
Strongly Non-U-Shaped Learning Results by General
Techniques

John Case
Department of Computer and Information Sciences,

University of Delaware, Newark, DE 19716-2586, USA.
case@cis.udel.edu

Timo Kötzing∗

Max-Planck Institute for Informatics, 66123 Saarbrücken, Germany
koetzing@mpi-inf.mpg.de

Abstract

In learning, a semantic or behavioral U-shape occurs when a learner �rst learns, then
unlearns, and, �nally, relearns, some target concept (on the way to success). Within the
framework of Inductive Inference, previous results have shown, for example, that such U-
shapes are unnecessary for explanatory learning, but are necessary for behaviorally correct
and non-trivial vacillatory learning. Herein we focus more on syntactic U-shapes.

This paper introduces two general techniques and applies them especially to syntactic U-
shapes in learning: one technique to show when they are necessary and one to show when
they are unnecessary. The technique for the former is very general and applicable to a much
wider range of learning criteria. It employs so-called self-learning classes of languages which
are shown to characterize completely one criterion learning more than another.

We apply these techniques to show that, for set-driven and partially set-driven learning, any
kind of U-shapes are unnecessary. Furthermore, we show that U-shapes are not unnecessary
in a strong way for iterative learning, contrasting an earlier result by Case and Moelius
that semantic U-shapes are unnecessary for iterative learning.

1 Introduction

In Section 1.1 we explain U-shaped learning. In Section 1.2 we brie�y discuss the general techniques
of the present paper and summarize in Section 1.3 our applications of these techniques regarding
the necessity of U-shaped learning.

1.1 U-Shaped Learning

U-shaped learning occurs when a learner �rst learns a correct behavior, then abandons that correct
behavior and �nally returns to it once again. This pattern of learning has been observed by cognitive
and developmental psychologists in a variety of child development phenomena, such as language
learning [SS82], understanding of temperature [SS82], weight conservation [SS82], object permanence
[SS82] and face recognition [Car82]. The case of language acquisition is paradigmatic. For example, a
child �rst uses spoke, the correct past tense of the irregular verb speak. Then the child overregularizes
incorrectly using speaked. Lastly the child returns to using spoke. The language acquisition case of
U-shaped learning behavior has �gured prominently in cognitive science [MPU+92, TA02].

While the prior cognitive science literature on U-shaped learning was typically concerned with
modeling how humans achieve U-shaped behavior, [BCM+08, CCJS07] are motivated by the ques-
tion of why humans exhibit this seemingly ine�cient behavior. Is it a mere harmless evolutionary
ine�ciency or is it necessary for full human learning power? A technically answerable version of this
question is: are there some formal learning tasks for which U-shaped behavior is logically necessary?
We �rst need to describe some formal criteria of successful learning.

An algorithmic learning function h is, in e�ect, fed an in�nite sequence consisting of the elements
of a (formal) language L in arbitrary order with possibly some pause symbols # in between elements.

∗Timo Kötzing was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant no. NE
1182/5-1.

During this process h outputs a corresponding sequence p(0), p(1), . . . of hypotheses (grammars)
which may generate the language L to be learned. A fundamental criterion of successful learning
of a language is called explanatory learning (TxtEx-learning) and was introduced by Gold [Gol67].
Explanatory learning requires that the learner's output conjectures stabilize in the limit to a single
conjecture (grammar/program, description/explanation) that generates the input language. Behav-
iorally correct learning [CL82, OW82] requires, for successful learning, only convergence in the limit
to possibly in�nitely many syntactically distinct but correct conjectures. Another interesting class
of criteria features vacillatory learning [Cas99, JORS99]. This paradigm involves learning criteria
which allow the learner to vacillate in the limit between at most some bounded, �nite number of
syntactically distinct but correct conjectures. For each criterion that we consider above (and be-
low), a non-U-shaped learner is naturally modeled as a learner that never semantically returns to a
previously abandoned correct conjecture on languages it learns according to that criterion.

[BCM+08] showed that every TxtEx-learnable class of languages is TxtEx-learnable by a non-
U-shaped learner, that is, for TxtEx-learnability, U-shaped learning is not necessary. Furthermore,
based on a proof in [FJO94], [BCM+08] noted that, by contrast, for behaviorally correct learning
[CL82, OW82], U-shaped learning is necessary for full learning power. In [CCJS07] it is shown that,
for non-trivial vacillatory learning, U-shaped learning is again necessary (for full learning power).
Thus, in many contexts, seemingly ine�cient U-shaped learning can actually increase one's learning
power.

What turns out to be a variant of non-U-shaped learning is strongly non-U-shaped learning es-
sentially de�ned in [Wie91],1 where the learner is required never to syntactically abandon a correct
conjecture on languages it learns according to that criterion. Clearly, strong non-U-shaped learnabil-
ity implies non-U-shaped learnability.2 In our experience, for theoretical purposes, it is frequently
easier to show non-U-shaped learnability by showing strong non-U-shaped learnability. Herein we
especially study strong non-U-shaped learnability.

1.2 Presented Techniques

The present paper presents two general techniques to tackle problems regarding U-shaped learning.
The �rst general technique can be used to show the necessity of U-shapes and employs so-called

self-learning classes of languages. These are explained in Section 3 below. These self-learning
classes of languages provide a general way for �nding classes of languages that separate two learning
criteria, i.e., they give a general way of �nding an example class of languages learnable with a given
learning criterion, but not with another. Theorem 3.6 implies that its presented self-learning classes
necessarily separate two learnability sets � if any class does. This technique is not specialized only
to analyze U-shaped learning, but can be applied to other learning criteria as well. The technique
is developed and discussed further in Section 3.

The second general technique is used to show that U-shapes are unnecessary and is phrased in
terms of su�cient conditions for the non-U-shaped learnability of classes of languages. Section 4's
Theorems 4.8 and 4.9 provide these su�cient conditions, each for a di�erent kind of U-shapes.
Theorem 4.8 actually characterizes strong non-U-shaped learnability.

1.3 Applications of General Techniques

A learning machine is set-driven [WC80, SR84, Ful90, JORS99] (respectively, partially set-driven
[SR84, Ful90, JORS99]) i�, at any time, its output conjecture depends only on the set of numerical
data it has seen (respectively, set and data-sequence length), not on the order of that data's pre-
sentation.3 Child language learning may be insensitive to the order or timing of data presentation;
set-drivenness and partial set-drivenness provide two local notions of such insensitivity [Cas99]. It
is interesting, then, to see the interaction of these notions with forbidding U-shapes of one kind
or another. As we shall see in Section 5, Theorems 5.1 and 5.2, proved with the aid of a general
technique from Section 4, imply, for these local data order insensitivity notions, for TxtEx-learning,
U-shapes, even in the strong sense are unnecessary.

1Wiehagen actually used the term semantically �nite in place of strongly non-U-shaped. However, there
is a clear connection between this notion and that of non-U-shapedness. Our choice of terminology is meant
to expose this connection. See also [CM08a].

2For non-U-shaped learning, the learner (on the way to success) must not semantically abandon a correct
conjecture. In general, semantic change of conjecture is not algorithmically detectable, but syntactic change
is. However, in the cognitive science lab we can many times see a behavioral/semantic change, but it is
beyond the current state of the art to see, for example, grammars in people's heads � so we can't yet see
mere syntactic changes in people's heads.

3Note that partially set-driven learning is also known as rearrangement independent learning.

An iterative learner outputs its conjectures only on the basis of its immediately prior conjecture (if
any) and its current datum. As we shall see in Section 5, iterative learning provides a (�rst) example
of a setting in which non-U-shaped and strongly non-U-shaped learning are extensionally distinct:
[CM08b] shows semantic U-shapes to be unnecessary in iterative learning, while Theorem 5.4 in the
present paper implies that they are not strongly unnecessary. To prove this latter result, we actually
employ a self-learning class of languages that is a bit easier to work with than the relevant one from
Theorem 3.6 � although the latter must work too (by Theorems 3.6 and 5.4).4

Some of our proofs involve subtle in�nitary program self-reference arguments employing (variants
of) the Operator Recursion Theorem (ORT) from [Cas74, Cas94, JORS99].

1.4 Open Problems

Some problems regarding the necessity of U-shapes of one kind or another still remain open. An
iterative with counter learner is an iterative learner which, in making its conjectures, also has access
to the data-sequence length of the set of numerical data so far. For example, it is still open whether
semantic U-shapes are necessary for iterative with counter learning � as asked in [CM08b]. If so,
then the relevant self-learning class from Theorem 3.6 below must provide a separation.

See the end of Section 5 for some more open problems regarding the necessity of any one of the
two kinds of U-shapes for learning criteria of the present paper.

2 Mathematical Preliminaries

Unintroduced computability-theoretic notions follow [Rog67].
Strings herein are �nite and over the alphabet {0, 1}. {0, 1}∗ denotes the set of all such strings;

ε denotes the empty string.
N denotes the set of natural numbers, {0, 1, 2, . . .}. We do not distinguish between natural

numbers and their dyadic representations as strings.5

We �x the 1-1 and onto pairing function 〈·, ·〉 : N×N→ N from [RC94, Section 2.3]. In particular,
for all x, y,

〈x, y〉 =

m∑
k=0

xk22k+1 +

n∑
k=0

yk22k, (1)

where x =
∑m
k=0 xk2k, y =

∑n
k=0 yk2k and x0, . . . , xm, y0, . . . , yn ∈ {0, 1}. The binary representa-

tion of 〈x, y〉 is an interleaving of the binary representations of x and y, where we alternate x's and
y's digits and start on the right with the least most signi�cant y digit. For example, 〈15, 2〉 = 94,
since 15 = 1111 (binary), 2 = 0010 (binary), and 94 = 10101110 (binary). De�ne π1 and π2 to be
the functions such that, for all x and y,

π1(〈x, y〉) = x; (2)

π2(〈x, y〉) = y. (3)

π1 and π2 are, respectively, called the �rst and second projection functions.
The symbols ⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, superset and proper su-

perset relation between sets.
For sets A,B, we let A \B = {a ∈ A | a 6∈ B}.
The quanti�er ∀∞x means �for all but �nitely many x�, the quanti�er ∃∞x means �for in�nitely

many x�. For any set A, card(A) denotes the cardinality of A.
P and R denote, respectively, the set of all partial and of all total functions N→ N. With dom

and range we denote, respectively, domain and range of a given function.
We sometimes denote a partial function f of n > 0 arguments x1, . . . , xn in lambda notation (as

in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with c ∈ N, λx c is the constantly c function of
one argument.

Whenever we consider tuples of natural numbers as input to f ∈ P, it is understood that the
general coding function 〈·, ·〉 is used to (left-associatively) code the tuples into a single natural
number.

If f ∈ P is not de�ned for some argument x, then we denote this fact by f(x)↑, and we say that
f on x diverges; the opposite is denoted by f(x)↓, and we say that f on x converges. If f on x
converges to p, then we denote this fact by f(x)↓ = p.

4Some recent papers [CK08, CK10] have also employed (di�erent) self-learning classes for separations.
5The dyadic representation of a natural number x = the x-th �nite string over {0, 1} in length-

lexicographical order, where the counting of strings starts with zero [RC94]. Hence, unlike with binary
representation, lead zeros matter.

We say that f ∈ P converges to p i� ∃x0 : ∀x ≥ x0 : f(x)↓ ∈ {?, p}; we write f → p to denote
this.6

Computability Notions
We let P and R, respectively, denote the set of all partial computable and all total computable

functions from N to N; let ϕ0, ϕ1, . . . be any acceptable programming system (numbering) of P
[Rog67]. ϕp is the element of P computed by the program in this system with numerical name p.
Via numerical naming all general purpose real world programming systems are acceptable.

A set L ⊆ N is computably enumerable (ce) i� it is the domain of a partial computable function.
Let E denote the set of all ce sets. We let W be the mapping such that ∀e : W (e) = dom(ϕe). For
each e, we write We instead of W (e). W is, then, a mapping from N onto E . We say that e is an
index, or program, (in W) for We. These programs e constitute a hypothesis space for learning in
the present paper.

In this paper, a computable operator is a mapping from any one (respectively, two) partial
function(s) N → N into one such partial function such that there exists an algorithm which, when
fed any enumeration(s) of the graph(s) of the input(s), it outputs some enumeration of the graph
of the output. Rogers [Rog67] extensively treats the one-ary case of these operators and calls them
recursive operators.

A �nite sequence is a mapping with a �nite initial segment of N as domain (and range, ⊆ N).
∅ denotes the empty sequence (and, also, the empty set). The set of all �nite sequences is denoted
by Seq. For any given set A ⊆ N, the set of all �nite sequences of elements in A is denoted with
Seq(A). For each �nite sequence σ, we will denote the �rst element, if any, of that sequence by σ(0),
the second, if any, by σ(1) and so on. #elets(σ) denotes the number of elements in a �nite sequence
σ, that is, the cardinality of its domain.

Following [LV08], we de�ne for all x ∈ N: x = 1size(x)0x. Using this notation we can de�ne
a function 〈·〉Seq coding arbitrarily long �nite sequences of natural numbers into N (represented
dyadically) such that

〈σ〉Seq = σ(0) . . . σ(#elets(σ)− 1). (4)

In particular, 〈∅〉Seq = ε.
For example the �nite sequence (4, 7, 10)decimal = (01, 000, 011)dyadic is coded as

11 0 01 111 0 000 111 0 011 (but without the spaces, which were added for ease of reading).7

We use � (with in�x notation) to denote concatenation on sequences. With a slight abuse of
notation, for a sequence σ and a natural number x, we let σ �x denote the sequence that starts with
the sequence σ and then ends with x.

For any �nite sequence σ such that #elets(σ) > 0, we let last(σ) be the last element of σ and
σ− be σ with its last element deleted. By convention, we set ∅− = ∅.

Obviously, 〈·〉Seq is 1-1 [LV08].
Henceforth, we will many times identify a �nite sequence σ with its code number 〈σ〉Seq. However,

when we employ expressions such as σ(x), σ = f and σ ⊂ f , we consider σ as a sequence, not as a
number.

For a partial function f ∈ P and i ∈ N, if ∀j < i : f(j)↓, then f [i] is de�ned to be the �nite
sequence f(0), . . . , f(i− 1).

We �x the following 1-1 coding for all �nite subsets of N. For each non-empty �nite set D =
{x0 < . . . < xn}, 〈x0, . . . , xn〉Seq is the code for D and 〈〉Seq is the code for ∅.

Henceforth, we will many times identify a �nite set D with its code number. However, when we
employ expressions such as x ∈ D, card(D), max(D) and D ⊂ D′, we consider D and D′ as sets,
not as numbers.

The symbol # is pronounced pause and is used to symbolize �no new input data� in a text. For
each (possibly in�nite) sequence q, let content(q) = (range(q) \ {#}).

Later, we will type in�nite sequences as being in R, but, technically, texts (for languages ⊆ N)
are in�nite sequences, but they may contain pauses (#s) which are not natural numbers. Also, �nite
initial segments of texts are example �nite sequences which can contain pauses. In our coding above
of �nite sequences, we code only sequences of natural numbers (and not pauses). To get around this,
we will assume from now on that N∪ {#} is e�ciently coded 1-1 onto N, say, by coding # as 0 and
n ∈ N as (n+ 1). In this way texts can be thought of as ∈ R and �nite initial segments of texts can,
then, be coded as sequences of natural numbers. However, for texts T and for �nite initial segments

6f(x) converges should not be confused with f converges to.
71100111100001110011 is of course the dyadic representation of some number ∈ N.

of such T , we will, whenever we need to talk about the value of T (m), ignore the coding and work,
for example, with whether the actual (not coded) values of T (m) = # or = n ∈ N. This ignoring of
the coding will be useful from time to time.

From now on, by convention, f , g and h with or without decoration range over (partial)
functions N → N; x, y with or without decorations range over N; σ, τ with or without decorations
range over �nite sequences of natural numbers; D with or without decorations ranges over �nite
subsets of N.

We will make use of a padded variant of the s-m-n Theorem [Rog67]. Intuitively, s-m-n permits
algorithmic storage of arbitrary data (and, hence, programs) inside any program. The suitable
padded variant of s-m-n we use herein states that there is a strictly monotonic increasing total
computable function s such that

∀a, b, c : ϕs(a,b)(c) = ϕa(b, c). (5)

In (5), ϕ-program s(a, b) is essentially ϕ-program a with datum b stored inside. We will also use
a suitably padded version of Case's Operator Recursion Theorem (ORT), providing in�nitary self
(and other) reference [Cas74, Cas94, JORS99]. ORT itself states that, for all computable operators
Θ : P→ P,

∃e ∈ R∀a, b : ϕe(a)(b) = Θ(e)(a, b). (6)

In the padded version we employ, the function e will also be strictly monotone increasing.

2.1 Computability-Theoretic Learning

In this section we formally de�ne several criteria for computability-theoretic learning.
A language is a ce set L ⊆ N. Any total function T : N → N ∪ {#} is called a text. For any

given language L, a text for L is a text T such that content(T) = L. With Txt(L) we denote the
set of all texts for L.

A sequence generating operator is a computable operator β taking as arguments a function h
(the learner) and a text T and that outputs a function p. We call p the learning sequence of h given
T .

Intuitively, β de�nes how a learner can interact with a given text to produce a sequence of
conjectures.

We de�ne the sequence generating operators G, Psd, Sd, ItCtr and It as follows. G, Psd,
Sd, ItCtr and It, respectively, stand for Gold [Gol67], partially set-driven [SR84, Ful85, Ful90,
JORS99], set-driven [WC80, JORS99] iterative with counter [CM08b] and iterative [WC80, Wie76],
respectively. For all h, T, i,

G(h, T)(i) = h(T [i]);

Psd(h, T)(i) = h(content(T [i]), i);

Sd(h, T)(i) = h(content(T [i]));

ItCtr(h, T)(i) =

{
?, if i = 0;

h(ItCtr(h, T)(i− 1), T (i− 1), i− 1), otherwise;

It(h, T)(i) =

{
?, if i = 0;

h(It(h, T)(i− 1), T (i− 1)), otherwise.

Successful learning might require the learner to observe certain restrictions, for example non-U-
shapedness. These restrictions are formalized in our next de�nition.

A learning restriction is a predicate on a learner and a language, parameterized with a sequence
generating operator. We write the parameter as a subscript and give the following examples.

• No restriction: The constantly true predicate of the appropriate type T.

• Total Learner: ∀β, h, L : Rβ(h, L)⇔ h ∈ R.
• Non-U-shaped: ∀β, h, L : NUβ(h, L) ⇔ [∀T ∈ Txt(L),∀i : (Wβ(h,T)(i) = L ⇒ Wβ(h,T)(i+1) =
Wβ(h,T)(i))].

• Strongly non-U-shaped: ∀β, h, L : SNUβ(h, L) ⇔ [∀T ∈ Txt(L)∀i : (Wβ(h,T)(i) = L ⇒
β(h, T)(i+ 1) = β(h, T)(i))].

We combine any two learning restrictions by intersecting them, and we denote this combination by
juxtaposition.

In order to motivate and de�ne another group of learning restrictions, we now de�ne the concept
of a stabilizer sequence (called �stabilizer segment� in [Ful90]).

Let β be a sequence generating operator. Let L be a language and h ∈ P a learner. A sequence
σ ∈ Seq(L) is said to be a β-stabilizer sequence of h on L i�

(∀T ∈ Txt(L)|σ ⊆ T)∀i ≥ #elets(σ) : β(h, T)(#elets(σ)) = β(h, T)(i); (7)

Intuitively, a stabilizer sequence σ of h on L is a sequence of elements from L such that h on any
text extending σ will never make a change of conjecture after having seen σ.

It is well known that, if a learner h TxtEx-learns a language L, then there is a stabilizer sequence
of h on L (see [JORS99]). However, texts don't necessarily contain such a sequence as an initial
segment. Below, we de�ne a learning restriction that requires a learner and a language to have
stabilizer sequences as initial sequences of all texts for the language.

• Stabilizing: ∀β, h, L:

Stabβ(h, L)⇔ [∀T ∈ Txt(L)∃i0 : T [i0] is a β-stabilizer sequence of h on L].

Let β be sequence generating operator. For a learner h and a language L, we de�ne a β-sink of
h on L to be a conjecture e such that

∀T ∈ Txt(L)∀i0 : [β(h, T)(i0) = e⇒ (∀i ≥ i0)(β(h, T)(i) = e)]. (8)

Intuitively, a sink is a conjecture never abandoned on texts for L.
We specialize the concept of a stabilizer sequence to a sink-stabilizer sequence. This will be

technically helpful for some of our results.

• Sink-stabilizing: ∀β, h, L:

Sinkβ(h, L)⇔ [∀T ∈ Txt(L)∃e : (β(h, T)→ e ∧ e is a β-sink of h on L)].

Clearly, for all β, h, L, Sinkβ(h, L) implies Stabβ(h, L). Sink-stabilizing is of interest, as we show
a characterization theorem (Theorem 4.8 below) of strong non-U-shaped learning in terms of sink-
stabilizing learning.

In order to obtain at least a su�cient condition for (not necessarily strongly) non-U-shaped
learning, we weaken the concept of a sink as follows. For now, let f ∈ P. An f -weak β-sink of h on
L is a conjecture e such that

∀T ∈ Txt(L)∀i0 : [β(h, T)(i0) = e⇒ (∀i ≥ i0)(f(β(h, T)(i), e) = 1)]. (9)

We would like to employ for f above f0 = λe, e′ We = We′ , in order to capture the notion of a
�never semantically abandoned conjecture;� however, this function is not computable. Instead, we
will use functions �approximating� f0: Let

F = {f ∈ R | ∀e, e′ : (f(e, e′) = 1⇒We = We′)}.8 (10)

For all f ∈ F , we de�ne the following learning restriction.

• f -weak β-sink-stabilizing: ∀β, h, L:

Weaksinkfβ(h, L)⇔ [∀T ∈ Txt(L)∃e : (β(h, T)→ e ∧ e is an f -weak β-sink of h on L].

We are now ready to give some formal de�nitions for successful learning.

De�nition 2.1.

• For this paper, a learning criterion is a pair (α, β) such that α is a learning restriction and β a
sequence generating operator. We also write αTxtβEx to denote the learning criterion (α, β).
• Let (α, β) be a learning criterion and h a learner. We say that h αTxtβEx-learns a language
L i� αβ(h, L) and, for all texts T for L, β(h, T) is total and there is e with β(h, T) → e and
We = L.
• We denote the class of all languages αTxtβEx-learned by h with αTxtβEx(h). Abusing
notation, we use αTxtβEx to denote the set of all classes of languages αTxtβEx-learnable by
some learner (as well as the learning criterion).

8Intuitively, all f ∈ F only output 1 if the inputs are semantically equivalent.

• We omit α if α = T.

We let

The30 =
{(α, β) | α ∈ {T,NU,SNU,Sink,Stab}, β ∈ {G,Psd,Sd, ItCtr, It}} ∪
{
⋃
f∈F (Weaksinkf , β) | β ∈ {G,Psd,Sd, ItCtr, It}}. (11)

This is a set of thirty particular learning criteria especially considered in this paper.
As noted above in Section 1.2, Theorem 3.6 below applies to learning criteria separations well

beyond our concerns in the present paper with showing U-shapes do (or don't) make a di�erence in
learning power. In particular we will see that Theorem 3.6 applies to all pairs of learning criteria
from The30. Indirectly in Section 4 and directly in Section 5, though, we are mainly concerned with
pairs of criteria (I0, I1), with each criterion from The30, where I0 = SNUI1 (or I0 = NUI1).
Starred Learners
For a learner h, possibly learning with restricted access to past data, we write h∗(σ) for what the
current output of h is after being fed the sequence σ of data items.

In particular, for h ∈ P and σ a sequence, we have the following.

• If h is a set-driven learner:
h∗(σ) = h(content(σ)). (12)

• If h is a partially set-driven learner:

h∗(σ) = h(content(σ),#elets(σ)). (13)

3 Self-Learning Classes of Languages for Separations

In this section we discuss a way of showing U-shapes to be necessary. Formally, this is done via
showing that a learnability class separates from its non-U-shaped variant.

The approach described below is very general and can be applied to show separation results in
many other areas of computability-theoretic learning in the limit as well.

The key idea is that of self-learning classes of languages. In the previous literature, self-describing
classes of languages have been used.9 A particularly simple example class of self-describing languages,
taken from [CL82, Theorem 1], is

L0 = {L recursive | L 6= ∅ ∧ WminL = L}. (14)

Intuitively, each L ∈ L0 gives a complete description of itself, encoded (as a W -index) within only
�nitely many (in fact, one) of its elements. It is well-known, using standard computability theoretic
arguments, that these kind of classes of languages are very big (for example, L0 contains a �nite
variant of any given ce language, which can easily be seen using Kleene's Recursion Theorem).

Many variants of self-describing classes of languages have been used for separation results within
computability-theoretic learning (see, for example, [BB75, CL82, CS83, Cas99, JORS99]). Showing
a separation with a complicated self-describing class of languages sometimes requires a non-trivial
learner (see, for extreme examples, [CJLZ99]).

We now take the technique of self-describing one step further. A self-learning class of languages
is such that each element of each language of the class provides instructions for what to compute
and output as a new hypothesis. Thus, all a learner needs to do is to execute the instructions given
by its latest datum. For example, an informal10 learner h1 can be de�ned such that

∀σ, x : h1(σ � x) = ϕx(σ � x). (15)

Intuitively, h1 interprets the latest datum as a program in the ϕ-system and runs this program on all
known data. Variants of this h1 can be de�ned to obtain learners with special additional properties,
such as totality or set-drivenness (see Theorem 3.6).

In practice, the general scheme is as follows. Suppose we want to show, for two learning criteria
I0 and I1, I1 \I0 6= ∅. Then, we de�ne a simple learner, for example h1 above, and let L1 be the class
of all languages I1-learned by h1. All that would remain to be shown is that L1 is not I0-learnable,
which can often be done using ORT.

9See [JORS99]. In there, the term �self-describing� was used on page 71 in the context of function learning
and extended on page 97 to language learning.

10Note that we ignore the possible input of x = #.

Below, in Theorem 3.6, we give a very general result regarding some self-learning classes of
languages guaranteed to witness separations when they exist. In order to do so, we proceed next by
making some formal de�nitions.

For a function e ∈ P and a language L, we let e(L) = {e(x) | x ∈ L}; for a class of languages L,
we let e(L) = {e(L) | L ∈ L}.

Let Pc1-1 ⊆ P (repectively, Rc1-1 ⊆ R), denote the set of all 1-1 partial (respectively, total)
computable functions with computable domain and range.

De�nition 3.1. A learning criterion I is called computably Pc1-1-robust i� there is a computable
operator Θ : P2 → P such that

∀h ∈ P,∀e ∈ Pc1-1 : e(I(h)) ⊆ I(Θ(h, e)). (16)

Intuitively, if a learner h learns languages L, then Θ(h, e) learns e(L).

Remark 3.2. Let I be computably Pc1-1-robust. Then we have

∀e ∈ Pc1-1,∀L ⊆ E : L ∈ I ⇔ e(L) ∈ I.

Remark 3.3. Let (α, β) ∈ The30. Then (α, β) is computably Pc1-1-robust.

De�nition 3.4. Let I = (α, β) be a learning criterion. We call I data normal i�, for all p0 such

that Wp0 = ∅, there is a computable operator Θ̂ : P→ P such that

I(h) ⊆ I(Θ̂(h)) (17)

and (a) � (d) below.

(a) There is fβ ∈ R such that

∀h, T,∀i > 0 : β(h, T)(i) = h(fβ(T [i], β(h, T)[i])).11 (18)

(b) There is a function dβ ∈ R such that

∀T ∈ Txt, i ∈ N : β(Θ̂(h), T)[i]↓ ⇒

dβ(fβ(T [i], β(Θ̂(h), T)[i])) ∈
{
{#} if content(T [i]) = ∅;
content(T [i]), otherwise.12

(19)

(c) For all h ∈ P,
∀σ, τ : dβ(fβ(σ, τ)) = #⇒ Θ̂(h)(fβ(σ, τ)) = p0.

13 (20)

(d) For all h, h′ ∈ P,
[∀L ∈ I(h)∀T ∈ Txt(L) : β(h, T) = β(h′, T)]⇒ I(h) ⊆ I(h′).14 (21)

Remark 3.5. Let (α, β) ∈ The30. Then (α, β) is data normal.

Next (Theorem 3.6) is the main result of this section, giving su�cient conditions for when a
separation will necessarily be witnessed by a speci�c self-learning class of languages. As a corollary,
we get that for each pair of learning criteria from The30, any separations are witnessed by such
classes! In this sense, self-learning classes of languages capture the essence of separations (when
they exist). Note that the proof of the theorem would simplify a lot, were one to suppose somewhat
stronger properties of the learning criteria, in particular, excluding the use of It and ItCtr as
sequence generating operators. Theorem 3.6 can be modi�ed to cover other kinds of criteria, for
example, those pertaining to learnability by total learners. In a future paper, we will analyze self
learning-classes in more depth and will provide further theorems like Theorem 3.6.

11Intuitively, the i-th conjecture of h on T depends only on some information (as speci�ed by fβ) about
the �rst i datapoints and conjectures.

12Intuitively, from the information given by fβ , a datum (if any) that this datum is based on can be
extracted.

13Intuitively, constantly outputting one and the same index for the empty language is a viable strategy as
long as no numerical data has been presented.

14Intuitively, changing a learner on inputs that do not present data from a language learned does not harm
learnability.

Theorem 3.6. Learning criteria are as in De�nition 2.1. Let I0 and I1 be computably Pc1-1-robust
learning criteria. Suppose I1 is data normal as witnessed by f1 and d1. Let p0 be such that Wp0 = ∅
and h1 be such that

∀x : h1(x) =

{
p0, if d1(x) = #;

ϕd1(x)(x), otherwise.
(22)

Further, let L1 = I1(h1). Then we have

I1 \ I0 6= ∅ ⇔ L1 6∈ I0.

Proof. The implication �⇐� is obvious. Regarding �⇒�, let L ∈ I1 as witnessed by h and suppose
L 6∈ I0. Let Θ be as given by I1 being computably Pc1-1-robust. Let Θ̂ be as given by I1 being data
normal. By padded ORT, there is a strictly monotone increasing e ∈ R such that

∀x, y : ϕe(x)(y) = (Θ̂ ◦Θ)(h, e)(y). (23)

As e ∈ Pc1-1 and I0 is computably Pc1-1-robust, we have, from Remark 3.2 with I0 in the place
of I, e(L) 6∈ I0. It now su�ces to show e(L) ⊆ L1, as this would imply L1 6∈ I0 as desired.

Suppose I1 = (α1, β1). Let L ∈ e(L) and T ∈ Txt(L). We show, by induction on i,

∀i : β1(h1, T)(i) = β1((Θ̂ ◦Θ)(h, e), T)(i). (24)

Let h′ = Θ(h, e). For all i with content(T [i]) = ∅, we have
β1(h1, T)[i] =

(18)
h1(f1(T [i], β1(h1, T)[i])) =

(22)
p0

=
(19) & (20)

Θ̂(h′)(f1(T [i], β1(Θ̂(h′), T)[i])) =
(18)

β1(Θ̂(h′), T)(i).
(25)

Let i ∈ N, suppose content(T [i]) 6= ∅ and (inductively) β1(h1, T)[i] = β1((Θ̂ ◦Θ)(h, e), T)[i]. Let

x = f1(T [i], β1(h1, T)[i]) =
IH
f1(T [i], β1((Θ̂ ◦Θ)(h, e), T)[i]). (26)

Note that d1(x) ∈
(19)

content(T [i]) ⊆ L ⊆ range(e). We have

β1(h1, T)(i) =
(18) & (26)

h1(x) =
(22)

ϕd1(x)(x) =
(23)

(Θ̂ ◦Θ)(h, e)(x) =
(18) & (26)

β1((Θ̂ ◦Θ)(h, e), T)(i). (27)

This concludes the induction. Thus, h1 on any text for a language from e(L) makes the same

conjectures as (Θ̂ ◦Θ)(h, e) on T . By (16) and (17), (Θ̂ ◦Θ)(h, e) I1-learns e(L); thus, using (d) of
I1 being data normal, e(L) ⊆ I1(h1) = L1.

4 Helping Remove U-Shapes

In this section we provide, in Theorem 4.8, a general technique for helping with the removal of U-
shapes from a learner, preserving what is learned. When applicable, this shows U-shapes unnecessary.
Theorem 4.8 is technically a characterization theorem, and is applied in Section 5 to provide cases
where strong non U-shaped learning makes no di�erence. Also, in this section is another result,
Theorem 4.9, which could similarly be used to provide other cases where mere non U-shaped learning
makes no di�erence � although we do not apply this theorem in the present paper.

Lemma 4.1. Let h ∈ P. Then there is a in�nite set L ∈ E such that h does not TxtGEx-learn
any L′ ⊇ L such that L′ =∗ L.

Proof.15 Trivial if N 6∈ TxtGEx(h). Otherwise, let σ be a locking sequence for h on N, D =
content(σ). Then, obviously, h does not learn any L such that D ⊆ L ⊂ N.

De�nition 4.2. For each h ∈ P, let Lh denote a set L corresponding to h and as shown existent in
Lemma 4.1.

De�nition 4.3. Let h ∈ P, L = TxtGEx(h) and let Q be a ce set. Then, using padded s-m-n,
there is a strictly monotone increasing function ph,Q ∈ R

∀e, x : Wph,Q(e,x) = {y ∈ Lh | Q(e, x)} ∪ {y ∈We | not (Q(e, x) in ≤ y steps)}. (28)

15This version of the proof is due to Frank Stephan [Ste09].

Lemma 4.4. Let h ∈ P, L = TxtGEx(h) and Q be a ce set. For all e, x, we have

Wph,Q(e,x) ∈ L ⇒ ¬Q(e, x) (29)

⇒ Wph,Q(e,x) = We. (30)

Proof. Immediate from the choice of Lh.

Lemma 4.5. Let β ∈ {It,Sd, ItCtr,Psd,G}. We have that

{〈e0, e1, e2〉 | e0 is not a β-sink of ϕe1 on We2} is ce (31)

and, for all f ∈ F (where F is from (10)),

{〈e0, e1, e2〉 | e0 is not an f -weak β-sink of ϕe1 on We2} is ce. (32)

Proof. Immediate.

Remember that Rc1-1 ⊆ R denotes the set of all 1-1 total computable functions with computable
domain and range.

De�nition 4.6. A sequence generating operator β is called 1-1 left-modi�able i�

∀r ∈ Rc1-1 ∃sl, sr ∈ R ∀h ∈ P, T ∈ Txt : β(sl ◦ h ◦ sr, T) = r ◦ β(h, T).

Remark 4.7. It,Sd, ItCtr,Psd and G are 1-1 left-modi�able.

We now present the two main Theorems of this section, the �rst of which characterizes strong
non-U-shaped learning; the second is a su�cient condition on (not necessarily strong) non-U-shaped
learning.

Theorem 4.8. Let β be 1-1 left-modi�able and ful�ll (a) of data normal. Let α ∈ {T,R}. Then

SinkαTxtβEx = SNUαTxtβEx.

Proof. �⊇�: Let h0 ∈ P, L = SNUTxtβEx(h0). Let L ∈ L and let T be a text for L. Let k be
such that h0 has converged on T after T [k] to some e. Then

We = L. (33)

To show that e is a β-sink of h0 on L: Let T ∈ Txt(L) and i0 such that β(h0, T)(i0) = e. Let
i ≥ i0. Then, as h0 is strongly non-U-shaped on L and from (33), β(h0, T)(i) = e.

�⊆�: Let h0 ∈ P, L = SinkTxtβEx(h0). Let Q be a ce predicate such that

∀e : Q(e)⇔ e is not a β-sink of h0 on We. (34)

With fβ as given by (a) of data normal, let h∗0 = h0 ◦ fβ . Let p = ph∗0 ,Q as in De�nition 4.3. Let
β's left-modi�ability with respect to p be witnessed by sl and sr ∈ R. Let h ∈ R be such that

h = sl ◦ h0 ◦ sr. (35)

Note that, if h0 ∈ R, then h ∈ R.

Claim 1. h is strongly non-U-shaped.
Proof of Claim 1. Let L ∈ L, e ∈ N and σ such that content(σ) ⊆ L. Suppose h∗(σ) = p(e) and

Wp(e) = L ∈ L. (36)

From (29) we get ¬Q(e). Hence, from the de�nition of Q in (34), for all texts T for L extending
σ, we have that h0 has syntactically converged after seeing σ. Thus, h has syntactically converged
after seeing σ (and, thus, does not exhibit a U-shape). (for Claim 1)

Claim 2. L ⊆ TxtβEx(h).
Proof of Claim 2. Let L ∈ L and let T be a text for L. As h0 is sink-locking, there is k minimal
such that, with e = h∗0(T [k]),

e is a sink of h on L. (37)

Thus, h0 converges on T to e; therefore,

We = L. (38)

Furthermore, h on T converges to p(e) and, by (37), ¬Q(e); hence,

Wp(e) =
(30)

We =
(38)

L. (39)

(for Claim 2)

Theorem 4.9. Let F be as in (10). Let β be 1-1 left-modi�able and ful�ll (a) of data normal. Let
α ∈ {T,R}. Then ⋃

f∈F

WeaksinkfαTxtβEx ⊆ NUαTxtβEx.

The proof is analogous to that of the proof of �⊆� of Theorem 4.8.
Theorem 4.9 gives a good way of showing the non-U-shaped learnability of a class of languages:

To de�ne a
⋃
f∈FWeaksinkfαTxtβEx-learner to learn the class, one can use a strictly monotone

increasing computable function p ∈ R (called a padding function) on two arguments such that
∀e, x : Wp(e,x) = We and let f ∈ F be such that f(p(e, x), p(e′, x′)) = 1 i� e = e′.

5 Applications of the Techniques to The30

In this section we essentially apply general techniques presented in the two just previous sections to
prove a number of results pertaining to the necessity of U-shapes in learning.

Note that [CM07] implies that RTxtSdEx ⊂ TxtSdEx. This separation can also be shown
using Theorem 3.6.

Theorem 5.1. We have

(i) TxtSdEx = SNUTxtSdEx and
(ii) RTxtSdEx = SNURTxtSdEx.

Our proof of this theorem involves an application of Theorem 4.8.

Theorem 5.2.

SNURTxtPsdEx = TxtPsdEx.

Our proof of this theorem involves an application of Theorem 4.8.
As TxtGEx = TxtPsdEx [SR84, Ful85, Ful90, JORS99], we immediately get the following

corollary, reproving a result from [BCM+08] and one from [CM08a].

Corollary 5.3.

NUTxtGEx =
[BCM+08]

TxtGEx =
[CM08a]

SNUTxtGEx.

From [CM08b, Theorem 2] we have TxtItEx = NUTxtItEx. Contrasting this result, we have
the following theorem.

Theorem 5.4.

SNUTxtItEx ⊂ NUTxtItEx.

Our proof makes use of padded ORT and, as noted above, for convenience, a self-learning class
simpler to work with than that from Theorem 3.6.

6 Summary and Open Problems

Summing up, the following main results within the focus of the present paper and regarding the
necessity of syntactic or semantic U-shapes are shown or already known. Some of the justi�catory
remarks omit citing TxtGEx = TxtPsdEx [SR84, Ful90] (and trivial inclusions).

SNUTxtGEx =
[CM08a], Cor 5.3

NUTxtGEx =
[BCM+08], Cor 5.3

TxtGEx;

SNURTxtGEx =
Thm 5.2

NURTxtGEx =
[BCM+08], Thm 5.2

TxtRGEx;

SNUTxtPsdEx =
Thm 5.2

NUTxtPsdEx =
Thm 5.2

TxtPsdEx;

SNURTxtPsdEx =
Thm 5.2

NURTxtPsdEx =
Thm 5.2

TxtRPsdEx;

SNUTxtSdEx =
Thm 5.1

NUTxtSdEx =
Thm 5.1

TxtSdEx;

SNURTxtSdEx =
Thm 5.1

NURTxtSdEx =
Thm 5.1

TxtRSdEx;

SNUTxtItEx ⊂
Thm 5.4

NUTxtItEx =
[CM08b]

TxtItEx.

Trivially, we have

SNURTxtItEx ⊆ NURTxtItEx ⊆ RTxtItEx;
SNUTxtItCtrEx ⊆ NUTxtItCtrEx ⊆ TxtItCtrEx;

SNURTxtItCtrEx ⊆ NURTxtItCtrEx ⊆ RTxtItCtrEx.

The other directions of inclusions are open. We think that NURTxtItEx = RTxtItEx can
be obtained as a corollary to the proof of NUTxtItEx = TxtItEx in [CM08b]. Furthermore,
we suspect we can show SNURTxtItEx ⊂ NURTxtItEx by a variant of the proof above of
Theorem 5.4.

Acknowledgements

We would like to thank the anonymous referees for their comments and suggestions. Further, we
want to thank Samuel E. Moelius and Thomas Zeugmann for discussions on various theorems and
their proofs.

References

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information
and Control, 28:125�155, 1975.

[BCM+08] G. Baliga, J. Case, W. Merkle, F. Stephan, and W. Wiehagen. When unlearning helps.
Information and Computation, 206:694�709, 2008.

[Car82] S. Carey. Face perception: Anomalies of development. In S. Strauss and R. Stavy, editors,
U-Shaped Behavioral Growth, Developmental Psychology Series. Academic Press, NY,
1982.

[Cas74] J. Case. Periodicity in generations of automata. Mathematical Systems Theory, 8:15�32,
1974.

[Cas94] J. Case. In�nitary self-reference in learning theory. Journal of Experimental and Theo-
retical Arti�cial Intelligence, 6:3�16, 1994.

[Cas99] J. Case. The power of vacillation in language learning. SIAM Journal on Computing,
28(6):1941�1969, 1999.

[CCJS07] L. Carlucci, J. Case, S. Jain, and F. Stephan. Non-U-shaped vacillatory and team
learning. Journal of Computer and System Sciences, 2007. Special issue in memory of
Carl Smith.

[CJLZ99] J. Case, S. Jain, S. Lange, and T. Zeugmann. Incremental concept learning for bounded
data mining. Information and Computation, 152:74�110, 1999.

[CK08] J. Case and T. Kötzing. Dynamically delayed postdictive completeness and consistency
in learning. In 19th International Conference on Algorithmic Learning Theory (ALT'08),
volume 5254 of Lecture Notes in Arti�cial Intelligence, pages 389�403. Springer, 2008.

[CK10] J. Case and T. Kötzing. Solutions to open questions for non-U-shaped learning with
memory limitations, 2010. Submitted to ALT'10.

[CL82] J. Case and C. Lynes. Machine inductive inference and language identi�cation. In
M. Nielsen and E. Schmidt, editors, Proceedings of the 9th International Colloquium
on Automata, Languages and Programming, volume 140 of Lecture Notes in Computer
Science, pages 107�115. Springer-Verlag, Berlin, 1982.

[CM07] J. Case and S. Moelius. Parallelism increases iterative learning power. In ALT '07:
Proceedings of the 18th international conference on Algorithmic Learning Theory, pages
49�63, Berlin, Heidelberg, 2007. Springer-Verlag.

[CM08a] J. Case and S. Moelius. Optimal language learning. In ALT, volume 5254 of Lecture
Notes in Computer Science, pages 419�433. Springer, 2008.

[CM08b] J. Case and S. Moelius. U-shaped, iterative, and iterative-with-counter learning. Machine
Learning, 72(1-2):63�88, 2008.

[CS83] J. Case and C. Smith. Comparison of identi�cation criteria for machine inductive infer-
ence. Theoretical Computer Science, 25:193�220, 1983.

[FJO94] M. Fulk, S. Jain, and D. Osherson. Open problems in Systems That Learn. Journal of
Computer and System Sciences, 49(3):589�604, December 1994.

[Ful85] M. Fulk. A Study of Inductive Inference Machines. PhD thesis, SUNY at Bu�alo, 1985.
[Ful90] M. Fulk. Prudence and other conditions on formal language learning. Information and

Computation, 85:1�11, 1990.
[Gol67] E. Gold. Language identi�cation in the limit. Information and Control, 10:447�474,

1967.
[JORS99] S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An Introduction to

Learning Theory. MIT Press, Cambridge, Mass., second edition, 1999.
[LV08] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications.

Springer Verlag, third edition, 2008.
[MPU+92] G. Marcus, S. Pinker, M. Ullman, M. Hollander, T.J. Rosen, and F. Xu. Overregu-

larization in Language Acquisition. Monographs of the Society for Research in Child
Development, vol. 57, no. 4. University of Chicago Press, 1992. Includes commentary by
H. Clahsen.

[OW82] D. Osherson and S. Weinstein. Criteria of language learning. Information and Control,
52:123�138, 1982.

[RC94] J. Royer and J. Case. Subrecursive Programming Systems: Complexity and Succinctness.
Research monograph in Progress in Theoretical Computer Science. Birkhäuser Boston,
1994.

[Rog67] H. Rogers. Theory of Recursive Functions and E�ective Computability. McGraw Hill,
New York, 1967. Reprinted by MIT Press, Cambridge, Massachusetts, 1987.

[SR84] G. Schäfer-Richter. Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien.
PhD thesis, RWTH Aachen, 1984.

[SS82] S. Strauss and R. Stavy, editors. U-Shaped Behavioral Growth. Developmental Psychol-
ogy Series. Academic Press, NY, 1982.

[Ste09] F. Stephan, 2009. Private communication.
[TA02] N. Taatgen and J. Anderson. Why do children learn to say broke? A model of learning

the past tense without feedback. Cognition, 86(2):123�155, 2002.
[WC80] K. Wexler and P. Culicover. Formal Principles of Language Acquisition. MIT Press,

Cambridge, Mass, 1980.
[Wie76] R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle Strategien. Elek-

tronische Informationverarbeitung und Kybernetik, 12:93�99, 1976.
[Wie91] R. Wiehagen. A thesis in inductive inference. In P. Schmitt J. Dix, K. Jantke, editor,

Nonmonotonic and Inductive Logic, 1st International Workshop, volume 543 of Lecture
Notes in Arti�cial Intelligence, pages 184�207. Springer-Verlag, Karlsruhe, Germany
1991.

