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Abstract

In standard online learning, the goal of the learner is to maintain an average loss close to
the loss of the best-performing function in a fixed class. Classic results show that simple
algorithms can achieve an average loss arbitrarily close to that of the best function in
retrospect, even when input and output pairs are chosen by an adversary. However, in
many real-world applications such as spam prediction and classification of news articles,
the best target function may be drifting over time. We introduce a novel model of concept
drift in which an adversary is given control of both the distribution over input at each time
step and the corresponding labels. The goal of the learner is to maintain an average loss
close to the 0/1 loss of the best slowly changing sequence of functions with no more than
K large shifts. We provide regret bounds for learning in this model using an (inefficient)
reduction to the standard no-regret setting. We then go on to provide and analyze an
efficient algorithm for learning d-dimensional hyperplanes with drift. We conclude with
some simulations illustrating the circumstances under which this algorithm outperforms
other commonly studied algorithms when the target hyperplane is drifting.

1 Introduction

Consider the classical problem of online learning. At each time step, the learner is given a new data
instance (for example, an email) and must output a prediction of its label (for example, “spam”
or “not spam”). The true label is then revealed, and the learner suffers a loss based on both the
label and its prediction. Generally in this setting, the goal of the learner is to achieve an average
loss that is “not too big” compared to the loss it would have received if it had always chosen to
predict according to the best-performing function from a fixed class F . It is well-known that as
the number of time steps grows, very simple aggregation algorithms are able to achieve an average
loss arbitrarily close to that of the best function in retrospect. Furthermore, such guarantees hold
even if the input and output pairs are chosen in a fully adversarial manner with no distributional
assumptions [6].

Despite the extensive literature on no-regret learning and the impressive guarantees that can
be made, competing with the best fixed function is not always good enough. In many real-world
applications, the true target function is not fixed, but is slowly changing over time. Consider a
classifier designed to identify news articles related to China. Over time, the most relevant topics
might drift from the Olympics to exports to finance to human rights. When this drift occurs, the
classifier itself must also change in order to remain relevant. Similarly, the very definition of spam
is changing over time as spammers become more creative and deviant. Any useful spam filter must
evolve to keep up with this drift.
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With such applications in mind, we develop a new theoretical model for regret minimization with
concept drift. Here the goal of the algorithm is no longer to compete well with a single function,
but to maintain an average loss close to that of the best slowly changing sequence of functions with
no more than K large shifts. In order to achieve this goal, it is necessary to restrict the adversary
in some way — in classification, if the adversary is given full power over the choice of input and
output, it can force any algorithm to suffer a constant regret simply by choosing the direction of
drift at random and selecting input points near the decision boundary, even when K = 0. To address
this problem, early models of drift assumed a fixed input distribution [10] or a joint distribution
over input and output that changes slowly over time [1, 15]. More recently, Cavallanti et al. [5]
addressed this problem by bounding the number of mistakes made by the algorithm not in terms of
the number of mistakes made by the adversary, but in terms of the adversary’s hinge loss. (Recall
that the hinge loss would assign a positive loss to observations near the decision boundary even if no
error is made.) We take a different approach, requiring more traditional regret bounds in terms of
the adversary’s 0/1 loss while still endowing the adversary with a significant amount of power. We
allow the adversary to specify not a single point but a distribution over points at each time. The
distributions Dt and Dt+1 at consecutive times need not be close in any usual statistical sense, and
can even have disjoint supports. However, the adversary is prevented from choosing distributions
that put too much weight on small regions of input space where pairs of “similar” functions disagree.

Our first algorithmic result shows that learning in this model can be reduced to learning in
the standard adversarial online setting. Unfortunately, the resulting algorithms are generally not
efficient, in some cases requiring updating an exponential number of weights. Luckily, specialized
algorithms can be designed for efficiently learning particular function classes. To gain intuition, we
start by providing a simple algorithm for learning one-dimensional threshold functions with drift.
We then analyze the performance of the Modified Perceptron algorithm of Blum et al. [4], showing
that it can be used to efficiently learn d-dimensional hyperplanes with concept drift.

We conclude with some simulations illustrating the circumstances under which the Modified
Perceptron outperforms other algorithms when the target hyperplane is drifting. We find that the
Modified Perceptron performs best relative to other algorithms when the underlying dimension of
the data is small, even if the data is projected into a high dimensional space. When the underlying
dimension of the data is large, the standard Perceptron is equally capable of handling drifting targets.
This phenomenon is not explained by our theoretical results, and would be an interesting direction
for future research.

2 Related Work

The first model of concept drift was proposed by Helmbold and Long [10]. In their model, at each
time t, an input point xt is drawn from a fixed, unknown distribution D and labeled by a target
function ft, where for each t, the probability that ft and ft+1 disagree on the label of a point drawn
from D is less than a fixed value ∆. They showed that a simple algorithm achieves an average error
of Õ((∆d)1/2) where d is the VC dimension of the function class, or Õ((∆d)1/3) in the unrealizable
setting. Kuh et al. [13, 14] examined a similar model and provided an efficient algorithm for learning
two-dimensional half-planes through the origin and intersections of half-planes through the origin.

Bartlett [1] introduced a more general agnostic model of drift. In this model, the sequence
of input and output pairs is generated according to a sequence of joint distributions P1, · · · , PT ,
such that for each t, Pt and Pt+1 have total variation distance less than ∆. It is easy to verify
that the earlier drifting model described above is a special case of this model. Long [15] showed
that one can achieve a similar error rates of O((∆d)1/2) (or O((∆d)1/3) in the unrealizable setting)
in this model, and Barve and Long [3] provided additional upper and lower bounds. Freund and
Mansour [8] showed that improvements are possible if the joint distribution is changing at a constant
rate. Bartlett et al. [2] also studied a variety of drifting settings, including one in which the target
may change arbitrarily but only infrequently.

Most of these models assume a fixed or slowly changing input distribution. At the other extreme
lie models in which the input points may be chosen in an arbitrary, adversarial manner. Herbster
and Warmuth [11] studied a setting in which the time sequence is partitioned into k segments. The
goal of the algorithm is to compete with the best expert in each segment for the best segmentation
in retrospect. They later studied algorithms for tracking the best linear predictor with drift [12].

Cavallanti et al. [5] analyzed a variant of the Perceptron algorithm for learning d-dimensional
hyperplanes with drift. They bounded the number of mistakes made by the algorithm in terms of the
hinge loss of the best sequence of hyperplanes and the amount of drift in a fully adversarial setting.
As we briefly discuss in Section 3, there is no way to obtain a result such as theirs in a fully adversarial
setting if we wish to measure the regret with respect to the 0/1 loss of the drifting sequence rather



than the hinge loss. We have no choice but to limit the power of the adversary in some way. Finally,
Hazan and Seshadhri [9] study drift in the more general online convex optimization setting, providing
bounds in terms of the maximum regret (to a single optimal point) achieved over any contiguous
time interval. This captures the notion of drift because the optimal point can vary across different
time intervals.

Our model falls between these two extremes. On the one hand, we make no requirements on how
quickly the distribution over input points can change from one time step to the next, and in fact
allow the scenario in which the support of Dt and the support of Dt+1 do not overlap on any points.
However, unlike the purely adversarial models, we require that the distribution chosen at each time
step not place “too much” weight on points where pairs of nearby functions disagree. This added
requirement gives us the ability to produce bounds in terms of 0/1 loss in situations in which it is
provably impossible to learn in a fully adversarial setting.

3 A New Model of Drift

Let F be a hypothesis class mapping elements in a set X to elements in a set Y, and let near be
an arbitrary binary relation over elements in F . For example, if F is the class of linear separators,
we might define near(f, f ′) to hold if and only if the weight vectors corresponding to f and f ′ are
sufficiently close to each other. At a high level, the near relation is meant to encapsulate some
notion of similarity between functions. Our model implicitly assumes that it is common for the
target to drift from one function to another function near it from one time step to the next.

We say that a sequence of functions f1, · · · , fT is a K-shift legal sequence if near(ft, ft+1) holds
for at least T − K time steps t < T . Unlike standard online learning where the goal is to have
low regret with respect to the best single function, the goal in our model is to have low regret with
respect to the best K-shift legal sequence. Regret is defined in terms of a loss function L, which is
assumed to satisfy the triangle inequality, be bounded in [0, 1], and satisfy L(x, x) = 0 for all x.

In order to achieve this goal, some restrictions must be made. We cannot expect an algorithm
to be able to compete in a fully adversarial setting with drift. To understand why, consider for
example the problem of online classification with drifting hyperplanes. Here the adversary can force
any algorithm to have an average loss of 1/2 by simply randomizing the direction of drift at each
time step and choosing input points near the decision boundary, even when K = 0. As such, we work
in a setting in which the adversary may specify not a single point but a distribution over points. In
particular, the adversary may specify any distribution that is “good” in the following precise sense.1

Definition 1 A distribution D is λ-good for loss function L and binary relation near if for all
pairs f, f ′ ∈ F such that near(f, f ′), Ex∼D [L(f(x), f ′(x))] ≤ λ.

For most of this paper, we restrict our attention to the problem of online classification with
Y = {+1,−1} and define L to be 0/1 loss. In this case, D is λ-good if for every f, f ′ ∈ F such
that near(f, f ′), Prx∼D (f(x) 6= f ′(x)) ≤ λ. Restricting the input distribution in this way ensures
that the adversary cannot place too much weight on areas of the input space where pairs of near
functions disagree, while still providing the adversary with the power to select arbitrarily different
distributions from one time step to the next. Note that the larger the space of near pairs is,
the smaller the set of λ-good distributions, and vice versa. When the near space is empty, every
distribution is λ-good. At the other one extreme, the set of λ-good distributions might be empty
(for example, if the function that classifies all points as positive and the function that classifies all
points as negative are defined to be near). We restrict our attention only to triples (F , near, λ)
such that at least one λ-good distribution exists.

The majority of our results hold in the following adversarial setting. Fix a value of λ and definition
of near. At each time t ∈ {1, · · · , T}, the learning algorithm chooses a (possibly randomized)
hypothesis ht. The adversary then chooses an arbitrary λ-good distribution Dt and an arbitrary
function ft ∈ F . The algorithm is presented with a point xt distributed according to Dt, learns the
label ft(xt), and receives a loss L(ht(xt), ft(xt)). Let K be the number of time steps t for which
near(ft, ft+1) does not hold. (We are usually interested in the case in which K is a small constant.)
Then by definition, f1, · · · , fT is a K-shift legal sequence. The goal of the learning algorithm is to
maintain low expected regret with respect to the best K-shift legal sequence (where the expectation
is taken with respect to the random sequence of input points and any internal randomization of
the algorithm), which is equivalent to maintaining a small expected average loss since a perfect

1Of course it could be possible to obtain results by restricting the adversary in other ways, such as
requiring that points be chosen to respect a minimum margin assumption. However, some restriction is
needed.



K-shift legal sequence is guaranteed to exist. The adversary’s choice of Dt and ft may depend on
any available historical information, including the sequence of input points x1, · · · , xt−1, and on the
algorithm itself. The algorithm has no knowledge of the number of shifts K or the times at which
these shifts occur. We refer to this scenario as the realizable setting.

We also briefly consider an unrealizable setting in which the adversary is not required to choose
ft on the fly each time step. Instead, the adversary selects an arbitrary λ-good distribution Dt

(again for a fixed value of λ) and a distribution over labels yt conditioned on xt. The algorithm is
presented with a point xt distributed according to Dt and a label yt distributed according to the
distribution chosen by the adversary and receives a loss of L(ht(xt), yt). In this setting, the goal is
to maintain low expected regret with respect to the best K-shift legal sequence in retrospect for a
fixed value of K, where the expectation is taken with respect to the random input sequence, random
labels, and any randomization of the algorithm, and the regret is defined as

T∑
t=1

L(ht(xt), yt)− min
f1,··· ,fT∈ΦK

T∑
t=1

L(ft(xt), yt),

where ΦK is the set of all K-shift legal sequences f1, · · · , fT .
Note that unlike the standard online learning setting, we should not expect the regret per round

to go to zero, even in the realizable setting. Suppose that the target is known perfectly at some
time t. It is still possible for the algorithm to make an error at time t + 1 because the target can
move. This uncertainty never goes away, even as the number of time steps grows very large, so we
should expect to see a dependence on λ in the average regret that does not diminish over time. This
inherent uncertainty is the very heart of the drifting problem.

4 A General Reduction

We now provide general upper bounds for learning finite function classes in the model. We show
via a simple reduction that it is possible to achieve an expected average per time step regret of
O((λ logN)1/3), and that this regret can be reduced to O(

√
λ logN) in the realizable setting.2

However, the algorithm used is not always efficient when the function class is very large or infinite.
The subsequent sections are devoted to efficient algorithms for particular function classes.

The results rely on the following lemma.

Lemma 2 Let L be any loss function with L(x, x) = 0 for all x that satisfies the triangle
inequality. For any 0-shift legal sequence f1, · · · , f`, and any sequence of joint distributions
P1, · · · , P` over pairs {x1, y1}, · · · , {x`, y`} such that the marginal distributions D1, · · · , D`, over
x1, · · · , x` are λ-good, there exists a function f ∈ F such that

∑`
t=1 E{xt,yt}∼Pt [L(f(xt), yt)] ≤∑`

t=1 E{xt,yt}∼Pt [L(ft(xt), yt)] + (`− 1)2λ/2.

Proof: We first show by induction that for any λ-good distribution D and any 0-shift legal se-
quence f1, · · · , f`, Ex∼D [L(f1(x), f`(x))] ≤ (` − 1)λ. This clearly holds for ` = 1. Suppose that
Ex∼D [L(f1(x), f`−1(x))] ≤ (` − 2)λ. Since the functions form a 0-shift legal sequence and D is
λ-good, we must have Ex∼D [L(f`−1(x), f`(x))] ≤ λ. By the triangle inequality and linearity of
expectation, Ex∼D [L(f1(x), f`(x))] ≤ Ex∼D [L(f1(x), f`−1(x)) + L(f`−1(x), f`(x))] ≤ (`− 1)λ.

This implies that for any t, Ext∼Dt [L(f1(xt), yt)] ≤ Ext∼Dt [L(ft(xt), yt) + L(f1(xt), ft(xt))] ≤
Ext∼Dt [L(ft(xt), yt)] + (t− 1)λ. Summing over all t yields the lemma.

The following theorem provides a general upper bound for the unrealizable setting.

Theorem 3 Let F be a finite function class of size N and near be any binary relation on F that
yields a non-empty set of λ-good distributions. There exists an algorithm for learning F that achieves
an average expected regret of O

(
(λ lnN)1/3

)
when T ≥ (lnN)1/3λ−2/3 for any K ≤ λT , even in the

unrealizable setting.

Proof: Let A be any regret minimization algorithm for F that is guaranteed to have regret at most
r(m) over m time steps. We can construct an algorithm for learning F using A as a black box.
The algorithm simply divides the sequence of T time steps into dT/me consecutive subsequences of
length at most m and runs A on each of these subsequences.

2Here and throughout this paper, we consider the asymptotic behavior of functions as λ→ 0 (or equiva-

lently, as 1/λ→∞). This implies, for example, that an error of O(
√
λ) is preferred to an error of O(λ1/3).



The regret of the algorithm with respect to the best function in F on each subsequence is at
most r(m). Furthermore, by Lemma 2, the best function in F on this subsequence has a regret of no
more than m2λ with respect to any legal sequence and thus also the best legal sequence. Combining
these facts with the fact that the error can be no more than m on any subsequence yields a bound
of ⌈

T

m

⌉(
r(m) +

m2λ

2

)
+Km ≤

(
T

m
+ 1
)(

r(m) +
m2λ

2

)
+Km

on the total expected regret of the algorithm with respect to the best K-shift legal sequence.
There exist well-known algorithms for finite classes with regret r(m) = O(

√
m lnN) [6]. Letting

A be one of these algorithms and setting m = (lnN)1/3λ−2/3 yields the bound.

The following theorem shows that in the realizable setting, it is possible to obtain an average
loss of O(

√
λ lnN) as long as T is sufficiently large and K sufficiently small compared with T . This

is an improvement on the previous bound whenever the bound is not trivial, i.e., when λ lnN < 1.

Theorem 4 Let F be a finite function class of size N and near be any binary relation on F such that
the set of λ-good distributions is not empty. There exists an algorithm for learning F in the realizable
setting that achieves an expected average per time step loss of O(

√
λ lnN) when T ≥

√
lnN/λ for

any K ≤ Tλ.

Proof Sketch: The proof is nearly identical to the proof of Theorem 3. The only differences are
that the regret minimization algorithm employed must guarantee a regret of O(

√
L∗ lnN + lnN)

where L∗ is the loss of the best expert (see Cesa-Bianchi and Lugosi [6] for examples), and m must
be set to

√
lnN/λ. The proof then relies on the fact that in the realizable setting, on any period of

length m during which no shift occurs, L∗ ≤ m2λ (from Lemma 2).
The results are easily extended to the case in which F is not finite but has finite VC dimension

d, but hold only under certain restricted definitions of near.

5 Efficient Algorithms for Drifting Thresholds and Hyperplanes

The reductions described in the previous section are not efficient in general and may require main-
taining an exponential number of weight for infinite function classes. In this section, we analyze
an efficient Perceptron-style algorithm for learning drifting d-dimensional hyperplanes. To pro-
mote intuition, we begin by describing and analyzing a simple specialized algorithm for learning
one-dimensional thresholds. The analysis of the Perceptron-style algorithm uses similar ideas.

5.1 One-Dimensional Thresholds
We denote by τt ∈ [0, 1] the threshold corresponding to the target function ft; thus ft(x) = 1 if and
only if x ≥ τt. For any two functions f and f ′ with corresponding thresholds τ and τ ′, we say that
the relation near(f, f ′) holds if and only if |τ − τ ′| ≤ γ for some fixed γ ≤ λ. By definition, this
implies that any λ-good input distribution Dt can place at most weight λ on any interval of width
γ.

A simple algorithm can be used to achieve optimal error bounds in the realizable setting. At each
time t, the algorithm keeps track of an interval It of threshold values corresponding to all functions
that could feasibly be the current target if no major shift has recently occurred. When the input
point xt is observed, the algorithm predicts the label selected by the majority of the threshold values
in It (that is, 0 if xt is closer to the lower border of It and 1 if it is closer to the upper border).

To start, I1 is initialized to the full interval [0, 1] since any threshold is possible. At each
subsequent time t, one of three things happens. If xt 6∈ It, then the entire feasible set agrees on the
label of xt. If the predicted label is correct, then to allow for the possibility of concept drift, the
algorithm sets It+1 to be It increased by γ on each side. If the predicted label is incorrect, then it
must be the case that a shift has recently occurred, and It+1 is reset to the full interval [0, 1]. (Note
that this can happen at most K times.) On the other hand, if xt ∈ It, then there is disagreement in
the shift-free interval about the label of the point and the algorithm learns new information about
the current threshold by learning the label. In this case, all infeasible thresholds are removed from
the shift-free feasible set and then again γ is added on each side to account for possible concept drift.
Namely, if xt ∈ It = (a, b) then It+1 is either (a − γ, xt + γ) or (xt − γ, b + γ). The next theorem
shows that this algorithm results in error O(

√
λ) as long as T is sufficiently large.

Theorem 5 Let F be the class of one-dimensional thresholds and let near be defined as above.
The expected average error of the algorithm described above in the realizable setting is no more than
K/T +

√
2(K + 1)λ/(Tγ) +

√
5λ.



Proof: Let inct be a random variable that is 1 if the label of the input point at time t is inconsistent
with all hypotheses in the version space and 0 otherwise; if inct = 1, then the algorithm described
above makes a mistake at time t and sets It+1 to the full interval [0, 1]. Note that

∑T
t=1 inct ≤ K.

Let errt be a random variable that is 1 if the label of the input at time t is consistent with some
hypothesis in the version space but the algorithm makes an error anyway and 0 if this is not the
case. For any positive-width interval I and λ-good distribution D, D(I) ≤ d|I|/γeλ ≤ (|I|/γ + 1)λ,
where |I| is the length of interval I. Hence, at every time step t, Pr (errt = 1|It, ft, Dt) ≤ Dt(It) ≤
|It|λ/γ + λ, and so |It| ≥ (γ/λ)Pr (errt = 1|It, ft, Dt)− γ.

Since the algorithm predicts according to the majority of the (shift-free) feasible set, it eliminates
at least half of the hypotheses in this set on each consistent mistake. However, at every time step,
the feasible set can grow by γ on each side. Thus,

E [|It+1| |It, ft, Dt] ≤ Pr (errt = 1|It, ft, Dt) (|It|/2 + 2γ)
+ (1− Pr (errt = 1|It, ft, Dt)) (|It|+ 2γ) + Pr (inct = 1|It, ft, Dt) · 1

= |It|+ 2γ − (|It|/2)Pr (errt = 1|It, ft, Dt) + Pr (inct = 1|It, ft, Dt)

≤ |It|+ 5γ/2− (γ/(2λ))Pr (errt = 1|It, ft, Dt)
2 + Pr (inct = 1|It, ft, Dt) ,

where the final step follows from the lower bound on |It| given above. Taking the expectation of
both sides with respect to {It, ft, Dt} gives us that for any t,

E [|It+1|] = E [|It|] + 5γ/2− (γ/(2λ))E
[
Pr (errt = 1|It, ft, Dt)

2
]

+ E [Pr (inct = 1|It, ft, Dt)]

≤ E [|It|] + 5γ/2− (γ/(2λ)) (Pr (errt = 1))2 + Pr (inct = 1) ,

where the last step follows from the convexity of x2. Summing over all time steps gives us

T∑
t=1

E [|It+1|] ≤
T∑
t=1

E [|It|] + 5γT/2− (γ/(2λ))
T∑
t=1

(Pr (errt = 1))2 +
T∑
t=1

Pr (inct = 1) .

Noting that E [|I1|] = 1 and E [|IT+1|] ≥ 0, multiplying both sides by 2λ/(γT ), and rearranging
terms gives us

1
T

T∑
t=1

(Pr (errt = 1))2 ≤ 2λ
γT

+ 5λ+
2λ
γT

T∑
t=1

Pr (inct = 1) ≤ 2λ
γT

(K + 1) + 5λ . (1)

The last inequality holds because
∑T
t=1 Pr (inct = 1) =

∑T
t=1 E [inct] = E

[∑T
t=1 inct

]
≤ K. Ap-

plying Jensen’s inequality to the left-hand side and taking the square root of both sides, we get

1
T

T∑
t=1

Pr (errt = 1) ≤

√
2λ(K + 1)

Tγ
+ 5λ ≤

√
2λ(K + 1)

Tγ
+
√

5λ .

This allows us to bound the expected average error with

E

[
1
T

T∑
t=1

(errt + inct)

]
=

1
T

T∑
t=1

Pr (errt = 1) +
1
T

T∑
t=1

Pr (inct = 1) ≤

√
2λ(K + 1)

Tγ
+
√

5λ+
K

T
.

The following theorem shows that the dependence on λ cannot be significantly improved. The
proof is in the appendix.

Theorem 6 Any algorithm for learning one-dimensional thresholds in the realizable setting (i.e.,
K = 0) under the definition of near stated above must suffer error Ω(

√
λ).

5.2 Hyperplanes

We now move on to the more interesting problem of efficiently learning hyperplanes with drift. For
any two normalized vectors u and u′, let θ(u, u′) = arccos(u · u′) denote the angle between u and
u′. We define near(u, u′) to hold if and only if θ(u, u′) ≤ γ for some fixed parameter γ ∈ (0, π/2).



At each time step t, the adversary selects an arbitrary λ-good distribution Dt over unit-length d-
dimensional points and a unit-length weight vector ut such that the set u1, · · · , uT forms a K-shift
legal sequence.3 The input point xt is then drawn from Dt and assigned the label sign(ut · xt).

We analyze the Modified Perceptron algorithm originally proposed by Blum et al. [4] and later
studied by Dasgupta et al. [7] in the context of active learning. This algorithm maintains a current
weight vector wt. The initial weight vector w1 can be selected arbitrarily. At each time step t, when
the algorithm observes the point xt, it predicts the label sign(wt · xt). If the algorithm makes a
mistake at time t, it sets wt+1 = wt− 2(wt ·xt)xt, otherwise no update is made and wt+1 = wt. The
factor of 2 in the update rule enforces that ||wt|| = 1 for all t as long as ||xt|| = 1. Note that unlike
the algorithm for thresholds, this algorithm does not require any knowledge of γ.

We begin with a lemma which extends Lemma 3 of Dasgupta et al. [7] from a uniform distribution
to a λ-good distribution. The intuition behind the proofs is similar. At a high level, we need to
show that the adversary cannot place too much weight on points close to the algorithm’s current
decision boundary. Thus if the algorithm’s probability of making a mistake is high, then there is
a significant probability that the mistake will be on a point far from the boundary and significant
progress will be made. In this lemma and the results that follow, let errt be a random variable that
is 1 if the algorithm makes an error at time t and 0 otherwise.

Lemma 7 Consider the Modified Perceptron. At every time t, wt+1 ·ut ≥ wt ·ut. Furthermore, there
exists a positive constant c ≤ 10 such that for all t, for any η ∈ (0, 1/2), if Pr (errt|wt, ut, Dt) ≥
2cηλ/γ+4λ, then with probability at least Pr (errt|wt, ut, Dt)−(2cηλ/γ+4λ), we have 1−wt+1 ·ut ≤(
1− η2/d

)
(1− wt · ut).

The proof relies on the following fact about λ-good distributions under the current definition of
near.

Lemma 8 There exists a positive constant c ≤ 10 such that for any η ∈ (0, 1/2), for any d-
dimensional vector w such that ||w|| = 1, for any λ-good distribution D, Prx∼D(|w · x| ≤ η/

√
d) ≤

cηλ/γ + 2λ.

The proof of this lemma is based on the following intuition. Consider the pair of hyperplanes
corresponding to any two weight vectors w1 and w2 such that the angle between w1 and w2 is at
most γ. Let ∆ be the set of points x on which these hyperplanes disagree, i.e., all x such that
sign(w1 · x) 6= sign(w2 · x). Since D is λ-good, D(∆) ≤ λ. The idea of the proof is to cover at least
half of the points x such that |w · x| ≤ η/

√
d using k sets like ∆, implying that the total weight D

assigns to these points is at most kλ. In particular, we show that it is possible to construct such
a cover with k ≤ 5η/γ + 1, implying that the total probability D can place on points x such that
|w · x| ≤ η/

√
d is bounded by 10ηλ/γ + 2λ. The full proof appears in the appendix.

We are now ready to prove Lemma 7.
Proof of Lemma 7: The first half of the lemma is trivial if no mistake is made since wt+1 = wt in
this case. If a mistake is made, then wt+1 · ut = wt · ut− 2(wt · xt)(xt · ut). Since there was an error,
sign(wt · xt) 6= sign(xt · ut) and 2(wt · xt)(xt · ut) < 0.

For the second half, by Lemma 8 and the union bound, Pr
(
|wt · xt||ut · xt| ≤ η2/d

)
≤ 2cηλ/γ +

4λ. Thus if Pr (errt|wt, ut, Dt) > 2cηλ/γ + 4λ, then the probability that an error is made and
|wt ·xt||ut ·xt| > η2/d is at least Pr (errt|wt, ut, Dt)−(2cηλ/γ+4λ). Suppose this is the case. Then,
as desired,

1−wt+1 · ut = 1− wt · ut + 2(wt · xt)(xt · ut) = 1− wt · ut − 2|wt · xt||xt · ut|

≤ 1− wt · ut −
2η2

d
≤ 1− wt · ut −

2η2

d

1− wt · ut
2

= (1− wt · ut)
(

1− η2

d

)
.

Corollary 9 below follows from a simple application of technical properties of the cosine function.

Corollary 9 There exists a constant c ≤ 10 such that for any η ∈ (0, 1/2), if Pr (errt|wt, ut, Dt) >
2cηλ/γ + 4λ, then with probability at least Pr (errt|wt, ut, Dt)− (2cηλ/γ + 4λ),

θ(wt+1, ut) ≤
√

1− η2

d
θ(wt, ut) ≤

(
1− η2

2d

)
θ(wt, ut) .

3The assumption that ||ut|| = ||xt|| = 1 simplifies our presentation of results and nothing more. By
modifying the definition of near and the update rule in a straight-forward manner, all of the results in this
section can be extended to hold when the assumption is not true.



Finally, the following theorem uses these lemmas to bound the average error of the Modified
Perceptron. The evolution of the angle between wt and ut is analyzed over time, similarly to how
the evolution of |It| was analyzed in the proof of Theorem 5. The result for general values of K is
obtained by breaking the sequence down into (no more than) K + 1 subsequences on which there
is no shift, applying a similar analysis on each subsequence, and summing the error bounds. This
analysis is possible only if the time steps at which the shifts occur are fixed in advance, though it
does not require that the algorithm is aware of the shifts in advance. The optimal setting of η and
a brief interpretation of the resulting bounds are given below.

Theorem 10 Let F be the class of hyperplanes and let near(u, u′) hold if and only if arccos(u·u′) ≤
γ for a fixed parameter γ ≤ λ. There exists a constant c ≤ 10 such that when K = 0, for any
η ∈ (0, 1/2), the expected average error of the Modified Perceptron algorithm is no more than(

1 +
2π
Tγ

+
η2

2d

)
λd

qη2
+ 2q

where q = (cηλ/γ + 2λ).
If the adversary chooses the time steps t at which a shift will occur in advance (yet, unknown

to the learner), then for any K, for any η ∈ (0, 1/2), the expected average error of the Modified
Perceptron algorithm is no more than

K + 1
T

+
(

1 +
2π(K + 1)

Tγ
+
η2

2d

)
λd

qη2
+ 2q .

The bounds stated in this theorem can be difficult to interpret. Before jumping into the proof,
let us take a moment to examine them in more detail to understand what this theorem really means.
Setting η = (d/λ)1/4γ1/2 in Theorem 10, we obtain that when T >> (K + 1)/γ, the average error
is bounded by O(λ1/4d1/4

√
λ/γ)). If we think of γ as a constant fraction of λ, then this bound is

essentially O(λ1/4d1/4). We do not know if it is possible to improve this bound to achieve an error of
O(
√
λd), which would match the bound of the inefficient algorithm presented in Section 4. Certainly

such a bound would be desirable. However, this bound tells us that for hyperplanes, some amount
of drift-resistance is possible with an efficient algorithm.

Note that in order for the bound to be non-trivial, γ must be small compared to 1/d, in which
case η is less than 1/2.
Proof of Theorem 10: We first prove the result for K = 0 and then briefly discuss the how to
extend the proof to cover general values of K.

Let θt = θ(wt, ut). By definition, Pr (errt = 1|wt, ut, Dt) ≤ (θt/γ + 1)λ, and θt ≥
Pr (errt = 1|wt, ut, Dt) γ/λ − γ. By Lemma 7, for all t, wt+1 · wt ≥ wt · ut. Thus θ(wt+1, ut) ≤
θ(wt, ut), and since we have assumed no shifts, θt+1 ≤ θt + γ. We will show that this implies that
for any t,

E [θt+1|wt, ut, Dt] ≤ θt +
(

1 +
η2

2d

)
γ − (Pr (errt = 1|wt, ut, Dt)− 2q)

η2qγ

dλ
, (2)

where q = (cηλ/γ + 2λ). This clearly holds if Pr (errt = 1|wt, ut, Dt) ≤ 2q since η2 and d are
positive and in this case the last term is negative. Suppose instead that Pr (errt = 1|wt, ut, Dt) >
2q = 2(cηλ/γ + 4λ). By Corollary 9 and the bounds above,

E [θt+1|wt, ut, Dt]

≤ (Pr (errt = 1|wt, ut, Dt)− 2q)
(

1− η2

2d

)
θt + (1− (Pr (errt = 1|wt, ut, Dt)− 2q)) θt + γ

≤ θt + γ − (Pr (errt = 1|wt, ut, Dt)− 2q)
η2

2d

(
Pr (errt = 1|wt, ut, Dt) γ

λ
− γ
)

≤ θt + γ − (Pr (errt = 1|wt, ut, Dt)− 2q)
η2

2d

(
2qγ
λ
− γ
)

which implies Equation 2. Now, taking the expectation over {wt, ut, Dt} of both sides of Equation 2,
we get that for any t

E [θt+1] ≤ E [θt] +
(

1 +
η2

2d

)
γ − (Pr (errt)− 2q)

η2qγ

dλ
.



Summing over time steps, we then have that

T∑
t=1

E [θt+1] ≤
T∑
t=1

E [θt] +
(

1 +
η2

2d

)
γT − η2qγ

dλ

(
T∑
t=1

Pr (errt)− 2qT

)
.

Since θt ∈ [0, 2π) for all t, this implies that

0 ≤ 2π +
(

1 +
η2

2d

)
γT − η2qγ

dλ

(
T∑
t=1

Pr (errt)− 2qT

)
.

Rearranging terms and multiplying both sides by dλ/(η2qγ) yields

T∑
t=1

Pr (errt) ≤
2πdλ
η2qγ

+
(

1 +
η2

2d

)
dλ

η2q
T + 2qT .

Dividing both sides by T gives the desired bound on error.
To get the bound for general K, note that the analysis leading up to this past equation can be

applied to all subsequences during which there is no shift. Summing the above bound for all such
subsequences (where T is replaced by the length of the subsequence) with Pr (errt) pessimistically
bounded by 1 whenever a shift occurs between times t and t+ 1 leads to the bound.

6 Simulations

In this section, we discuss a series of simulations on synthetic data designed to illustrate the ef-
fectiveness of different algorithms for learning drifting hyperplanes. In particular, we compare the
performance of the standard Perceptron algorithm [16], the Shift Perceptron [5], the Randomized
Budget Perceptron [5], and the Modified Perceptron [4, 7] analyzed above. Like the Perceptron
algorithm, the Shift Perceptron maintains a vector of weights, but each time a mistake is made, the
Shift Perceptron shrinks its current weight vector towards zero in a way that depends on both the
current number of mistakes and a parameter λ. The Randomized Budget Perceptron is similar but
additionally tracks the set of examples that contribute to its current weight vector. If the size of
this set exceeds a predetermined budget B, one example is randomly removed and the weight vector
is updated by removing the contribution of this example.

For each experiment, the sequence x1,x2, · · · of synthetic data points was generated as follows.
We first generated 5000 d-dimensional random points z1, · · · , z5000 drawn from a zero-mean unit-
covariance Gaussian distribution. We then generated a random D× d linear transformation matrix
A, and used this to project each d-dimensional point zt to a D-dimensional vector xt = Azt. The
resulting data points were thus D-dimensional points with a true underlying dimension of d. We
fixed D = 1000 and experimented with various values of d between 5 and 500.

We generated each sequence of randomly drifting target weight vectors u1,u2, · · · as follows. To
start, u1 was drawn from a zero-mean unit-covariance D-dimensional Gaussian distribution. In the
first set of experiments, which we refer to as the random drift experiments, each subsequent target
ut was set to ut−1 + δt where δt ∼ N (0, σI) for σ = 0.1. In the second set of experiments, which
we refer to as the linear drift experiments, each ut was set to ut−1 + δ for a fixed random vector δ.
Each set of experiments was repeated 1000 times.

Both the Shift Perceptron and the Randomized Budget Perceptron are tuned using a single
parameter (denoted by λ and B respectively). While we originally planned to tune these parameters
using additional random draws of the data, the best values of these parameters simply reduced each
algorithm to the original Perceptron. Instead, we set λ = 0.01 or λ = 0.0001, and B = 300, as these
values resulted in fairly typical behavior for each of the algorithms.

The results are summarized in Figure 1. The two left plots show the results for the random
drift experiments with d = 5. The two right plots show the results for the linear drift experiments
with d = 50. The two top plots show the cumulative number of mistakes made by each of the
four algorithms averaged over 1000 runs, while the bottom two plots show difference between the
cumulative number of mistakes made by the Perceptron and the cumulative number of mistakes
made by each algorithm. (Values above 0 indicate that an algorithm made more mistakes than the
Perceptron, while values below 0 indicate than an algorithm made fewer.) The error bars correspond
to the 95% confidence interval over the 1000 runs.

Consider the top-left plot summarizing the results of the random drift experiments. We see that
all algorithms made between 250 and 300 mistakes, but the Modified Perceptron (green circles)
made (statistically significantly) fewer mistakes than the others. This difference is easier to see in
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Figure 1: Cumulative number of mistakes (top) and difference between the cumulative number
of mistakes and the cumulative number of mistakes made by the Perceptron algorithm (bottom)
averaged over 1000 runs for the random drift experiments (left) and linear drift experiments (right).
Four algorithms are evaluated: The standard Perceptron (red squares, largely hidden behind the
Shift Perceptron), the Modified Perceptron (analyzed above, green circles), the Random Budget
Perceptron with B = 300 (blue triangles), and the Shift Perceptron with λ = 0.1 (black stars) and
λ = 0.0001 (teal diamonds). The bars indicate 95% confidence intervals.

the bottom-left plot. The Shift Perceptron made about 2% more mistakes than the Perceptron
throughout the entire run. The Randomized Budget Perceptron was identical to the Perceptron
algorithm until its budget of examples is exceeded, but overall made 1.2% more mistakes. Finally,
during a prefix of training the Modified Perceptron made more mistakes than the Perceptron, but
after about 500 training examples, the Modified Perceptron outperformed the Perceptron, making
about 4% fewer mistakes.

The two right plots show qualitatively similar results for the linear drift experiments. During
the first 500 examples the Modified Perceptron made more mistakes then the Perceptron algorithm,
but it eventually performs better, ending with 15% fewer mistakes. As before, the performance
of the Randomized Budget Perceptron started to degrade after its number of mistakes exceeded
the budget. Finally, the Shift Perceptron made 4% more mistakes than the Perceptron after 1000
examples.

The total number of mistakes made by each of the four algorithms for various values of d are
shown in the top two panels of Figure 2. As before, the bottom panels show the performance relative
to the Perceptron, with values above 0 corresponding to more mistakes than the Perceptron. The
two left plots show the results for the random drift experiments and the two right plots for the linear
drift.

Comparing the top plots we observe that the random drift setting is slightly harder than the
linear drift setting for lower values of d. For example, for d = 20 most algorithms made about



10
1

10
2

400

600

800

1000

1200

1400

1600

random walk 5000

 

 

Perceptron
Mod. Perc.
Rand 300
Shift 0.01
Shift 0.0001

10
1

10
2

200

400

600

800

1000

1200

1400

1600
linear 5000

 

 

Perceptron
Mod. Perc.
Rand 300
Shift 0.01
Shift 0.0001

10
1

10
2

0

50

100

150

200

250

300

350

random walk 5000

 

 

Perceptron
Mod. Perc.
Rand 300
Shift 0.01
Shift 0.0001

10
1

10
2

−100

−50

0

50

100

150

200

250

300

350

400

linear 5000

 

 

Perceptron
Mod. Perc.
Rand 300
Shift 0.01
Shift 0.0001

Figure 2: Total number of mistakes (top) and difference between the total number of mistakes
and the number of mistakes made by the Perceptron algorithm (bottom) for different values of
the underlying dimension d of the data for the random drift experiments (left) and the linear drift
experiments (right). Again, the bars indicate 95% confidence intervals. (The elongation of these
bars toward the edge of the plot is only an artifact of the log-scale axis.)

550 errors in the random drift setting but only 400 mistakes in the linear drift setting. For high
values of d this gap is reduced. For small values of d, the Modified Perceptron outperformed the
other algorithms, especially in the linear drift setting. For example, it made 100 fewer mistakes than
the Perceptron algorithm with d = 5. When the underlying dimension d was large it made more
mistakes compared to the other algorithms. The break-even point is about d = 15 for random drift
and d = 150 for linear drift. The reason for this phenomenon is not clear to us. Note, however, that
the underlying dimension d plays a major role in determining the difficulty of each problem, while
the actual dimension D matters less. (This is not apparent from the experiments presented here,
but we found it to be true when experimenting with different values of D.) This observation is in
line with the dimension-independent bounds commonly published in the literature.
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A Additional Proofs

A.1 Proof of Theorem 6
We describe a strategy that the adversary can employ in order to force any learning algorithm to
make a mistake with probability at least (1− 1/e)/2 every 2/

√
λ time steps, resulting in an average

error of Ω(
√
λ).

The strategy for the adversary is simple. At time t = 0, the adversary sets f1 such that τt = 1/2.
The adversary then chooses a random bit b which is 1 with probability 1/2 and 0 with probability
1/2. If b = 1, then the adversary gradually shifts the threshold to the right, increasing it by γ

each time step until it reaches 1/2 + γ/
√
λ, and then shifts it back again. On the other hand, if

b = 0, then the adversary fixes τt = 1/2 for t = 1 to 2/
√
λ. In either case, at each of time step, the

adversary sets Dt to be any λ-good distribution for which weight
√
λ is spread uniformly over the

region [1/2, 1/2 + γ/
√
λ]. After time 2/

√
λ, the process repeats with a new random bit b.

Let us consider the probability that the learning algorithm makes at least one mistake during the
first 2/

√
λ time steps. Because the learning algorithm does not know the random bit b, the algorithm

cannot know whether the target is shifting or fixed, even if it is aware of the adversary’s strategy.
Therefore, the first time that the algorithm sees a point xt in (1/2, 1/2 + tγ) for t ∈ {1, · · · , 1/

√
λ}

or a point xt in (1/2, 1/2 + (2/
√
λ − t)γ) for t ∈ {1/

√
λ + 1, · · · , 2/

√
λ}, it makes a mistake with

probability 1/2. The algorithm will see at least one such point with probability 1−
∏1/

√
λ

t=1 (1−tλ)2 =

1− e
P1/

√
λ

t=1 2 ln(1−tλ) ≥ 1− e
P1/

√
λ

t=1 −2tλ ≥ 1− e−1, where the first inequality follows from the fact that



ln(x) ≤ x−1 and the second from the fact that
∑1/

√
λ

t=1 t ≥ 1/(2λ). This implies that the probability
that the algorithm makes at least one mistake during one of the first 2/

√
λ time steps is (1−1/e)/2.

The same analysis can be repeated to show that this is true of each consecutive interval of 2/
√
λ

steps. Thus the error rate of any algorithm is at least (1− 1/e)
√
λ/4.

A.2 Proof of Lemma 8
Let U be the uniform distribution over d-dimensional unit vectors. For any d-dimensional vector x
such that ||x|| = 1, Prz∼U (|z · x| > 1/(2

√
d)) ≥ 1/2 (see Dasgupta et al. [7]). Let I be an indicator

function that is 1 if its input is true and 0 otherwise. For any distribution Q over d-dimensional unit
vectors,

sup
z:||z||=1

Prx∼Q(|z · x| > 1/(2
√
d)) ≥ Ez∼U

[
Ex∼Q

[
I(|z · x| > 1/(2

√
d))
]]

= Ex∼Q
[
Prz∼U (|z · x| > 1/(2

√
d))
]
≥ 1/2.

This implies that for any distribution Q there exists a vector z such that Prx∼Q(|z ·x| > 1/(2
√
d)) ≥

1/2. For the remainder of the proof we let Q be the distribution D conditioned on |w · x| ≤ η/
√
d,

and define z to be any vector satisfying the property above for Q.
Let w+ = w + 2ηz and w− = w − 2ηz. Let X be the set of all unit vectors x such that

|z ·x| > 1/(2
√
d) and |w ·x| ≤ η/

√
d. It is easy to verify that for all x ∈ X, sign(w+ ·x) 6= sign(w− ·x).

Furthermore, we can construct a sequence of unit vectors w0, . . . , wk such that w0 = w+/‖w+‖ and
wk = w−/‖w−‖, arccos(wi · wi+1) < γ, and k ≤ 5η/γ + 1. To see how, let θ be the angle between
w0 and wk. Then cos(θ) = (w+ ·w−)/(‖w+‖ ‖w−‖) ≥ (1− 4η2)/(1 + 4η2) > 1− 8η2, where the first
inequality follows from the fact that ‖w+‖‖w−‖ =

√
(1 + 4η2 + 4η(w · z))(1 + 4η2 − 4η(w · z)) =√

(1 + 4η2)2 − 16η2(w · z)2 ≤ 1 + 4η2.
Since η < 1/2 we have that θ ∈ [0, π/2]. It can be shown that for any θ ∈ [0, π/2], (4/π2)θ2 ≤

1− cos(θ). This implies that θ <
√

2πη < 5η. Since the angle between each pair wi and wi+1 can be
γ, we can create a sequence of vectors satisfying the property above with k ≤ d5η/γe ≤ 5η/γ + 1.

We have established that for every x ∈ X, sign(w+ · x) 6= sign(w− · x). This implies that for
every x there is an i such that sign(wi · x) 6= sign(wi+1 · x). Thus to bound the weight of X under
D, it suffices to bound the weight of the regions ∆i = {x : sign(wi · x) 6= sign(wi+1 · x)}. Since,
by construction, the angle between each adjacent pair of vectors is at most γ and D is λ-good, D
places weight no more than λ on each set ∆i, and no more than kλ ≤ 5ηλ/γ + λ on the set X.

Finally, since we have shown that Prx∼Q(|z ·x| > 1/(2
√
d)) ≥ 1/2, it follows that Prx∼D(|w ·x| ≤

η/
√
d) ≤ 2D(X) ≤ 10ηλ/γ + 2λ.


