9,

{zi | i ∈ [1, n]} = {(u, 0) | u ∈ N1(1n)} ⊆ S.

SinceS ∈ MinTS(c,M′
n), |S| = n + 1. On the other hand,

#{zi | i ∈ [1, n]} = n. Therefore, we must specify the
target conceptc by using just one example. This can be
achieved only by

{(1n, 1)} ⊆ S.

That is
S = Sopt.

This is a contradiction.

The next theorem disproves the optimally incremental
teachability ofM′

n.

Theorem 26. The concept classM′
n of monomials without

the empty concept is not optimally incrementally teachable.

Proof: The concept1n is not optimally incrementally teach-
able with respect toM′

n, since forS1 in Lemma 24 andSopt

in Lemma 25,
S1 * Sopt.

4.4 Monomials

In this section, we discuss the complexity of teachingMn

by a restricted number of examples. For anyc ∈ M′
n, its

teaching dimension with regard toMn is the same as Theo-
rem 15, sincece is always inconsistent with a positive exam-
ple. However, it should be noticed that

TD(ce,Mn) = 2n,

since we need all negative examples to teachce. Therefore,
the teaching dimension ofMn is 2n, that is

TD(Mn) = 2n.

From the following fact, we can apply many useful lem-
mas forM′

n toMn.

Fact 27. For any setS of examples and any conceptc ∈
M′

n,

c ∈ CONS(S,M′
n) ⇒ c ∈ CONS(S,Mn).

The following lemma shows the formula calculating the
error between any concept inM′

n and the empty conceptce.

Lemma 28. For any conceptc ∈ M′
n,

d(ce, c) =
|c|
2n

=
2ẽ

2n
,

whereẽ := # { i | c[i] = ∗ }.

Proof: Sincece = ∅, |ce∆c| = |c| = 2ẽ. The formula of
d(ce, c) is obtained by dividing2ẽ by |Xn| = 2n.

We prove the following four lemmas for the proof of The-
orem 33 which shows the optimal teaching error ofMn.

Lemma 29. Let S := {(1n, 1)} ∪ {(u1n−k+1, 0) | u ∈
{0, 1}k−1}.

TE(ce,Mn, S) =
2n−k+1

2n
.

Proof: We can identifyCONS({(1n, 1)},Mn) with M+
n .

Thus, by Lemma 8,

CONS(S,Mn) = {1k−1u | u ∈ {1, ∗}n−k+1}.
Let ẽ := # { i | c[i] = ∗ } such thatc ∈ CONS(S,Mn).
Sinceẽ ≤ n − k + 1, we obtain

TE(ce,Mn, S) = max
ẽ≤n−k+1

2ẽ

2n
=

2n−k+1

2n
.

Lemma 30. For any integerk ∈ [4, n],

∀S ∈ OptTSk(ce,Mn), ∃(x, b) ∈ S, b = 1.

Proof: Suppose that

∃S ∈ OptTSk(ce,Mn), ∀(x, b) ∈ S, b = 0.

Since|S| < k + 1, from Lemma 17,

∃c ∈ CONS(S,Mn), var(c) = ⌈log(k + 1)⌉.
For the conceptc, we have a lower bound ofOptTSk(ce,Mn)
as

OptTSk(ce,Mn) ≥ d(ce, c) =
2n−⌈log(k+1)⌉

2n
.

However, we have an upper bound ofOptTSk(ce,Mn) in
Lemma 29 as

OptTSk(ce,Mn) ≤ 2n−k+1

2n
<

2n−⌈log(k+1)⌉

2n
,

sincek ≥ 4. This is a contradiction.

Lemma 31. For any setS of examples with CONS(S,Mn) ̸=
∅,

∃(x, 1) ∈ S ⇒ TE(ce,Mn, S) ≥ 2n−k+1

2n
,

wherek := |S|.

Proof: We can identifyCONS({(x, 1)},Mn) with M+
n . Let

S− := {(x′, b) ∈ S | b = 0}. Obviously|S−| < k. From
Lemma 9,

∃c ∈ CONS(S,Mn), var(c) < k,

Let ℓ := var(c). Sinceℓ ≤ k − 1 < k,

TE(ce,Mn, S) ≥ d(ce, c) ≥
2n−ℓ

2n
≥ 2n−k+1

2n
.



Lemma 32. For anyk ∈ [1, TD(Mn) − 1],

OptTEk(ce,Mn) =


2n−k

2n
(k ≤ 2),

2n−k+1

2n
(2 < k ≤ n),

1
2n

(n < k).

Proof: We first consider the casen < k. Since we can
specify a concept1n with only n + 1 examples by using
Sℓ (ℓ = n) in Theorem 15, we obtain an upper bound of
OptTEk(ce,Mn) as

OptTEk(ce,Mn) ≤ TE(ce,Mn, Sℓ) = d(ce, 1n) =
1
2n

.

Since we cannot specifyce with less than2n examples, we
obtain an lower bound ofOptTEk(ce,Mn) as

OptTEk(ce,Mn) ≥ 1
2n

>
0
2n

.

Therefore, we obtain the formula forn < k.
Next we consider the case4 ≤ k ≤ n. For anyS ∈

OptTSk(ce,Mn), S has a positive example by using Lemma 30.
Thus, we obtain a lower bound ofOptTEk(ce,Mn) from
Lemma 31,

OptTEk(ce,Mn) ≥ 2n−k+1

2n
.

By using the setS of examples in Lemma 29, we obtain an
upper bound ofOptTEk(ce,Mn),

OptTEk(ce,Mn) ≤ TE(ce,Mn, S) =
2n−k+1

2n
.

Therefore, we obtain the formula for4 ≤ k ≤ n.
We now consider the casek = 3. For any setS ∈

OptTS3(ce,Mn), if S does not contain a positive example,
then we obtain a lower bound ofOptTE3(ce,Mn) by using
Lemma 17,

OptTEk(ce,Mn) =
2n−⌈log 4⌉

2n
=

2n−2

2n
.

We obtain the formula fork = 3 by using the same argument
for 4 ≤ k ≤ n.

Moreover, we consider the casek = 2. Let us consider
the setS2 := {(1n, 0), (0n, 0)} of examples. The setS2

gives an upper bound ofOptTE2(ce,Mn) as

OptTE2(ce,Mn) ≤ TE(ce,Mn, S2) = d(ce, 10∗n−2) =
2n−2

2n
.

For anyS ∈ OptTS2(ce,Mn), S does not contain a positive
example, because ifS contains a positive example then a
lower bound ofTE(ce,Mn, S) calculated by Lemma 31 is
greater than the upper bound. By using Lemma 17, we obtain
a lower bound ofOptTE2(ce,Mn) as

OptTE2(ce,Mn) ≥ 2n−⌈log 3⌉

2n
≥ 2n−2

2n
.

Therefore, we obtain the formula fork = 2.
Finally we consider the casek = 1. LetS1 := {(1n, 0)}.

We obtain the formula fork = 1 by using the same argument
for k = 2 with regard toS1.

The next theorem shows the optimal teaching error of the
concept classMn of monomials.

Theorem 33. For anyk ∈ [1, TD(Mn) − 1],

OptTEk(Mn) =


2n−k+1 − 1

2n
(k ≤ 2),

2n−k+1

2n
(2 < k ≤ n),

1
2n

(n < k).

Proof: The formula is obtained by taking the worst case in
Lemma 23 and Lemma 32.

Theorem 34. The concept classMn of monomials is not
optimally incrementally teachable.

Proof: The concept1n is also not optimally incrementally
teachable with respect toMn.

Finally, we consider some properties about each concept
in Mn.

The next theorem shows that the concept∗n, which is
the most easy to teach in the classical model, can be the most
difficult to teach in our model. At the same time, the theorem
shows that the empty conceptce, which is the most difficult
to teach in the classical model, can be relatively easy to teach
in our model.

Theorem 35. For any conceptc ∈ Mn − {∗n},

OptTE1(c,Mn) < OptTE1(∗n,Mn).

Proof: OptTE1(∗n,Mn) is obtained in the casek = 1 in
Lemma 23. For any conceptc ∈ Mn − {∗n}, an upper
bounds ofOptTE1(c,Mn) is calculated by Lemma 20 and
Lemma 32.

The next theorem shows that when the numberk of ex-
amples is restricted to4 ≤ k < 2n−1, the teacher must use
inconsistent examples foroptimally incrementallyteaching
Mn. It should be noted that the theorem derives Theorem 3
and Theorem 4. The natural concept classMn also has the
same properties as the simple self-made concept classes used
in the proofs of those theorems.

Theorem 36. For any integerk ∈ [4, 2n−1 − 1],

∀S ∈ OptTSk(ce,Mn), ce /∈ CONS(S,Mn).

Proof: When4 ≤ k ≤ n, it is clear from Lemma 30.
For the casen + 1 ≤ k ≤ 2n−1 − 1, we suppose that

∃S ∈ OptTSk(ce,Mn), ce ∈ CONS(S,Mn).

Sincece ∈ CONS(S,Mn), S contains negative examples
only. Obviously|S| < k + 1. From Lemma 17,

∃ck ∈ CONS(S,Mn), var(ck) = ⌈log(k + 1)⌉.
Therefore, we obtain a lower bound ofOptTEk(ce,Mn) as

OptTEk(ce,Mn) ≥ d(ce, ck) ≥ 2n−⌈log(k+1)⌉

2n
≥ 2

2n
.

However, the setSℓ (ℓ = n) in Theorem 15 can specify a
conceptc′ with var(c′) = n, that is, we obtain an upper
bound ofOptTEk(ce,Mn) as

OptTEk(ce,Mn) = TE(ce,Mn, Sℓ) = d(ce, c
′) =

1
2n

.

This is a contradiction.



Table 3: Summary. The last two rows (†) are newly proved
in this paper.
C M+

n M′
n Mn

TD(C) n n + 1 2n

Teachability True True False

OptTEk(C)† 2n−k − 1

2n

2n−k+1 − 1

2n



2n−k+1 − 1

2n
(k ≤ 2)

2n−k+1

2n
(2 < k ≤ n)

1

2n
(n < k)

Optimally
Incremental
Teachability†

True False False

5 Conclusions

In this paper, we studied the complexity of teaching in the
situation that the number of examples is restricted. We for-
mulated a new model of teaching. In our model, we measure
the complexity of a concept class by its teaching error to a
target concept in the worst case. We say that a concept class
is optimally incrementally teachable if the teacher can opti-
mally teach it to the learner whenever teaching is terminated.

Table 3 summarizes the new results together with the pre-
viously known results in terms of the three concept classes
of monotone monomialsM+

n , monomials without the empty
conceptM′

n, and monomialsMn. TD(C) means the teach-
ing dimension of a concept classC, andOptTEk(C) means
the optimal teaching error of a concept classC by at mostk
examples in our model. The table indicates thatOptTEk(C)
becomes greater asTD(C) becomes greater, regardless of a
restrictionk. However, the boundary of optimally incremen-
tal teachability is different from that of polynomial teach-
ability in the classical model. It should be noted that the
boundary lies on natural concept classes that are well known
and studied in computational learning theory.

Focusing on each concept inMn, we showed that some
concepts are easy to teach in our new model although they
are difficult to teach in the classical model, and vice versa.
We also showed that the teacher musttell lies (i.e. use incon-
sistent examples) to teach the empty concept inMn in or-
der to avoid a serious misunderstanding in short words. This
result corresponds to the heuristics that when humans teach
something within a time limit, they should over-simplify it
by ignoring a few exceptions.

Finally, we suggest the following open problems. Are
there two natural concept classesC1 and C2 such that for
some integerk, OptTEk(C1) < OptTEk(C2) despiteTD(C1) >
TD(C2)? What if the model is extended to infinite instance
spaces and allows all other distributions? What if we con-
sider the situation that the number of examples is restricted
in PAC model? How does the model relate to the other mod-
els?
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