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Abstract

We analyze the regret, measured in terms of log loss, of the maximum likelihood (ML) sequential
prediction strategy. This “follow the leader” strategy also defines one of the main versions of
Minimum Description Length model selection.

We proved in prior work for single parameter exponential family models that (a) in the misspecified
case, the redundancy of follow-the-leader isnot 1

2 log n+O(1), as it is for other universal prediction
strategies; as such, the strategy also yields suboptimal individual sequence regret and inferior model
selection performance; and (b) that in general it is not possible to achieve the optimal redundancy
when predictions are constrained to the distributions in the considered model.

Here we describe a simple “flattening” of the sequential ML and related predictors, that does
achieve the optimal worst caseindividual sequenceregret of(k/2) log n + O(1) for k parame-
ter exponential family models for bounded outcome spaces; for unbounded spaces, we provide
almost-sure results. Simulations show a major improvementof the resulting model selection crite-
rion.

1 Introduction

Letx1, x2, . . . ∈ X ∗, be a sequence of outcomes revealed one at a time. After observingxn = x1, x2, . . . , xn,
a forecaster assigns a probability distribution onX , denotedP ( · | xn). Then, afterxn+1 is revealed, the
forecaster incurs thelog loss− log P (xn+1 | xn). The performance of the strategy is measured relative to
the best in a reference set of strategies, which we call themodelM. The difference between the accumulated
loss of the prediction strategy and the best strategy in the model is called theregret. The goal is to minimize
the regret in the worst case over all possible data sequences.

Sequential prediction of individual sequences with log loss has been extensively studied in learning the-
ory, in the framework ofprediction with expert advice(Azoury & Warmuth, 2001; Cesa-Bianchi & Lugosi,
2001; Cesa-Bianchi & Lugosi, 2006). However, it has also been playing an important role in the information
theory: a key result based on the Kraft-McMillan inequality(see, e.g., (Cover & Thomas, 1991)) states that,
ignoring rounding issues, for every uniquely decodable codelength functionL there is a probability distri-
butionP such thatL(x) = − log P (x) and vice versa1. Thus, at least whenX is countable, any prediction
strategy can also be thought of as auniversal source coding algorithm; the cumulative logarithmic loss cor-
responds exactly to the incurred codelength. As Rissanen’stheory of Minimum Description Length (MDL)
learning (Barron et al., 1998; Grünwald, 2005) is based on universal coding, a sequential prediction strategy
with log loss defines an MDL model selection criterion. Similarly, in statistics Dawid’s theory of prequen-
tial model assessment (Dawid, 1984) is based on sequential prediction. Thus we use the terms “prediction
strategy” and “code” interchangeably, as we do for “accumulated log loss” and “codelength”.

For parametric modelsM = {Pθ | θ ∈ Θ}, there are three “universal codes” (prediction strategieswith
low regret) that are particularly well known in the source coding and MDL communities: (1) after putting
a prior distributionπ on the model parameters, one can predict using theBayesian predictive distribution
PBAYES( · | xn) =

∫

Θ
Pθ( · | xn)π(θ | xn) dθ. (2) If there is a known horizon (maximal number of outcomes),

the Shtarkov code (Shtarkov, 1987), also known as the Normalized Maximum Likelihood code (Rissanen,
1996), can be defined. This universal codeminimizesthe worst-case regret. (3) Given an estimatorθ̄ : X i →

1Throughout this text, all logarithms are to the basee and we use nats rather than bits as units of information; however,
all results presented here are valid for logarithms of any base.



Θ, one can sequentially select an element of the model using the estimator and use that to predict the next
outcome, i.e.PPLUG-IN( · | xn) = Pθ̄(xn)( · | xn). Such “plug-in codes” were introduced independently in
the context of MDL learning (Rissanen, 1984) and in the context of prequential model validation (Dawid,
1984). If we takēθ(xn) equal to the maximum likelihood (ML) estimatorθ̂(xn), then the resulting strategy
is called the “ML plug-in strategy”, which corresponds to the “follow the leader” strategy in learning theory
terminology (Kalai & Vempala, 2003; Hutter & Poland, 2005).Strategy (3) always predicts using an element
of the model, whereas strategies (1) and (2) do not.

Under weak regularity conditions on the sequence of outcomes, the Bayesian and NML strategies have
been shown to achieve asymptotically optimal worst-case regret(k/2) log n + O(1), wherek is the number
of parameters of the model (Rissanen, 1989; Rissanen, 1996;Grünwald, 2007). As a consequence, the
same(k/2) log n + O(1)-result holds in expectation and almost surely, if the data are sampled from some
distributionP ∗, as long asP ∗ satisfies some very weak regularity conditions. In particular,P ∗ is not required
to lie in the modelM: the results still hold ifP ∗ 6∈ M, i.e. the “model is wrong”, or, as statisticians call
it, “the misspecified case”. Now ifP ∗ does lie inM, then the same(k/2) log n + O(1)-regret is achieved
in expectation underP ∗ for a large variety of plug-in models including multivariate exponential families,
ARMA processes, regression models and so on; examples are (Rissanen, 1986; Hemerly & Davis, 1989;
Wei, 1990; Li & Yu, 2000). However, in contrast to the Bayesian and NML results, the plug-in result does
not hold under misspecification, i.e. ifP ∗ 6∈ M. We reported earlier (Grünwald & de Rooij, 2005) that
under misspecification, already for single parameter exponential family models, the expected regret of the
ML plug-in strategy is1

2c log n + O(1) wherec is the variance of an outcome under the true distributionP ∗

divided by the variance under the element of the modelPθ that minimizes the Kullback-Leibler divergence
D(P ∗‖Pθ). Moreover, it is shown by (Grünwald & Kotłowski, 2010) thatno plug-in estimator can achieve
c = 1 (thus it does not help to replace maximum likelihood predictions by, say, Bayesian posterior mean or
moment-estimator-based predictions). This behavior is especially undesirable when the plug-in ML estimator
is used to define an MDL or prequential model selection procedure, because in those circumstances, as we
explained in Section 6, it is by definition not safe to assume thatP ∗ ∈ M. This is quite clearly visible in the
results of model selection experiments described by (De Rooij & Gr ünwald, 2006), where the plug-in based
version of MDL is significantly outperformed by MDL based on Bayesian and NML strategies.

While the ML plug-in strategy does not achieve the desired expected regret, (Gr̈unwald & Kotłowski,
2010) describe a simple modification of the plug-in prediction strategy that does do so, in the somewhat
specific case wherek = 1 and the outcomes are generated i.i.d. from some distribution P ∗. In this paper,
we extend this result to the much more general scenario wherek can be larger than1 and where we consider
worst-case individual sequence regret rather than expected regret. Our only assumption is that the outcome
spaceX is bounded in some sense. Following (Grünwald & Kotłowski, 2010), we propose theflattenedML
prediction strategy, a modification of the ML strategy that puts it slightly outsideM, and in Theorem 11 we
show that this strategy achieves optimal asymptotic minimax regret(k/2) log n + O(1). We also show that
when the outcomes are generated i.i.d. from some distribution P ∗ of which the first four central moments
exist, we can remove the assumption of boundedX and still our prediction strategy achieves the optimal
regret(k/2) log n with probability one.

Our result is important in practice since, in contrast to theBayesian predictive distribution, the flattened
ML strategy is in general just as easy to compute as the ML estimator itself. The flattened ML strategy can
be used to define an efficient MDL model selection criterion; we repeated the model selection experiments
of (De Rooij & Grünwald, 2006) including this new criterion to find that it displays acceptable performance,
unlike the ML plug-in strategy.

Related Work The idea of changing a “follow the leader”-strategy by modifying the leader is not new
(Kalai & Vempala, 2003; Hutter & Poland, 2005); however, our“flattened” leader is quite different from
the “perturbed” leader described in these earlier papers, and also the setting is quite different: flattened
leaders make sense relative to parametric statistical models, which may be regarded as an uncountable set
of experts satisfying continuity requirements; perturbedleaders make sense relative to finite or countable
sets of otherwise unrelated experts, and the regret bounds obtained in the latter settings are quite different
from the (k/2) log n regret obtained here. The flattened leader is more closely related to the predictive
densities considered by (Vidoni, 2008) and (Corcuera & Giummolè, 1999). These authors provideO(1/n)-
modifications of the ML density that are similar (but nonequivalent) to ours, and they investigate the behavior
of these modifications in terms of expected KL-divergence rather than cumulative regret, in a stochastic,
rather than an individual sequence setting.

The paper is organized as follows. We introduce the mathematical context for our results in Section 2.
We subsequently define the flattened ML strategy 3 and prove that the regret is(k/2) log n + O(1) in the
individual sequence setting with bounded sample space. We give an example of how this estimator can be
used in practice in Section 4, where we apply it to the model ofBernoulli distributions and show how its
worst case regret develops as a function of the sample size. In Section 5 we return to theory by providing an



“almost sure” analogue of our individual sequence result, where we can relax the boundedness assumption
somewhat. The prediction strategy based on the flattened ML estimator can be used to define an MDL model
selection criterion; in Section 6 this criterion is evaluated in a series of model selection experiments, showing
that it overcomes many of the weaknesses of the ML plug-in prediction strategy without flattening. We end
with a conclusion in Section 7.

2 Notation and Definitions

Let X be a set of outcomes, taking values either in a finite or countable set, or in a subset of Euclidean
space. Exponential family models are families of distributions onX defined relative to a random variable
φ : X → R

k (called “sufficient statistic”), and a functionh : X → [0,∞). Let Z(η) =
∫

x∈X
eηT φ(x)h(x) dx

(the integral to be replaced by a sum for countableX ), andΘnat = {η ∈ R
k : Z(η) < ∞}.

Definition 1 (Exponential family) Theexponential family (Barndorff-Nielsen, 1978)with sufficient statistic
φ andcarrierh is the family of distributions with densitiesPη(x) = 1

Z(η)e
ηT φ(x)h(x), whereη ∈ Θnat. Θnat

is called thenatural parameter space. The family is calledregularif Θnat is an open and convex subset ofR
k,

and if the representationPη(x) is minimal, i.e. the functionsφi(x), i = 1, . . . , k are linearly independent.

We only consider regular exponential families, but this qualification will henceforth be omitted. Exam-
ples include the Poisson, geometric and multinomial families, and the model of multidimensional Gaussian
distributions. Moreover, without loss of generality, we will make the simplifying assumption thatφ(x) ≡ x,
i.e. the exponential family is in the canonical form. All results in this paper are valid for more generalφ.

The statisticφ(X) ≡ X is sufficient forη (Barndorff-Nielsen, 1978). This suggests reparameterizing
the distribution by the expected value ofX, which is called themean value parameterization. The function
µ(η) = EPη

[X] maps parameters in the natural parameterization to the meanvalue parameterization. It is a
diffeomorphism (Barndorff-Nielsen, 1978), therefore themean value parameter spaceΘmean is also an open
set ofRk. We writeM = {Pµ | µ ∈ Θmean} wherePµ is the distribution with mean value parameterµ.

The sequence of outcomesx1, . . . , xn is abbreviated byxn (x0 denotes the empty sequence). At every
iterationn = 0, 1, 2, . . ., the predictionP ( · | xn) depends on the past outcomesxn and has the form of
a probability distribution onX , therefore it can be considered as a conditional of the jointdistribution of
outcomes inXn, which isP (xn) =

∏n
i=1 P (xi|x

i−1). Conversely, any probability distributionP on the
setXn defines a prediction strategy induced by its conditional distributionsP ( · | xi) for 0 ≤ i < n (Cesa-
Bianchi & Lugosi, 2006; Gr̈unwald, 2007).

We are now ready to define the plug-in prediction strategy.

Definition 2 (Plug-in prediction strategy) LetM = {Pµ | µ ∈ Θmean} be an exponential family with mean
value parameter domainΘmean. GivenM, and a function̄µ : X ∗ → Θmean, define theplug-in prediction
strategyPPLUG-IN by setting, for alln, all xn+1:

PPLUG-IN(xn+1 | xn) = Pµ̄(xn)(xn+1).

We will be mostly concerned with the maximum likelihood (ML)plug-in prediction strategy:

Definition 3 (ML prediction strategy) GivenM and constantsx0 ∈ Θmean, n0 > 0 we define theML
prediction strategyPML (xn+1|x

n) as a plug-in strategy with̄µ = µ̂◦
n, where

µ̂◦
n(xn) =

n0x0 +
∑n

i=1 xi

n0 + n
.

To understand this definition, note that for exponential families in the mean value parameterization, for
any sequence of data, the maximum likelihood parameterµ̂n is given by the averagêµn = n−1

∑

xi of the
observations (Barndorff-Nielsen, 1978). Here we define ourplug-in model in terms of a smoothed maximum
likelihood estimator̂µ◦

n that introduces a ‘fake initial outcome’x0 with multiplicity n0 in order to avoid
infinite log loss for the first few outcomes, and to ensure thatthe plug-in ML code of the first outcome is
well-defined. The estimator̂µ◦

n can also be interpreted as “maximum a posteriori” estimator, as it maximizes
the posterior distribution with appropriate conjugate prior. In practice we can taken0 = 1 but our result holds
for anyn0 > 0.

Definition 4 (Regret) We defineregretwith respect to a sequencexn of a prediction strategyP relative to
the modelM, as a difference between the accumulated log loss ofP and the accumulated log loss of the best



strategy fromM:

R(P ;xn) =
n
∑

i=1

− log P (xi|x
i−1) − inf

µ∈Θmean

n
∑

i=1

− log Pµ(xi)

= − log P (xn) − inf
µ∈Θmean

− log Pµ(xn).

(1)

From the definition, the minimizer:

µ̂n = arg inf
µ∈Θmean

− log Pµ(xn) = arg max
µ∈Θmean

Pµ(xn)

is the ordinary maximum likelihood estimator,µ̂n = n−1
∑

xi. Note, however, thatPµ̂n
is not the same

as the ML plug-in strategy withn0 = 0: sincePµ̂n
uses the ML estimatorbased on the whole sequenceto

predict all outcomes from the start, its predictions are generally much better than for the ML plug-in criterion.
Under some mild assumptions about the outcomes, two important prediction strategies, NML (normalized

maximum likelihood) and Bayes, achieve regrets that are (in an appropriate sense) close to optimal. To be
more specific, we must introduce the notion ofineccsisubsets ofΘmeanand the related sequences (Grünwald,
2007). These are formally defined as follows.

Definition 5 (Ineccsi subsets and sequences)Let M be a model with a smooth parameterizationΘ (e.g.,
M may be an exponential family andΘ may represent its mean-value parameterization). The subset Θ0 ⊂ Θ
is ineccsi(“interior (is) non-empty; closure (is) compact subset of interior”) if:

1. the interior ofΘ0 is nonempty;

2. the closure ofΘ0 is a compact subset of the interior ofΘ.

The sequencex1, x2, . . . is a Θ0-sequence if there existsm, such that for alln ≥ m, the ML estimator̂µn

exists, is unique and satisfiesµ̂n ∈ Θ0.

Now, the formal definitions of NML and Bayes strategies follow:

Definition 6 (NML prediction strategy) GivenM, an ineccsi subsetΘ0 ⊂ Θmean, and a finite horizonn,
define theNML prediction strategy with respect toΘ0 as:

PNML (x
n) =

supµ∈Θ0
Pµ(xn)

∫

Xn supµ∈Θ0
Pµ(zn) dzn

.

Definition 7 (Bayes prediction strategy) GivenM and a probability distributionπ(µ) onΘmean, define the
Bayes prediction strategyas:

PBAYES(x
n) =

∫

Θmean

Pµ(xn)π(µ) dµ.

Note that the NML does not define a random process, since its predictions depend on the horizonn, i.e.
marginalizing the NML distribution with some horizon larger thann over the firstn outcomes does not yield
the NML distribution with horizonn. This is not an issue with the Bayesian strategy, which does define a
random process.

The following theorem characterizes the regret of the NML and Bayes prediction strategies:

Theorem 8 LetM = {Pµ | µ ∈ Θmean} be ak-dimensional exponential family with mean-value parameter
spaceΘmean. LetΘ0 be an ineccsi subset ofΘmeanand letx1, x2, . . . be aΘ0-sequence. Then,

R(P, xn) =
k

2
log n + O(1), (2)

whereP is either the NML strategy with respect toΘ0 with horizonn, or the Bayesian prediction strategy,
based on a prior with supportΘmean.

For a proof, see e.g. (Grünwald, 2007). (2) is the famous ‘k over2 log n formula’, refinements of which lie
at the basis of practical approximations to MDL and Bayesianlearning, most notably BIC (Grünwald, 2007).
Since the NML strategy in factminimizesthe worst-case regret, it follows that a worst-case ofk

2 log n+O(1)
is optimal. We remark that, ifx1, x2, . . . do not form an ineccsi sequence, then the empirical mean of thexi

tends to the boundary of the parameter space. In that case, the behavior of the Bayesian strategy critically
depends on the prior, e.g. with the Bernoulli model and the uniform (Laplace) prior, the worst-case regret
becomeslog n; with Jeffreys’ prior, it is still(1/2) log n + O(1) (Freund, 1996); see also Section 4. In this



paper we concentrate on the ineccsi-case, where the data remain bounded away from the boundary, and the
(k/2) log n regret is achieved for Bayes withall priors with supportΘmean.

It is known that when outcomes are generated by one of the distributions inM, the plug-in strategy
satisfies (2) as well. However it was shown by (De Rooij & Grünwald, 2005; Gr̈unwald & de Rooij, 2005)
that when the outcomes are generated i.i.d. by some distribution P ∗ outsideM, the ML plug-in strategyPML

behaves suboptimally. Specifically, its expected regret satisfies, for allµ∗ ∈ Θmean,

EP∗ [R(PML , n)] ≥
1

2

varP∗X

varPµ∗
X

log n + O(1), (3)

whereµ∗ = EP∗ [X] is the element inΘmeanminimizing KL divergenceD(P ∗‖Pµ) for µ ∈ Θmean. A similar
result in a different context was already proved earlier by (Wei, 1990). The result was later extended to hold
(essentially) for all plug-in prediction strategies (not just ML plug-in) by (Gr̈unwald & Kotłowski, 2010). As
(3) is satisfied in the average case, the situation can only become worse in the individual sequence case.

3 The Flattened ML Strategy achieves Optimal Regret

While the plug-in strategies behave suboptimally as shown inthe previous section, it remains possible that a
small modification of the plug-in strategy, which puts the predictions slightly outsideM, might lead to the
optimal regret (2). As a first example, consider the Bayesianpredictive distribution whenM is the normal
family with fixed varianceσ2. In this case (see, e.g. (Grünwald, 2007)), the Bayesian code based on prior
N (µ0, τ

2
0 ) has a simple formPBAYES(xn+1|xn) = f(xn+1), wheref is the density of normal distribution

N (µn, τ2
n), with

µn =

(

(

n
∑

i=1

xi

)

+
σ2

τ2
0

µ0

)

/

(

n +
σ2

τ2
0

)

, and τ2
n = σ2/

(

n +
σ2

τ0

)

.

Thus, the Bayesian predictive distribution is itself a Gaussian with mean equal to the smoothed maximum
likelihood estimator̂µ◦

n with n0 = σ2/τ2
0 andx0 = µ0, albeit with a slightly larger varianceσ2 + O(1/n).

This shows that for the normal family with fixed variance, there exists an “almost” plug-in strategy, which
satisfies (2). This led to the conjecture, also in (Grünwald, 2007), that something similar should be possible
for exponential families in general. In this section we showthat this is indeed the case: we propose a simple
modification of the ML strategy, obtained by predictingxn+1 using a slightly “flattened” versionPFML of the
ML strategyPML , defined as:

Definition 9 (Flattened ML prediction strategy) GivenM and constantsx0 ∈ Θmean, n0 > 0, we define
theflattened ML prediction strategyPFML by setting for alln:

PFML(xn+1|xn) := Pµ̂◦

n
(xn+1)

n + n0 + 1
2 (xn+1 − µ̂◦

n)T I(µ̂◦
n)(xn+1 − µ̂◦

n)

n + n0 + k
2

,

whereI(µ) is the Fisher information matrix for modelM.

We first check thatPFML is properly defined:

Lemma 10 For everyn = 0, 1, . . ., PFML(xn+1|x
n) represents a valid probability distribution, i.e. it is

nonnegative and the sum/integral overxn+1 ∈ X is equal to1.

Proof: For everyx ∈ X , PFML(x | xn) ≥ 0 because the information matrixI(µ̂◦
n) is positive definite. To

show thatPFML( · | xn) normalizes to1, let Eµ denote the expectation with respect toPµ, i.e. Eµ̂◦

n
[f(X)] =

∫

X
f(x)Pµ̂◦

n
(x) dx. Then:

∫

PFML(xn+1|x
n) dxn+1 = Eµ̂◦

n

[

PFML(X|xn)

Pµ̂◦

n
(X)

]

=

(

n + n0 +
k

2

)−1
(

n + n0 +
1

2
Eµ̂◦

n

[

(X − µ̂◦
n)T I(µ̂◦

n)(X − µ̂◦
n)
] )

=

(

n + n0 +
k

2

)−1
(

n + n0 +
1

2
Eµ̂◦

n

[

Tr
{

(X − µ̂◦
n)(X − µ̂◦

n)T I(µ̂◦
n)
}

]

)

=

(

n + n0 +
k

2

)−1
(

n + n0 +
1

2
Tr
{

(CovPµ̂◦
n
X)I(µ̂◦

n)
})

= 1,



whereCovPµ̂◦
n
X is the covariance matrix ofPµ̂◦

n
and the last equality uses a standard result (Barndorff-

Nielsen, 1978) for the mean-value parameterization of exponential families which says that for allµ ∈ Θmean,
CovµX = I−1(µ).

The predictions of the corresponding flattened ML strategy are not harder to calculate than those of the
ordinary ML strategy, which is often much easier than calculating the predictive distribution of the Bayesian
strategy. Moreover, we show below in Theorem 11 that under some mild assumptions about the sequence of
outcomes, the flattened ML strategy always achieves the optimal regret, satisfying (2). To this end, we need
the following two propositions:

Proposition 1 Let X ∼ P ∗ with meanµ∗, and letM be the exponential family with sufficient statisticX
and mean-value parameter spaceΘmean, such thatµ∗ ∈ Θmean. Then for everyµ ∈ Θmeanwe have:

EP∗

[

− log Pµ(X) + log Pµ∗(X)
]

= D(µ∗‖µ),

whereD( · ‖ · ) is the Kullback-Leibler divergence.

Proof: By working out both sides of the equation using Definition 1, we find that they both reduce to
η(µ∗)µ∗ − log Z(η(µ∗)) − η(µ)µ∗ + log Z(η(µ)).

Proposition 2 LetM be the exponential family with sufficient statisticX and mean-value parameter space
Θmean. Then for everyµ, µ∗ ∈ Θ0, whereΘ0 is the ineccsi subset ofΘmean, we have:

D(µ∗‖µ) =
1

2
(µ − µ∗)T I(µ)(µ − µ∗) + O(‖µ − µ∗‖3).

Proof: We need two standard results regarding the properties of KL divergence (see, e.g. (Barndorff-Nielsen,
1978; Gr̈unwald, 2007)): for anyµ, µ∗ ∈ Θmean, it holds:

1. D(µ∗‖µ) ≥ 0 and the equality only holds forµ = µ∗,

2. For exponential families,∂2D(µ∗‖µ)/∂µi∂µj = Iij(µ).

By Taylor expandingD(µ∗‖µ) aroundµ∗ up to the second order, we get:

D(µ∗‖µ) = D(µ∗‖µ∗) + ∇D(µ∗‖µ)T
∣

∣

µ=µ∗
(µ − µ∗) +

1

2
(µ − µ∗)T I(µ̄)(µ − µ∗),

for someµ̄ betweenµ andµ∗. Due to the first property the zeroth order term disappears; the second order
term also disappears because the gradient vanishes at the minimum, so we have:

D(µ∗‖µ) =
1

2
(µ − µ∗)T I(µ̄)(µ − µ∗) =

1

2
(µ−µ∗)T I(µ)(µ−µ∗) +

1

2
(µ−µ∗)T

(

I(µ̄) − I(µ)
)

(µ−µ∗)

≤
1

2
(µ − µ∗)T I(µ)(µ − µ∗) +

1

2
‖I(µ̄) − I(µ)‖‖µ − µ∗‖2, (4)

where‖ · ‖ denotes vector or matrix norm, depending on the context. Taylor expandingI(µ̄) aroundµ up to
the first order givesI(µ̄) = I(µ) + ∇I(µ̃)T (µ̄ − µ), for someµ̃ between̄µ andµ. From that we get:

‖I(µ̄) − I(µ)‖ ≤ ‖∇I(µ̃)‖‖µ̄ − µ‖ ≤ C‖µ̄ − µ‖, (5)

whereC = supµ∈Θ0
‖∇I(µ)‖ is finite since closure ofΘ0 is compact and all derivatives of the information

matrix are continuous. It follows from the definition ofµ̄ that‖µ̄ − µ‖ ≤ ‖µ − µ∗‖; using this in (5) and
plugging the result into (4) finishes the proof.

Theorem 11 Let M be ak-dimensional exponential family with with mean-value parameter spaceΘmean.
Let Θ0 be an ineccsi subset ofΘmean and letx1, x2, . . . be aΘ0-sequence, i.e. for alln ≥ m, µ̂n ∈ Θ0.
Moreover, assume that the outcomes are bounded,‖xi‖ ≤ B for all i = 1, 2, . . . Then the flattened ML
strategyPFML with x0 ∈ Θ0 achieves asymptotically optimal regret, i.e.

R(PFML , x
n) =

k

2
log n + O(1), (6)

where the constant underO( · ) depends only onB, Θ0 andm, while it does not depend on the outcomesxn.



Proof: Let xn
0 be the sequence of outcomes, composed ofn0 fake outcomesx0 and the original sequencexn,

i.e. xn
0 = x0, . . . , x0, x1, . . . , xn, and we denotex−i = x0, i = 0, . . . , n0 − 1. We will use it to cope with

the fact that we predict witĥµ◦
n using the ML strategy, while we compare toµ̂n in the definition of regret (1).

Although µ̂◦
n andµ̂n are not the same, they are sufficiently similar that if we replace the termlog Pµ̂n

(xn)
with the termlog Pµ̂◦

n
(xn

0 ) in the definition (1); the difference is only small. Let us denote such a modified
regret byR′(PFML , x

n+1). We have:

R′(PFML , x
n) −R(PFML , x

n) =

n
∑

i=−n0−1

− log Pµ̂◦

n
(xi) −

n
∑

i=1

− log Pµ̂n
(xi)

= −n0 log Pµ̂◦

n
(x0) +

n
∑

i=1

log
Pµ̂n

(xi)

Pµ̂◦

n
(xi)

= O(1) + nEPemp

[

log
Pµ̂n

(X)

Pµ̂◦

n
(X)

]

= O(1) + nD(µ̂n‖µ̂
◦
n) = O(1) −

n

2
(µ̂n − µ̂◦

n)T I(µ̂◦
n)(µ̂n − µ̂◦

n) + nO(‖µ̂n − µ̂◦
n‖

3),

wherePemp is the empirical distribution function, which puts mass1/n on every outcome ofxn, EPemp
[X] =

µ̂n, and we used Proposition 1 withP ∗ ≡ Pemp, and then Proposition 2. Using the fact that:

‖µ̂n − µ̂◦
n‖ =

n0‖(x0 − µ̂n)‖

n + n0
≤

2n0B

n
,

and sincêµ◦
n ∈ Θ0 for n ≥ m, we get for alln ≥ m:

n

2
(µ̂n − µ̂◦

n)T I(µ̂◦
n)(µ̂n − µ̂◦

n) ≤
n

2
‖I(µ̂◦

n)‖‖µ̂n − µ̂◦
n‖

2 ≤
4n2

0B
2

2n
sup

µ∈Θ0

‖I(µ)‖ = O(n−1),

where‖I(µ)‖ denotes the matrix norm and we used the fact thatsupµ∈Θ0
‖I(µ)‖ is finite due to compactness

of the closure ofΘ0 and continuity of information matrix.
Thus, we proved thatR′(PFML , x

n) − R(PFML , x
n) = O(1). To show (6), it now suffices to show that

∆(n) = R′(PFML , x
n+1) −R′(PFML , x

n) = k
2n + O(n−2), where the constant underO( · ) does not depend

on the outcomesxn. Then, sincelog n ≤
∑n

i=1
1
i ≤ log n + 1, and

∑

n n−2 converges, (6) follows. From
the definition, we have:

∆(n) = − log PFML(xn+1|x
n) −

n+1
∑

i=−n0+1

− log Pµ̂◦

n+1
(xi) +

n
∑

i=−n0+1

− log Pµ̂◦

n
(xi)

= log

(

1+
k

2(n + n0)

)

−log

(

1+
1

2(n + n0)
(xn+1 − µ̂◦

n)T I(µ̂◦
n)(xn+1 − µ̂◦

n)

)

+

n+1
∑

i=−n0+1

log
Pµ̂◦

n+1
(xi)

Pµ̂◦

n
(xi)

.

Let us denoteξn = 1
2(n+n0)

(xn+1− µ̂◦
n)T I(µ̂◦

n)(xn+1− µ̂◦
n). We will show thatlog(1+ξn) = ξn +O(n−2).

To this end, we use the fact that for everyz > −1 it holds−z ≤ − log(1 + z) ≤ −z + z2

2 (this follows e.g.
from a Taylor expansion oflog(1 + z) aroundz = 0) and show thatξ2

n = O(n−2):

ξ2
n ≤

1

4n2
‖I(µ̂◦

n)‖2‖xn+1 − µ̂◦
n‖

4 ≤
1

4n2

(

sup
µ∈Θ0

‖I(µ)‖

)2(

2n0B

)4

= O(n−2),

for all n ≥ m. Thus we provedlog(1 + ξn) = ξn + O(n−2). Moreover,log(1 + k
2n ) = k

2n + O(n−2), so

∆(n) =
k

2n
−

1

2n
(xn+1 − µ̂◦

n)T I(µ̂◦
n)(xn+1 − µ̂◦

n) +
n+1
∑

i=−n0+1

log
Pµ̂◦

n+1
(xi)

Pµ̂◦

n
(xi)

+ O(n−2). (7)

To bound the sum, we note that it equals(n + n0 + 1)D(µ̂◦
n+1‖µ̂

◦
n) where we used Proposition 1 with the

empirical distribution again. Then, using Proposition 2, we get:
n+1
∑

i=−n0+1

log
Pµ̂◦

n+1
(xi)

Pµ̂◦

n
(xi)

=
n+n0+1

2
(µ̂◦

n − µ̂◦
n+1)

T I(µ̂◦
n)(µ̂◦

n − µ̂◦
n+1) + (n + n0 + 1)O(‖µ̂◦

n − µ̂◦
n+1‖

3).

Sinceµ̂◦
n − µ̂◦

n+1 = (µ̂◦
n − xn+1)/(n + n0 + 1), and‖µ̂◦

n − xn+1‖ ≤ 2B, it follows that:
n+1
∑

i=−n0+1

log(Pµ̂◦

n+1
(xi)/Pµ̂◦

n
(xi)) =

1

2n
(xn+1 − µ̂◦

n)T I(µ̂◦
n)(xn+1 − µ̂◦

n) + O(n−2).

Putting this into (7) gives:∆(n) = k
2n + O(n−2), as claimed.

The constant inO(1) does not depend on the sequencexn, because forn < m, µ̂◦
n (as a convex combi-

nation ofx0 andµ̂n) is kept away from the boundary ofΘmeanand thusI(µ̂◦
n) is bounded from above by a

constant independent of the sequencexn.



4 Example: the Bernoulli model

The Bernoulli model is{Pµ | µ ∈ [0, 1]}, whereX = {0, 1} andPµ(x) = µx(1 − µ)1−x. The Fisher infor-
mation isI(µ) = EPµ

[( d
dµ log Pµ(X))2] = 1/(µ(1 − µ)). After observingxn, the likelihood is maximized

by µ̂ = o/n whereo = x1 + . . .+xn; we will also usez = n−o. It turns out not to be necessary to introduce
any fake outcomes in this case (i.e.n0 → 0). Thus,µ̂n = µ̂◦

n, and the flattened ML prediction is

PFML(1 | xn) = µ̂n

(

n + 1
2I(µ̂n)(1 − µ̂n)2

n + 1
2

)

=
nµ̂n + 1

2 (1 − µ̂n)

n + 1
2

=
o + z

2n

n + 1
2

.

The regret for this estimator is maximized for
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Figure 1: Worst-case regret of Bernoulli estimators.

the all-zero or all-one sequence; an easy calcula-
tion shows it to be− 1

2 log(16/π) + log(Γ(n + 1
2 )/

Γ(n)) = 1
2 log n + O(1). Thus, even though the

worst case is achieved for non-ineccsi sequences
for which technically Theorem 11 does not apply,
we find that the flattened ML prediction strategy
achieves asymptotically optimal worst-case regret.

In Figure 1, we plot this worst-case regret to-
gether with the worst-case regret for a number of
other estimators: (1) the traditional Laplace esti-
mator P (1 | xn) = (o + 1)/(n + 2), which is
equal to the Bayes predictive distribution using a
uniform prior onµ and which does not behave very
well on non-ineccsi sequences, (2) the Krichevsky-
Trofimov estimatorP (1 | xn) = (o + 1

2 )/(n + 1)
(Krichevsky & Trofimov, 1981), which is equal to
the Bayes predictive distribution using Jeffreys’ prior, and (3) the “Last Step Minimax” estimator (Takimoto
& Warmuth, 2000), also known as “Conditional NML” estimator(Rissanen & Roos, 2007). The regret for
this last estimator was shown to be at most1

2 log(n + 1) + 1
2 in (Takimoto & Warmuth, 2000). As baselines,

we plot the functions12 log n andlog n, as well as the regret under the Shtarkov (or NML) distribution. As
mentioned in the introduction, the NML distribution is defined only with respect to a known horizon; here
the horizon is increased with the sample size, so the Shtarkov results do not reflect a valid prediction strategy
but rather provide a tight lower bound on the worst-case regret.

The figure shows that the flattened ML model shows performancecomparable to the KT and last step
minimax estimators, although the constant term is slightlyhigher.

5 Almost Sure Convergence in the Stochastic Case

In Section 3, we showed that the flattened ML strategy achieves optimal regret under a mild assumption that
the outcomes are bounded and form aΘ0-sequence. For those cases where this condition is not satisfied, the
boundedness requirement can be replaced with the assumption that the data are generated i.i.d. from some
distribution of which the first four moments exist. We can then obtain the result (6) with probability one.

The idea of the proof is that when the outcomes are generated i.i.d., they are in some sense bounded with
high probability anyway. Specifically, if we allow the boundto increase withn, and if the rate of increase
is faster thann1/4, one can show that when the first four moments of the distribution exist, the outcomes
are actually “bounded” (i.e., for alln, the outcomeXn is bounded by the bound for sample sizen) with
probability one; this is the content of Lemma 12. In Theorem 14, we show that if the bound increasesmore
slowly thann1/3, most of the analysis done in the proof of Theorem 11 still works. Combining those two
facts gives (6) with probability one.

Lemma 12 Let X1,X2, . . . be i.i.d. random variables and suppose the firstm moments ofXn exist. Then,
for everyB > 0, α > 0, with probability 1 there exists ann′ such that‖Xn‖ ≤ Bn

1
m−α for all n ≥ n′.

Proof: Equivalently, we prove that almost surely, the eventAn = {‖Xn‖ > Bn
1

m−α } occurs only finitely
often. From the Borel-Cantelli lemma we know that this is thecase when

∑∞
n=1 P (An) < ∞; we have

P (An) = P
(

‖Xn‖ ≥ Bn
1

m−α

)

= P
(

‖Xn‖
m ≥ Bmn

m
m−α

)

≤ E‖Xn‖
mB−mn− m

m−α ,

where the last step follows from Markov’s inequality. Sincemm−α > 1, the sum converges.

The next lemma is purely technical and will be needed in further proofs:



Lemma 13 Leta1, a2, . . . be a positive infinite sequence and letb1, b2, . . . be a positive nonincreasing infinite
sequence. DefineAn = a1 + . . . + an, Bn = b1 + . . . + bn andCn = a1b1 + . . . + anbn. If An = O(n) and
Bn = O(1), thenCn = O(1).

Proof: By assumption there arec, n0 such that for everyn ≥ n0 we haveAn ≤ c · n. Fix somen ≥ n0

andAn. Now suppose there is anan′ > c for somen0 ≤ n′ ≤ n. SinceAn′ ≤ c · n, there must be an
earlier terman′′ < c for some1 ≤ n′′ < n′. By increasingan′′ to c and decreasingan′ by the same amount,
An is unchanged while the value ofCn cannot decrease. Thus we may assume w.l.o.g. thatai ≤ c for all
n0 ≤ i ≤ n. But in that case we haveCn = Cn0−1 +

∑n
i=n0

aibi ≤ Cn0−1 + c ·
∑n

i=n0
bi = O(1).

Theorem 14 Let X1,X2, . . . be i.i.d. generated by a probability distributionP ∗ of which the first four
moments exist and such thatE[X] ∈ Θmean. LetM be ak-dimensional exponential family with mean-value
parameter spaceΘmean. Then the flattened ML strategyPFML almost surely achieves asymptotically optimal
regret, i.e.

R(PFML , x
n) =

k

2
log n + O(1) (8)

holds with probability one.

Proof: Since the first four moments ofP ∗ exists, Lemma 12 states that for largen, the sequence of outcomes
x1, x2, . . . is bounded byBnq for everyq > 1/4 with probability one. For simplicity, we takeq = 0.3, but
any q ∈ (1/4, 1/3) would work. From the strong law of large numbers, we know thatthe smoothed ML
estimator̂µ◦

n converges with probability one. Therefore, for largen, µ̂◦
n is bounded,‖µ̂◦

n‖ ≤ C.
We only give the sketch of the proof, because it closely follows the proof of Theorem 11. The main

difference is that in Theorem 11, we had‖xn‖ ≤ B, while here we have (with probability one)‖xn‖ ≤ Bn0.3

for largen. A closer look at the proof of Theorem 11 shows that after weakening the bound on‖xn‖ we still
get the same rates. The only problem is that now we are not ableto prove, that∆(n) = k

2n + O(n−2).
However, to obtain (8), it is enough to show that∆(n) = k

2n + f(n), wheref(n) is a function such that
∑

n f(n) converges and thus isO(1). To this end, instead of directly boundingξ2
n, we will show that

∑

n ξ2
n

converges. Since for largen,

ξ2
n ≤

1

4n2
sup

‖µ‖≤C

‖I(µ)‖2(‖xn+1‖ + C)4 = C ′ ‖xn+1‖
4 + O(n0.9)

n2

for some constantC ′, we only need to show that the sum
∑

n
‖xn+1‖

4

n2 converges. But this follows from
Lemma 13 withai = ‖xi+1‖

4 and bi = i−2: we haveAn =
∑n

i=1 ‖xi+1‖
4 = O(n) becauseAn/n

converges with probability one from the strong law of large numbers (because the fourth moment ofP ∗

exists), andBn =
∑n

i=1 i−2 = O(1). This means that with probability one,
∑

n ξ2
n converges.

6 Application: Model Selection

The strange behavior of the ML plug-in code first became apparent in a simulation study, where it was found
that this code gives rise to much weaker model selection performance than other model selection criteria, such
as Bayes factors model selection or even naive maximum likelihood model selection (De Rooij & Grünwald,
2005; De Rooij & Gr̈unwald, 2006); this is especially disturbing since the plug-in based version of MDL has
often been advocated for practical use (Rissanen, 1986; Rissanen, 1989; Grünwald, 2007). As mentioned in
the introduction, while the expected regret for the ML plug-in estimator isk

2 log n + O(1) when the model
contains the data generating distribution, it behaves differently when it does not. This is quite undesirable for
model selection: if it is certain that the true distributionis in all considered models, then there is no need to
do model selection in the first place!

Since the flattened ML prequential code described in this paper does not suffer from anomalous redun-
dancy under misspecification, we may reasonably hope for better model selection performance. Therefore
we have come full circle by turning back to our original (2005) model selection experiments, in order to de-
termine to what extent the flattened ML prequential plug-in code avoids the shortcomings of the unflattened
version, and whether or not it yields a useful model selection criterion.

The experimental setup is the same as it was in (De Rooij & Grünwald, 2006), but we provide a brief
description here as well to make this paper self-contained.The experiments involve a number of model
selection criteria: one based on the flattened ML plug-in code and a number of others, which will be used as
a basis for comparison. After defining these model selectioncriteria, we show the results of the simulation
and discuss how the performance of the criterion based on theflattened ML plug-in estimator relates to the
results we reported earlier.



6.1 Experiments

All experiments are based on repeatedly sampling a number ofoutcomes from either the Poisson model
MP = {PP(X;µ) | µ ∈ (0,∞)} wherePP(x;µ) = eµµx/x! or the geometric modelMG = {PG(X;µ) |
µ ∈ (0,∞)} wherePG(x;µ) = µx(µ + 1)−(x+1). To make the models easier to compare, both are pa-
rameterized by the mean, which is standard for Poisson but not for the geometric model. We first define
a number of criteria to select between these models. All criteria can be described in terms of a func-
tion L that maps a modelM and a sequence of outcomesxn to a codelength (negative loglikelihood, ac-
cumulated prediction error). Subsequently define the levelof evidence in favor of the Poisson model as
∆(xn) = L(MG, xn) − L(MP, x

n). We select Poisson if∆(xn) > 0 and geometric otherwise.
Many common model selection criteria can be defined in terms of a functionL. Our experiments involve

the following model selection criteria:

The Known meancriterion is defined byL(M, xn) = − log P (xn); hereP ∈ M is the distribution that
satisfiesEP [X] = µ, whereµ is the true mean of the data. Although the true mean is not known in practice,
this criterion is useful as an ideal baseline. It has the properties that (1) one of the two hypotheses equals the
generating distribution and (2) the sample consists of outcomes which are i.i.d. according to this distribution.
In (Cover & Thomas, 1991), Sanov’s Theorem is used to show that in such a situation, the probability that
the criterion prefers the wrong model (“error probability”) decreases exponentially in the sample size. If the
data are generated using Poisson[µ] then the error probability decreases exponentially in the sample size, with
some error exponent; if the data are generated with Geometric[µ] then the overall probability is exponentially
decreasing with the same exponent (Cover & Thomas, 1991, Theorem 12.9.1 on page 312 and text thereafter).
Thus, when the error probability is plotted on a log scale, the slope should be equal whether the generating
distribution is Poisson or geometric. This can be observed to be the case in Figures 2a and 2b.

The Maximum Likelihood (ML) criterion is defined byL(M, xn) = − log supP∈M P (xn). This is the
same as a (generalized) likelihood ratio test (GLRT) with a threshold of one. The ML criterion is well known
to be prone to overfitting: in a complex model, there may be a distribution that provides good fit to the
data purely by chance. Two approaches to penalize complex models are known as AIC (Akaike, 1974) and
BIC (Schwarz, 1978). However, for both these methods the penalty term depends only on the number of
parameters in the models. In this case, both models have onlya single parameter, so in∆(xn) the penalty
terms cancel: in this case, both AIC and BIC are equivalent toa GLRT with zero threshold!

Bayes factor model selection is obtained if we setL(M, xn) = − log
∫

µ
Pµ(xn)π(µ) dµ, where the prior

π may depend on the model. In this case,∆(xn) is equal to the logarithm of the Bayes factor. We use
Jeffreys’ prior in our experiments. Because it is improper for the Poisson and geometric models, we use the
first observation to normalize the prior. LettingS =

∑n
i=1 xi, We obtain the following expressions:

πP(µ|x1) =
e−µµx1−

1
2

Γ( 1
2 + x1)

; πG(µ|x1) = (x1 + 1
2 )

µx1−
1
2

(µ + 1)x1+
3
2

;

L(MP, x
n) = − log

∫ ∞

0

PP(x
n
2 ;µ)πP(µ|x1) dµ = log

Γ(x1 + 1
2 )

Γ(S + 1
2 )

+ (S + 1
2 ) log n +

n
∑

i=2

log(xi!);

L(MG, xn) = − log

∫ ∞

0

PG(xn
2 ;µ)πG(µ|x1) dµ = − log(x1 + 1

2 ) + log
Γ(S + n + 1

2 )

Γ(n)Γ(S + 1
2 )

.

The ML plug-in criterion is defined by settingL(M, xn) = − log PML (x
n) wherePML is as in Defini-

tion 3. This codelength does not correspond to a Bayesian marginal likelihood, so this criterion does not
yield Bayes factor model selection; howeverPML is a valid universal code so it does lead to an MDL model
selection procedure.

The flattened ML plug-incriterion is defined by settingL(M, xn) = − log PFML(x
n), whereU is as in

Definition 9.
These five criteria are subjected to two different kinds of tests:

Error probability The error probability for a criterion is the probability that it will select a model that
does not contain the distribution from which the data are sampled. We estimate the error probability through
repeated sampling: in our experiments, samples are always drawn from a Poisson[µ] distribution with prob-
ability p, or from a Geom[µ] distribution with probability1 − p. Figure 2 shows the error probability as a
function of the sample size on a log scale, for various valuesof p andµ. After the first two graphs, we plot the
ratio of the error probability of a criterion with the error probability of the baseline “known mean” criterion:
this allows for better distinction between the criteria.
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Figure 2: Error probability. For Figures (c) and (d), the error frequency is divided by the baseline, the error
frequency of the Known mean criterion. Estimated using106 trials.

Bias Let ∆µ(xn) be the evidence in favor of the Poisson model according to theknown mean criterion. For
other criteriaC, the quantity∆C can be interpreted as anestimatorfor ∆µ. The bias of such an estimator is
E[∆C(Xn)−∆µ(Xn)], where the expectation is taken under the true distribution. We subsequently estimate
this bias for all criteria by calculating the average over many trials. The results are in Figure 3.

6.2 Discussion

In order to establish a context to discuss the behavior of theflattened ML plug-in criterion, we first briefly
summarize the conclusions from (De Rooij & Grünwald, 2006), which still apply to the current experiments.

• ML and ML plug-in exhibited worst performance; the Bayesiancriterion performed reasonably on all tests.

• We found that the ML criterion consistently displays the largest bias in favor of Poisson. Figure 3 shows
how on average, for ML we obtained at least0.4 nats more evidence in favor of the Poisson model than for
known mean. The Poisson model appears to have a greater descriptive power, even though the two models
have the same number of parameters: intuitively, the Poisson model allows more information about the
data to be stored in the parameter estimate.

• In all graphs in Figure 2 one can observe the unusual slope of the error rate line of the ML plug-in criterion,
which clearly favors the geometric distribution. This is very undesirable for model selection, because the
error rate when data are sampled from Poisson with probability p and from geometric with probability
1 − p, is dominated by the worst of the two cases, i.e. the case thatthe data are Poisson distributed. This
explains why the error rate is so poor in the case wherep = 0.5 (Figures 2c and 2d). The bias is visible
more explicitly in Figure 3, where ML plug-in can be observedto become more and more favorable to the
geometric model as the sample size increases, regardless ofwhether the data were sampled from a Poisson
or geometric distribution.
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Figure 3: The classification bias in favor of the Poisson model in nats, estimated using105 trials.

The new experiments also include results for the new flattened ML plug-in criterion. Figure 2 shows that,
compared to ML plug-in, the slope of the error probability line for the flattened ML plug-in estimator is much
closer to that of known mean. Nevertheless, when the mean is increased in subfigure (d), we see that the error
probability seems to go down at a somewhat slower rate than itdoes for the Bayes and ML criteria.

In Figure 3 we find that, like ML plug-in, flattened ML plug-in is biased in favor of the geometric model.
If the data are geometric, then this bias increases with sample size, as it does for ML plug-in, albeit at a
slower rate. However, for Poisson data most of this effect appears to have been suppressed. This means that
the probability that Poisson data are incorrectly judged tobe geometric never becomes much larger than for
other criteria, regardless of sample size. So for model selection purposes, the bias is acceptable.

In conclusion, the flattened ML plug-in criterion does indeed seem to provide a substantial improvement
in model selection performance over the ML plug-in criterion. That said, the bias in favor of the geometric
model has not completely vanished, which may be because of the O(1) terms in the redundancy of the
estimator which we did not analyze. The Bayesian criterion is clearly somewhat more reliable, but may be
too computationally intensive depending on the consideredmodels.

7 Conclusion

Given a model (set of probability distributions)M, the maximum likelihood estimator̂θ(xn) based on past
observationsxn = x1, . . . , xn indexes a distribution that is a natural and easy to compute candidate for
prediction of the next observation. However, previous workshows that if the data generating distributionP ∗

is not in the model, then such a “ML plug-in” prediction strategy yields suboptimal expected regret: unlike for
other prediction strategies, such as Bayesian prediction,the expected regret isnot (k/2) log n + O(1), where
k is the number of parameters in the model. This is a serious problem when the “ML plug-in” strategy is used
for model selection: there, by its very nature, the possibility thatP ∗ 6∈ M deserves serious consideration.

To address this issue, we described a simple “flattening” of the ML distribution and related predictors,
using which the optimal worst caseindividual sequenceregret of(k/2) log n + O(1) can be achieved, for
exponential family models and bounded outcome spaces (Theorem 11 on page 6). For unbounded spaces,
we provided an almost-sure result (Theorem 14 on page 9). In Section 6, we subjected the new prediction
strategy to the same model selection experiments that showed the ML plug-in strategy to be suboptimal,
obtaining a major improvement in performance.
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