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Abstract

Teaching is inextricably linked to learning, and there
are many studies on the complexity of teaching as
well as learning in computational learning theory.
In this paper, we study the complexity of teach-
ing in the situation that the number of examples is
restricted, especially less than its teaching dimen-
sion. We formulate a model of teaching by a re-
stricted number of examples, where the complex-
ity is measured by the maximum error to a target
concept. We call a concept classogtimally in-
crementally teachablié the teacher can optimally
teach it to the learner whenever teaching is termi-
nated.

We study the complexity of the three concept classes
of monotone monomials, monomials without the
empty concept, and monomials in our model. We
show that the boundary of optimally incremental
teachability is different from that of polynomial
teachability in the classical model. We also show
that inconsistent examples help to reduce the max-
imum error in our model.

Introduction

andayumi@ecei.tohoku.ac.jp

interactive learning of robots is another instance of the situ-
ation, since the number of trials is often restricted due to the
issue of cost.

We formulate a model of teaching in the situation that the
number of examples is restricted. In our model, we measure
the teaching complexity of a concept class by the minimum
teaching error Teaching error is informally the worst case
error between a target concept and any concept consistent
with a setS of examples. If the teaching error is zero, then
the setS specifies the target concept uniquely, &hd called
ateaching setThe size of the minimum teaching set was of
interest in the standard model of teaching, and it is called
theteaching dimensiofGK95]. In this paper, we are inter-
ested in a situation that only a smaller number of examples
are allowed to use than the teaching dimension of the target
concept. The goal of the teacher is to minimize the misun-
derstanding of learners to the target concept, which cannot
be zero, by selecting a good s¥tof examples. Some ques-
tions arise. Is an optimal teaching set in this situation always
a subset of the standard teaching set,$'eC S? Is it pos-
sible to reduce the teaching error by allowing the teacher to
use inconsistent examples? We prove some theorems which
answer these questions. Theorem 3 in Section 3 answers to
the first question negatively. We show a simple and concrete
concept class that the optimal teaching set in restricted num-
bers of examples is not a subset of the standard teaching set.
It implies that a good teaching strategy within a restricted

Computational learning theory aims to mathematically for- number of examples is different from the standard one. The-
mulate a model ofearning which is an intellectual behav- orem 4 answers to the second question affirmatively. We
ior of humans, and finally bring out its nature. In the do- show another simple and concrete concept class for which
main, there are many studies using models such as inductiveghe optimal teaching set is inconsistent with the target con-
inference [Gol67], PAC learning [Val84], and query learn- cept. It supports our intuitions thtis sometimes necessary
ing [Ang88]. On the other hand, there are also many studiesto lie.
on teaching[SM91, GK95, JT92, Heg95, Mat97, LSWO07, Moreover, we define that a conceptdptimally incre-
Han07, Bal08, ZLHZ08], which is inextricably linked to learn- mentally teachableif there exists a sequence of examples
ing. In this paper, we formulate a new model of teaching and such that any prefix of the sequence is always an optimal
discuss the complexity of teaching in the model. teaching set at that moment. When a concept is optimally
We assume the situation that the number of examples isincrementally teachable, it should be easy to teach in our
restricted to some integer, especially less than its teaching di-model in the sense that we do not need to change its teach-
mension. This situation brings teaching theory closer to the ing algorithm depending on the restriction of the number of
real world, since time is limited in general when we teach examples. We address the three concept classes of mono-
something to someone. For example, a teacher in a schootone monomials, and monomials without the empty concept,
should preferably make the students understand his/her lesmonomials and bring out their properties in our model.
son within course hours. Self-introduction in a job interview Our model is inspired by the study of Balbach and Zeug-
and presentation of research results are good instances of thenann [BZ06]. They formalized a model for randomized
situation, which many people may experience. In addition, learners and measured the complexity of a concept class by



its expected teaching time. In the study, interestingly, they Theteaching dimensionf ¢ with respect tC is defined by
showed that inconsistent teachers can be more powerful tharthe minimum size of its teaching set:
consistent teachers using self-made concept classes with only

positive examples. It supports the same intuitions that it is

sometimes necessary to lie.
Our model is not categorized in exact learning differently

TD(¢,C) :=min{|S| | S € TY¢,C)}.

The teaching dimension @ is defined by the maximum
teaching dimension over all concepts:

from most other studies and relatively closer to PAC learn-
ing. However, our model has not the notion of probability
as in PAC learning. In this paper, we adopt the style assum-

ing the worst case learner in the same way as the classicalye denote the set of all minimum teaching sets afith

TD(C) := max TD(e, C).

model [SM91, GK95].

2 Preliminaries

We denote the size of a s&thy either#S or |S|. LetN be a
set of natural numbers. We defifiej] :== {i,i+1,--- ,j}
for any integers, j € N with i < j.

Let X be an alphabet. For any strimge ¥", we denote
a character at a position € [1,n] by u[i], and we define
wli @ j] = wliu[i+1] - - - u[j—1] for any integers, j € [1,n]
with ¢ < j. For any two strings.;, us € %™ of the same
lengthn, we denote the Hamming distance betweerand
U9 by H(ul, ’LLQ).

We now consider the case = {0,1}. For any binary
stringu € X", we denote the set of binary strings such that
its Hamming distance ta is 1 by

M(u) :={u € X" | H(u,u') = 1}.

2.1 Concept Class

Let X be a set ofinstancesor aninput space Let X' :=
X x {0, 1;»(, and we call a paifz,b) € X anexample We
callC C 2-* aconcept clasandc € C aconcept A concept
c is consistenwith an exampléz, b) € X iff (z,b) € X(c),
where

X()={(z,))eX |z e€ecesb=1}.

We denote the set of concepts in a concept dlatisat are
consistent with a sef of examples by

CONSS,C):={ceC|SCX(c)}.

For any two concepts,, c2 € C, we denote theymmet-
ric differencebetweenc; andcs, by

c1Acs = (c1 —c2) U (ca — ).

For any two concepts,, c; € C, theerror betweere; ande,
with respect to a distributio® is calculated byl (¢1, ¢3) :=

Y zceiac, PTp(2). In this paper, we assume that an input
spaceX Is finite, and a distributiorD is uniform, so that
we omit D and calculate the error by the following simple

formula 1 Acs|
C1AC

d(Cl,CQ) =
| X

2.2 Teaching Dimension

A set .S of examples is called &aching sebf a concept
with respect to a concept clagsf c¢ is the only concept in
C that is consistent witt$, that isSCONSS,C) = {c¢}. We
denote the set of all teaching sets by

TYc,C) = {S C X | CONSS,C) = {c}}.

respect ta by
MinTSc,C) :={S € TS, S) | |S| =TD(¢,C)} .

3 Teaching Complexity by a Restricted
Number of Examples

In our model, a learner often fails to identify a target con-
cept exactly, since the number of examples that a teacher can
give to the learner is restricted. We measure the teaching
complexity of a concept class by the worst case error of the
target concept. In this case, we assume the worst case learner
in the same way as the classical teaching model. We define
the worst case error of the target concept as follows.

Definition 1 (Teaching Error) LetC be a concept class and
¢ € C be a target concept. For any s8tof examples, we
definethe teaching error aof with respect t& by S as

max d(c,¢’) (CONSS,C) #0),
TE(c,C, S) := { ¢'€CONIS.0) (ec) 5,00 70)
1 (otherwise).

We define the teaching complexity of a concept class in
the situation that the number of examples is restricted as fol-
lows.

Definition 2 (Optimal Teaching Error)Let C be a concept
class andec € C be a target concept. We defittee optimal
teaching error ot with respect taC by at mostk examples
as

min
SCx:|S

OptTE,(c,C) := _TE(e,C.5).

I<
We also definéhe optimal teaching error @f by at mostk
examplesas

OptTE,(C) := max OptTE, (¢, C).
ce

We define that a set of at mdsexamples is &-optimal
teaching setif the set achieves the optimal teaching error.
We denote the set df-optimal teaching sets by

S| <k,
OptTS (. C) = {5 cx lI'E‘(c,C,S) — OPtTE,(c,C) }

An optimal teaching error ranges between 0 and 1, and
the smaller the better. Whein > TD(c,C), the optimal
teaching error is always zero, i.©ptTE,(¢,C) = 0, since
we can uniquely specify the target concept by any teaching
setS in MinTS¢,C). Therefore, this paper focuses on the
case oft < TD(c,C).

We now prove the next two important theorems.



Table 1: Concept class used in the proof for Theorem 3.

h Iq T T3 d(CQ, h)
Co 1 1 1 0/3
a 1 0 1 1/3
cc 1 0 O 2/3
cg 0 1 1 1/3
g 0 1 O 2/3

Theorem 3. There exists a concept claSsa target concept
¢ € C, and a positive integet such that

VS € OptTS(c,C), VS, € MinTSc,C), Sy & So.

Proof: Let us consider a concept claSs= {cp, - ,c4}
over an input spac& = {1, z2, x5} shown in Table 1 and
a target concepty € C, and let us také = 1.
The setS; := {(z3,1)} is the onlyl-optimal teaching
set ofcy with respect t&. That is
OptTS(CO,C) = {Sl}
Its optimal teaching error iIOptTE (¢y,C) = 1/3. For any
other setS of examples, .S is not optimal since eithet, €
CONS§S,C) orey € CONSS,C), i.e.,TE(co,C,S) > 2/3.
On the other hand, the s&t := {(x1,1), (z2, 1)} is the only
minimum teaching set. That is
MinTS ¢y, C) = {S2}.
However,
S1 € Ss.
|

Theorem 4. There exists a concept claSsa target concept
¢ € C, and a positive integet such that

VS € OptTS.(¢,C), ¢ ¢ CONSS,C).
Proof: Let us consider a concept cla8s= {cp, - ,c5}
over an input spac& = {zi,---,z5} shown in Table 2

and a target concepg € C, and let us také = 1.
The setS; := {(z1,0)} is the only 1-optimal teaching

set. Thatis
OptTS (co,C) = {S1}-
Its optimal teaching error I©OptTE (co,C) = 1/5. For
any other setS of examples,S is not optimal, since:; €
CONS§S,C) for somei € [2,5], i.e., TE(co,C,S) > 3/5.
However,cq is inconsistent withd, that is
Co ¢ CONSSl,C)
|

Table 2: Concept class used in the proof for Theorem 4.

h T T T3 T4 Is d(C(),h)
o 1 1 1 1 1 0/5
cc 0 1 1 1 1 1/5
c 1 1 0 0 O 3/5
cg 1 0 1 0 O 3/5
cq 1 0 0 1 O 3/5
cs 1 0 0 0 1 3/5

Definition 5 (Optimally Incremental Teachability) etC be
a concept class and € C be a target concept. We say that
is optimally incremental teachable with respecttd there
exists a listL := (z1, 2o, - - - ) of examples such that

Vk € [1,TD(c,C)],{z1, - , 2t} € OptTS.(c,C).

We also say thaf is optimally incrementally teachabié
everyc € Cis optimally incrementally teachable with respect
toC.

4 Complexity of Teaching Monomials

4.1 Preliminaries

We deal with Boolean concepts over an input spAge=
{0,1}", expressed by Boolean expressions. A concept ex-
pressed by a Boolean expressijpis the set of inputs ik,
which satisfiesf. A monomialon n variablesvy,--- ,v, is

a Boolean expression represented by a conjunction of some
literals,v;’s andw;’s. A concept represented by an unsatisfi-
able expression, such asA ; is called theempty concept
and denoted by, := 0.

We denote byM,, the class of all monomial concepts.
Let M, := M,, — {c.}. Any conceptc € M/, is uniquely
represented by a string € {0,1,*}" defined as follows.
r[i] is 1 if there exist; in a corresponding Boolean expres-
sion, 0 if there existsy;, andx otherwise. For instance, for
the monomial; A T3 on three variables, the corresponding
conceptc is {100,101}, and its representation i€)x. For
the sake of simplicity, we identify a concept.vt’, with its
representation:

¢ = {100,101} = 10 .

For any concept € M/, we denote the number of distinct
variables in a corresponding Boolean expression by

var(c) = #{i | c[i] # *}.

A monomial consisting of only positive literals is called a

Theorem 3 and Theorem 4 indicate that a teaching strat-monotone monomialVe denote the concept /class of mono-
egy in our model can be much different from that in the clas- tone monomials byM'. ObviouslyM;; C M;,.

sical model. In other words, we need an appropriate teaching

For any two concepts;, c, € M/, we say that; and

algorithm to obtain the maximum teaching effect in the situa- 2 have a strong difference at positiarif either ¢, [i] = 1
tion that the number of examples is restricted. Although we andcz[i] = 0, or ¢1[i] = 0 andes[i] = 1. We denote the
use simple self-made concept classes in the proofs of The-number of strong differences betwe@nandc, by

orem 3 and Theorem 4 for illustrative purposes, the natural
concept class of monomials also has the same properties as
We say that; and c; have a weak difference at position

them, as shown in Theorem 36.

s(c1, co) = #{i | e1]i] # *, cali] # *, c1[i] # e[}

If for a concept class, there exists a teaching algorithm if either ¢;[i] = * andc¢s[i] € {0,1}, orc[i] = * and
that achieves the optimal teaching error whenever teaching isc; [¢] € {0,1}. Two weak differences at positiorandj are
terminated, we can regard such a concept class as somewhatalledthe same kindf either ¢1[i] = ¢1[j] = * or eqfi] =
easy to teach in our model. We formalize the idea as follows. c[j] = *, and calleddifferent kindotherwise. We denote



the number of weak differences of the same kind betwgen
andc, by

w(er, o) = F#{i | e1[i] # *, eali] = *}.

The total number of weak differences betwegrandc, is
w(er, c2) + w(ee, ¢1). We say that; and ¢, have an arbi-
trary match at positioni if ¢, [i] = c»[i] = *. We denote the
number of arbitrary matches by

a(er, c2) = #{i | c1[i] = eoi] = *}.

4.2 Monotone Monomials

Shinohara and Miyano [SM91], and Goldman and Kearns [G

independently studied the concept class of monotone mon
mials and proved that its teaching dimensiomis Gold-

man and Kearns moreover analyzed the teaching dimensio

for every concept in the classt; and proved the following
theorem.

Theorem 6([GK95]). For any concept € M, the teach-
ing dimension of with regard toM' is calculated as

TD(c, M) = min{var(c) + 1,n}.

The setS, of examples defined by the following formula is
one of the minimum teaching sets of the condépt—¢ with
regard to M.

S, = {{(u,O) | uwe Ni(19)}
T @1m0) | uw e Mi(1H YU {104 1)}

(£=n),
(£ < n).

From the view point of our study, the above theorem de-

In the same way, we can verify that the number of in-
stances such that botlr ¢ ¢; andx € ¢, is (291 — 1)29.

The formula ford(cy, c2) is obtained by adding2?2 —
1)2% and (2%t — 1)2%, and dividing it by| X,,| = 2". [ ]

We prove the following five lemmas for the proof of The-
orem 13 which exactly shows the optimal teaching error of
M.

Lemma 8. For any instancer € N;(1™) and any integer
i €[l,n],

z[ij=0 = Vc& CONS{(x,0)}, M), cli]=1

Olﬁgr%of: Suppose that

Je € CONS{(z,0)}, M), c[i] = * # 1.

"Sincex € N;(1") andz[i] = 0, the instancer satisfies
the Boolean expression corresponding:tdn other words,
¢ ¢ CONS{(z,0)}, M;"). This is a contradiction. [ |

Lemma 9. LetS be a set of examples with COMSM) #
(. For any integerk € [1,n],

ST| <k = 3Jece€ CONSS, M) var(c) <k,
whereS~ := {(z,b) € S| b = 0}.
Proof: We prove the contraposition

[Ve € CONSS, M,}), var(c) > k] |S™| > k.

SinceCONSS, M;h) # 0, there exists at least one con-
ceptc satisfying the assumption of the contraposition. We

=

. . . . .. T _ 1l on—2 \pi
scribes the complexity of teaching without restriction of the define such a concept as= 1°+"~" without loss of gener-
number of examples to use. On the other hand, this paper fo-2/ity, where := var(c).

cuses on the complexity of teaching by a restricted number .

of examples.

The next lemma shows the formula calculating the erro
between any two concepts i(.". Note that we do not con-
sider the exceptions for < 2 in our proofs, assuming that
n is relatively large.

Lemma 7. For any two concepts;, c; € M,
(2901 + 292 — 2)28
2n ’

wherew; = w(cy, ¢2), Wy = w(eg, ¢1), anda = a(cy, ¢3).

d(Ch CQ) =

Proof: By the definition,|c; Acs| is the number of instances
x € X, such that eithex € ¢; andz ¢ cq, orz ¢ ¢; and
X € Ca.

We first count the number of instancesuch thatr € ¢,
andx ¢ cy. The number of instancaese c; is 29274, where
wy + a means the number ofin ¢;, since for any integer
i€[l,n],

(&1 [Z] 75 *

= zi] = c1]i],

Letc; := 11 x 1¥=%n=k for § € [1, k]. By the defini-
tion, var(c;) = k — 1. From the assumption of the contrapo-

r Sition,¢; ¢ CONSS, M}). Thatis, 3z € S,z ¢ X(c;). On

the other handyz € S, z € X(c), sincec € CONSS, M}).
An examplez; such that; ¢ X (¢;) andz; € X(c¢) must be
negative, since C ¢;. Then,z; must be of the form

z; = (1771017, 0),
whereu € {0,1}"~*. Therefore,
ST = #{z | i € [Lk]} =k
|
Lemma 10. Letc := 1%"~¢ ¢ M. For any integerk €

[1,TD(c, M) — 1] and the setS := {(ul""*,0) | u €
Ni(1F)},

2n—k _ 211—@
— (k< ¥,

in order to satisfy the Boolean expression corresponding to Proof: By Lemma 8,

c1. In those instances, however, there 2fdénstances such

thatz € ¢y, since the Boolean expression corresponding to

co Is satisfied if for anyi € [1,n],

Cg[i] 75 *

Therefore, the number of instancesuch that bothr < ¢;
andzx ¢ cois (2%2 — 1)2¢°.

= z[i] = el

CONSS, M) = {1Fu | u € {1,%}"F}.
For anyc’ € CONSS, M),

0<ale,d) < n—4,
0<w(,d) < {—k, and
a(e,d)+w(c,c) = n—L



Therefore,
(29 42—t~ — 2)20

+ <
TRl M S) = e, 7
0Zw<l—k
2n—k _ 2n—é
— (k<)
IR |

T T k=1¢

k=0
wherea := a(c, ') andw := w(e, ). |

Lemma 11. For any concept € M and any integek €
[1,TD(c, M;F) — 1],

VS € OptTS, (¢, M), V(z,b) € S, b=0.
Proof: Suppose that
38 € OptTS. (¢, M;}), I(x,b) €S, b=1.

Let S~ := {(x,b) € S| b = 0}. Obviously,|S~|
SinceS € OptTS,(c, M.’), we haveCONSS, M)
By Lemma 9,

3¢’ € CONSS, M),
Let?' := var(c'). For the concept’,

< k.
£ 0.

var(cd) < k.

ale,d)+w(e,d) = n—-1,
a(e,c) +w(c,c) n — £, and
ale,d) < n—L

Therefore, we obtain a lower bound©ptTE, (¢, M) as
OptTE, (e, M;}) > d(c, )

' <2n—é/—& + on—€—a _ 2)2(1
>
= agned on

2717@' _ anf
—
wherea := a(c, ).

Whenk < ¢. By Lemma 10, we obtain an upper bound
of OptTE, (c, M;}) as
2n—k _ 271—@

2n < 2n ’

since!’ < k. This is a contradiction.

When/ = k. By Lemma 10, we obtain an upper bound
of OptTE, (¢, M;)) as

2n—€' _ 2n—€

OptTE, (c, M) <

2n—k -1 2n—€ 2n—£' _ 2n—l
OptT ) < <
PITE (e M) < —5— < 5~ = 5 :
sincel’ < k = ¢. This is a contradiction. [ |

Lemma 12. For any concept € M and any integek €
[17 TD(Ca M;iz_) - 1]'

2n—k _ 2n—€

2TL

(k <0),

wherel := var(c).

Proof: Let ¢ = 1¢x"—¢ without loss of generality. The for-
mulain Lemma 10 gives an upper bounddgtTE, (c, M.}).
We show that a lower bound @ptTE,(c, M;") is equal to
the upper bound.

In the casée +# k, for anyS € OptTS.(c, M;"), we have
CONSS, M) # 0 and|S| < k + 1. By Lemma 9,

3¢’ € CONSS, M), war(d) < k+1.
Let ¢/ := wvar(c¢’). Obviously? < k < k + 1. By using
the same argument in Lemma 11, we obtain a lower bound
of OptTE, (c, M;}) as
2nff/ _ 2n7€
2n - 2m

Inthe casé = k, foranyS € OptTS.(¢, M), (1™,0) ¢
S sinceCONS S, MF) # (). From Lemma 11 an¢ll™, 0) ¢
Si

2n7k _ 2n7€

OptTE, (¢, M;}) >

c1 = 1" € CONSS, M),
For the concept;,

a(c,c1) = 0,
w(c,c1) = 0, and
w(cr,¢) = n—4L.
Then we obtain an lower bound GfptTE, (¢, M) as
2n,—€ -1 2n—k -1
OptTE, (¢, M;}) > d(c,c1) = T o
|

The next theorem shows the optimal teaching error of
M.
Theorem 13. For any integerk € [1, TD(M;}) — 1],
n—k _ 1
n .
Proof: Letc; be aconcept withar(cx) = k. By Lemma 12,
for any concept € M

n

OptTE, (¢, M) > OptTE, (¢, M;)).

OptTE, (M.}) =

|
The next theorem shows the optimally incremental teach-
ability of M;F.
Theorem 14. The concept clas$;} of monotone monomi-
als is optimally incrementally teachable.

Proof: We prove that for any concepte M., c is opti-

mally incrementally teachable. Let= 1°+"~¢ without loss
of generality, wheré := var(c).
We define a listzy, 22, - - - ) of examples as
. (1°-to1m=4,0) (i < ¥4),
Colam ) (i>0).
Whenk € [1,TD(c, M) — 1], since the sefz; | i € [1, k]}
is equal toS in Lemma 10,
{2 |i€[1,k]} € OptTS,(c, M;).
Whenk = TD(c, M;}), from Theorem 6,
{2 ]i€[1,k]} € MinTSc, M) = OptTS.(c, M}).
Therefore, every € M. is optimally incrementally teach-
able. ]



4.3 Monomials Without the Empty Concept

Goldman and Kearns [GK95] proved the following theorem
that the teaching dimension g#/, is n + 1. The setS; in

the theorem is obtained by adding one positive example to
the setS, in Theorem 6.

Theorem 15(JGK95]). For anyc € M., the teaching di-
mension is calculated by

TD(c, M!,) = min{var(c) + 2,n + 1}.

The following sefS, is one of the minimum teaching sets for
a concept = ux"~¢ such that € {0, 1}*.

{(W,0) |« € (W)} U{(u,1)} (£=n),
Sei= 1 {(W1"4,0) | v € N, (u)}
{04, D u{(ul™ 41D} (£ <n).

The next lemma shows a formula calculating the error
between any two concepts it/ .

Lemma 16. For any two concepts,, c; € M),
(27 +27 — p(3)2°
2n ’

wheres = s(c1,¢2), W1 = w(cy, ca), W2 = w(cs, 1), @ =
a(c,c2), and

d(Cl, 62) =

2
0

. (§=0),
p(3) (5§ >0).

Proof: Whens = 0, by the same argument in Lemma 7, the
formula ofd(cy, c) is obtained.

Whens > 0, we count the number of instancess X,
such thatr € ¢; andx ¢ ;. Using the same argument in
Lemma 7, there arg¥22¢ instances such thate ¢;. In this
case, since; andc; have a strong difference at the some
positions, there is no instance such that c;. Therefore,
the number of instances such thatr € ¢; andz ¢ c; is
w220,

In the same way, the number of instanaesuch that
x ¢ ¢ andz € cy is 29129,

Therefore, whers > 0, the formula ofd(cy, ¢2) is ob-
tained by adding®“22% and2%12%, and dividing it by| X, | =
., |

We prove the following six lemmas for the proof of The-
orem 23 which shows the optimal teaching errondf,.

Lemma 17. For any setS— of negative examples,

|IST| <k = JceCONSS , M.,), var(c) = [logk].
Proof: We prove the contraposition

Ve € CONSS—, M.), var(c) # [log k] |S™| > k.

Letc, := ux such that, € {0,1}/°*1, By the assumption
of the contrapositiong,, ¢ CON§S~, M,,). In this case,
S~ must contain a negative examgleu’, 0) such that,’

{0, 1}~ Mgkl Therefore,

|57 #{(u1"= 108+ 0) | u € {0, 1}T18kT}
2[10gk—\ Z 2logk: -k

=

>

Lemma 18. For any setS— of negative examples and any
concepte with £ := var(c) > 1,

|S7| < 2" —2"7* = 3¢’ € CONSS—, M},), s(c,¢) > 1.
Proof: We prove the contraposition
V' € CONS™, MY), s(c,¢') = 0= S| > 2" —

Let ¢ := 1%"~¢ without loss of generality. From the as-
sumption of the contraposition, for any stringz {0, 1} —
{1}y andu’ € {0,1}"7¢,

uu’ ¢ CONSS—, M.,).

on—t,

Therefore,
IS71 =

#{uu|u € {0,1}F — {1°},u" € {0,1}" %}

(2@ _ 1)271—[ — 277, _ 277,—@'

Lemma 19. For any concept € M, with ¢ := var(c) > 1,
any setS— of negative examples, and any positive integer
k<2on—on—t,

2n—ﬂogk] on—L
ST <k = TE@E,M.,5)> 2n+ _

Proof: From Lemma 17,
Jer, € CONSS—, M),
For two concepts andcy,

var(cg) = [logk].

a(c,er) +w(e,cx) = n—[logk],
ale,er) +w(cg,c) = n—4, and
n—4L0—[logk] <ale,cx) < n—4L.
By Lemma 18,
s(e,cr) > 1.
Therefore,
TE(e,M!,,57) > d(c,cx)
(2n— [log k]—a 4 271,—6—?1)2&
B on—[log k] + on—t
= o ,

wherea := a(c, cx). |
Lemma 20. Letc := ux"~¢ € M/, such thatu € {0, 1}*.
For any integerk € [1,TD(c, M/,) — 1] and the setS :=
{(u1™=* 1) YU{ (W ulk : £+1]17740) | o' € Ny (u[l : k])},

2n—k+1 _ 271—@
TS k<t

n

2n—k+% -1
2’!1

Proof: For any positive example™ := (z,1) € X, we can
identify CONS{z"}, M/,) with M, since

Ve € CONS{z"}, M), Vi € [1,n],c[i] € {x[i],*}.

Therefore, we obtain the formula by using the same argu-
ment in Lemma 10.

TE(c, M., S) <
(k=(+1).



Lemma 21. For any concept € M/, with £ := var(c) > 2
and any integek € [3, TD(c, M!,) — 1],

VS € OptTS.(c, M), I(z,b) € S, b=1.
Proof: Suppose that
35 € OptTS, (¢, M},), V(z,b) € S, b=0.

Since|S| < k + 1 and?¢ > 2, by Lemma 19, we obtain a
lower bound ofOptTE, (¢, M),),

on— [log(k+1)] 4 on—t
on !

The case: < ¢+ 1. Sincek > 3, we obtain an upper
bound ofOptTE, (¢, M!,) from Lemma 20,

2n—k+1 _ 2n—€
<
AL n

OptTE, (¢, M;,) = TE(c, M}, §) >

on— [log(k+1)] on—t
OPLTE, (¢, M},) < R

This is a contradiction.
The case: = ¢ + 1. We also obtain an upper bound of

OPptTE, (¢, M!)),
on—k+1 _ 1 2n—|’log(k+1ﬂ + on—t

<
2n 2n

OptTE, (¢, M;,) <

This is a contradiction.
[ |

Lemma 22. For any concept € M/, with ¢ := var(c) > 2
and integerk € [3, TD(¢, M’,) — 1],

2n7k+1 _ 2n7£
OptTEc(CaMn) = 2n7k+1 —1
_— (k=0+1).
21’L
Proof: From Lemma 21,
VS € OptTS.(¢, M), I(z,b) € S, b=1.

We can identifyCONS{(x, 1)}, M!,) with M for the same
reason in Lemma 20. Therefore the formulalpftTEk(c M’ )
is obtained by the same argument in Lemma 12.

We now consider the cage= 2. Letcy = ux"~! such
thatu € {0,1}. Since we can use the same argument for
k=/{¢+1inLemma 22,

, 27171 -1
OptTEz(CQ,Mn) = T

From Lemma 20, for any concepe M., with var(c) > 2,
we obtain an upper bound &fptTE, (¢, M’,) as

2n-t g

OPptTE,(c, M),) < OptTE,(c2, 5

M) =
u

We prove the following lemmas for the proof of the opti-
mally incremental teachability of1/,.

Lemma 24. Letc:= 1" and Sy := {(0™,0)}.
OptTS (¢, M;,) = {51}
Proof: For any concept’ € CONJSy, M),

s(e,d) =0,
ale,d) = 0,
0<w(ed) < n-1,and
w(d,c) = 0.
Therefore,
I n—1 2" -1
-I—E(C,./\/ln7 Sl) = d(C, 1% ) = T
We just have to show that for any examile b) € X —
Sll
TE(c, M}, {(x,b)}) > TE(c, M_,, S1).
Whenb = 0, sincex # 0",
Ji € [1,n],z[i] = 1.

For the integet,
#710+"7" € CON§{(,b)}, My).

The next theorem shows the optimal teaching error of the Therefore,

concept clasg1/, of monomials except the empty concept.

Theorem 23. For any integerk € [1, TD(M!,) — 1],
gn—h+l _ ]

2n
Proof: Whenk > 3, the formula ofOptTE,(M.,) is ob-
tained by the same argument in Theorem 13.

Let us consider the cage= 1. Letc; := «™. Obviously,
foranyz € X,

3¢’ € CONS{z}, M)),
Thus, we have a lower bound GptTE, (¢1, M
2" —1
on

OptTE,(M;,) =

var(c') = n.
)

OptTE (¢, M) > d(c1,c') =

The value is the worst case error by the definition of optimal | emma 25. Lete := 1" and Sopt = {(1"

teaching errors foM’,. Therefore, for any € M,
2" —1
2n

OptTE (¢, M},) < OptTE, (¢c1, M},) =

2n—1

TE(c, M;,, {(x, > d(c, x0T = T

> TE(C, M;,/, Sl)

b)})

Whend = 1,
«" € CONS{(x,b)}, M.,).

Therefore,
TE(c, M;,, {(z,0)}) > d(c,%") =

> TE(C, ./\/lf,l, Sl)

|
;1)U A{(u,0) |
U ENl(ln)}.

MinTS(c, Mib) = {Sopt}-



Proof: From Theorem 15,
Sopt € MinNTYc, M?)).

We show that there is no other minimum teaching sets

of ¢ with regard toM;,. Suppose that there exists <
MinTSc, M!,) such thatS # S,,;. Lete; := 1771 x 17~
such that € [1,n]. SinceS € MinTS¢, M},),
¢; ¢ CONSS, M.,).
Letz; := (1°-101"¢,0). By the same argumentin Lemma 9,
{zi |ie1,n]} ={(u,0) |ue N (1")} C 5.
SinceS € MinTS¢, M),), |S| = n + 1. On the other hand,

#{z; | i € [1,n]} = n. Therefore, we must specify the
target concept by using just one example. This can be
achieved only by

{amnycs.
That is
S == Sopt~

This is a contradiction. [ |

The next theorem disproves the optimally incremental
teachability ofM,.

Theorem 26. The concept classA/, of monomials without
the empty concept is not optimally incrementally teachable.

Proof: The concepl™ is not optimally incrementally teach-
able with respect ta1/,, since forS; in Lemma 24 and,,;
in Lemma 25,

S1 L Sopt.-

4.4 Monomials
In this section, we discuss the complexity of teachiti,
by a restricted number of examples. For ang M., its
teaching dimension with regard 1o, is the same as Theo-
rem 15, since. is always inconsistent with a positive exam-
ple. However, it should be noticed that
TD(¢e, M,,) =27,
since we need all negative examples to teachTherefore,
the teaching dimension o%¥1,, is 2", that is
TD(M,,) = 2™.

From the following fact, we can apply many useful lem-
mas forM’, to M,,.
Fact 27. For any setS of examples and any concepte
M,

c € CONSS, M.) = c € CONSS, M,,).

The following lemma shows the formula calculating the
error between any concept.ivt/, and the empty concept.

Lemma 28. For any concept € M,
le] _ 2°

= o

d(ce,c) = on =

whereé := # {i | c[i] = * }.

Proof: Sincec. = 0, |c.Ac| = || = 2°. The formula of
d(ce, c) is obtained by dividin@® by | X, | = 2™. |

We prove the following four lemmas for the proof of The-
orem 33 which shows the optimal teaching errondf, .

Lemma 29. Let S = {(1", 1)} U {(ul™ %+ 0) | u €
{0, 1}+-1}.
2n7k+1

2'IL

Proof: We can identify CONS{(1",1)}, M,,) with M}.
Thus, by Lemma 8,

CONSS, M,,) = {1* 1y | u € {1,%}"FH1],

Let € := #{i|c[i] = *} such thate € CONSS, M,,).
Sincee < n — k + 1, we obtain

TE(ce, My, §) =

2n—k+1
2n

26

TE(ce, Mo, 8) = =

max
e<n—k+1

Lemma 30. For any integerk € [4, n],

VS € OptTS.(ce, My,), I(z,b) € S, b=1.
Proof: Suppose that
3S € OptTS,(ce, My,), V(x,b) € S, b=0.

Since|S| < k + 1, from Lemma 17,
Jdec € CONSS, M,,), war(c) = [log(k + 1)].

For the concept, we have a lower bound @ptTS, (c., M,,)
as
on—[log(k+1)]

2n
However, we have an upper bound @ptTS, (c., M,,) in
Lemma 29 as

OptTS.(ce, M) > d(ce, €)

2n7k+1
27L
sincek > 4. This is a contradiction.

on—[log(k+1)]
m ’

OptTS (ce, My) <
]

Lemma 31. For any setS of examples with CONS, M,,) #
0,

2n—k+1
on

Az,1) e S = TEc., M,,S)>

wherek := |S].

Proof: We can identiffCONS{(x, 1)}, M,,) with M. Let
S™ = {(«',b) € S| b= 0}. Obviously|S~| < k. From
Lemma 9,

Jc € CONSS, M,,),

Let? := var(c). Sincel <k —1 <k,
2n7€
27L

var(c) < k,

2n7k+1

TE(¢ce, My, S) > d(ce,c) > 5




Lemma 32. For anyk € [1,TD(M,,) — 1],
2n—k

(k <2),
2TL
2n7k+1
OPITE (ce, Mn) =4 =r—  (2<k <n),

Proof: We first consider the case < k. Since we can
specify a concepl™ with only n + 1 examples by using
Sy (¢ = n) in Theorem 15, we obtain an upper bound of
OptTE, (¢c., M,,) as
OptTE, (c., My,) < TE(ce, My, S¢) = d(c.,1™) = TR
Since we cannot specify, with less thar2™ examples, we
obtain an lower bound dptTE, (c., M,,) as
1 0
OptTE, (ce, M,,) > on > on
Therefore, we obtain the formula far< k.
Next we consider the case < k£ < n. For anysS €

1

Theorem 33. Foranyk € [1, TD(M,,) — 1],

2n—k+1 -1
—— (k<2),
n—k+1
OptTE, (M,,) = { 2 o (2 <k<n),
1
Proof: The formula is obtained by taking the worst case in
Lemma 23 and Lemma 32. |

Theorem 34. The concept clasaA,, of monomials is not
optimally incrementally teachable.

Proof: The conceptl™ is also not optimally incrementally
teachable with respect to1,,. |

Finally, we consider some properties about each concept
in M,,.

The next theorem shows that the concept which is
the most easy to teach in the classical model, can be the most
difficult to teach in our model. Atthe same time, the theorem

OptTS, (ce, My), S has a positive example by using Lemma 3G oy that the empty concept which is the most difficult

Thus, we obtain a lower bound &ptTE,(c., M,,) from
Lemma 31,
n—k+1
OptTEk(Cea Mn) > on
By using the sel of examples in Lemma 29, we obtain an
upper bound 0OptTE, (c., M.,,),

2n—k+1
OptTE, (¢e, M,,) < TE(ce, My, S) = o

Therefore, we obtain the formula far< k& < n.

We now consider the case = 3. For any setS €
OptTS(ce, My,), if S does not contain a positive example,
then we obtain a lower bound @iptTE;(c., M,,) by using
Lemma 17,

2n—[log 4 on—2

OPHTE (ce, M) = 57— = 5

We obtain the formula fok = 3 by using the same argument
ford <k <n.

Moreover, we consider the case= 2. Let us consider
the setS; := {(1",0),(0™,0)} of examples. The set,
gives an upper bound @ptTE,(c., M,,) as

2n—2
OPtTE,(ce, My,) < TE(ce, My, S2) = d(ce, 105" 72) = T

For anyS € OptTS(c., M,,), S does not contain a positive
example, because B contains a positive example then a
lower bound ofTE(c,, M,,, S) calculated by Lemma 31 is

greater than the upper bound. By using Lemma 17, we obtain

a lower bound oDptTE,(c., M,,) as

on—[log 3]
OPITE (c0, M) > 2" >

Therefore, we obtain the formula far= 2.

Finally we consider the cage= 1. LetS; := {(1™,0)}.
We obtain the formula fok = 1 by using the same argument
for k = 2 with regard toS}.

2n—2
on

The next theorem shows the optimal teaching error of the

concept clasgvt,, of monomials.

to teach in the classical model, can be relatively easy to teach
in our model.

Theorem 35. For any concept € M,, — {x"},
OptTE (¢, M,,) < OptTE (+", M,,).

Proof: OptTE (+™, M,,) is obtained in the case = 1 in
Lemma 23. For any concept e M, — {x"}, an upper
bounds ofOptTE (¢, M,,) is calculated by Lemma 20 and
Lemma 32. |

The next theorem shows that when the numbef ex-
amples is restricted té < k < 2"~1, the teacher must use
inconsistent examples faptimally incrementallyteaching
M,,. ltshould be noted that the theorem derives Theorem 3
and Theorem 4. The natural concept clads also has the
same properties as the simple self-made concept classes used
in the proofs of those theorems.

Theorem 36. For any integerk € 4,271 — 1],
VS € OptTS.(ce, My), ce ¢ CONJS, M,,).
Proof: When4 < k < n, itis clear from Lemma 30.
For the case + 1 < k < 2"~! — 1, we suppose that
35 € OptTS.(ce, Myp), ce € CONJS, M,,).

Sincec. € CONSS, M,,), S contains negative examples
only. Obviously|S| < k + 1. From Lemma 17,

de,, € CONSS, M,,),  wvar(cx) = [log(k +1)].
Therefore, we obtain a lower bound©ptTE, (c., M,,) as
on— [log(k+1)] )
- >

27L - 2TL
However, the seb, (¢ = n) in Theorem 15 can specify a

)
conceptc’ with var(c’) = n, that is, we obtain an upper
bound ofOptTE, (c., M,,) as

OptTEc(CeaMn) > d(Ce, Ck) >

1

27.
This is a contradiction. [ |

n)
OptTE, (ce, M,,) = TE(ce, My, Se) = d(ce, ') =



Table 3: Summary. The last two rowg) @re newly proved
in this paper.

¢ | Mi | M| Moy
TD(C) n n+1 2"
Teachability| True True False

. N 1y
OptTE, (C)T : Zn_ Sk 2+n — 271;:&1 (2<k<n)

2% (n < k)

Optimally True False False
Incremental
Teachability)

5 Conclusions

In this paper, we studied the complexity of teaching in the
situation that the number of examples is restricted. We for-
mulated a new model of teaching. In our model, we measure
the complexity of a concept class by its teaching error to a

[BZ06]

[GK95]

[Gol67]

[Han07]

[Heg95]

target concept in the worst case. We say that a concept class

is optimally incrementally teachable if the teacher can opti-
mally teach it to the learner whenever teaching is terminated.

Table 3 summarizes the new results together with the pre-
viously known results in terms of the three concept classes
of monotone monomial#;}, monomials without the empty
conceptM’,, and monomials\,,. TD(C) means the teach-
ing dimension of a concept clags andOptTE,(C) means
the optimal teaching error of a concept cl@sky at mostk
examples in our model. The table indicates @atTE, (C)
becomes greater &D(C) becomes greater, regardless of a
restrictionk. However, the boundary of optimally incremen-
tal teachability is different from that of polynomial teach-
ability in the classical model. It should be noted that the
boundary lies on natural concept classes that are well known
and studied in computational learning theory.

Focusing on each concept.iv,,, we showed that some

[JT92]

[LSWO7]

[Mat97]

[SM91]

[Valg4]

concepts are easy to teach in our new model although they

are difficult to teach in the classical model, and vice versa. [ZLHZ08]

We also showed that the teacher neditlies (i.e. use incon-
sistent examples) to teach the empty conceptip in or-
der to avoid a serious misunderstanding in short words. This

result corresponds to the heuristics that when humans teach

something within a time limit, they should over-simplify it
by ignoring a few exceptions.

Finally, we suggest the following open problems. Are
there two natural concept classés and C, such that for
some integek, OptTE,(C1) < OptTE,(C;) despiteTD(Cy) >
TD(C2)? What if the model is extended to infinite instance
spaces and allows all other distributions? What if we con-
sider the situation that the number of examples is restricted
in PAC model? How does the model relate to the other mod-
els?
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