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Abstract

We study graph estimation and density estimation in high dimensions, using a family of density
estimators based on forest structured undirected graphical models. For density estimation, we do
not assume the true distribution corresponds to a forest; rather, we form kernel density estimates of
the bivariate and univariate marginals, and apply Kruskal’s algorithm to estimate the optimal forest
on held out data. We prove an oracle inequality on the excess risk of the resulting estimator relative
to the risk of the best forest. For graph estimation, we consider the problem of estimating forests
with restricted tree sizes. We prove that finding a maximum weight spanning forest with restricted
tree size is NP-hard, and develop an approximation algorithm for this problem. Viewing the tree
size as a complexity parameter, we then select a forest usingdata splitting, and prove bounds
on excess risk and structure selection consistency of the procedure. Experiments with simulated
data and microarray data indicate that the methods are a practical alternative to sparse Gaussian
graphical models.

1 Introduction

One way to explore the structure of a high dimensional distributionP for a random vectorX = (X1, . . . ,Xd)
is to estimate its undirected graph. The undirected graphG associated withP hasd vertices corresponding
to the variablesX1, . . . ,Xd, and omits an edge between two nodesXi andXj if and only if Xi andXj are
conditionally independent given the other variables. Currently, the most popular methods for estimatingG
assume that the distributionP is Gaussian. Finding the graphical structure in this case amounts to estimating
the inverse covariance matrixΩ; the edge betweenXj andXk is missing if and only ifΩjk = 0. Algorithms
for optimizing theℓ1-regularized log-likelihood have recently been proposed that efficiently produce sparse
estimates of the inverse covariance matrix and the underlying graph (Banerjee et al., 2008; Friedman et al.,
2007).

In this paper our goal is to relax the Gaussian assumption andto develop nonparametric methods for
estimating the graph of a distribution. Of course, estimating a high dimensional distribution is impossible
without making any assumptions. The approach we take here isto force the graphical structure to be a forest,
where each pair of vertices is connected by at most one path. Thus, we relax the distributional assumption of
normality but we restrict the family of undirected graphs that are allowed.

If the graph forP is a forest, then its densityp can be written as

p(x) =
∏

(i,j)∈E

p(xi, xj)

p(xi)p(xj)

d∏

k=1

p(xk) (1.1)

whereE is the set of edges in the forest. Thus, it is only necessary toestimate the bivariate and univariate
marginals. Given any distributionP with densityp, there is a treeT and a densitypT whose graph isT and
which is closest in Kullback-Leibler divergence top. WhenP is known, then the best fitting tree distribution
can be obtained by Kruskal’s algorithm (Kruskal, 1956), or other algorithms for finding a maximum weight
spanning tree. In the discrete case, the algorithm can be applied to the estimated probability mass function,
resulting in a procedure originally proposed by Chow and Liu(1968). Here we are concerned with continuous
random variables, and we estimate the bivariate marginals with nonparametric kernel density estimators.

In high dimensions, fitting a fully connected spanning tree can be expected to over fit. We regulate the
complexity of the forest by selecting the edges to include using a data splitting scheme, a simple form of



cross validation. In particular, we consider the family of forest structured densities that use the marginal
kernel density estimates constructed on the first partitionof the data, and estimate the risk of the resulting
densities over a second, held out partition. The optimal forest in terms of the held out risk is then obtained by
finding a maximum weight spanning forest for an appropriate set of edge weights.

While tree and forest structured density estimation has beenlong recognized as a useful tool, there has
been little theoretical analysis of the statistical properties of such density estimators. The main contribution
of this paper is an analysis of the asymptotic properties of forest density estimation in high dimensions. We
allow both the sample sizen and dimensiond to increase, and prove oracle results on the risk of the method.
In particular, we assume that the univariate and bivariate marginal densities lie in a Ḧolder class with exponent
β (see Section 4 for details), and show that

R(p̂ bF ) − min
F

R(p̂F ) = OP

(
√

log(nd)

(
k∗ + k̂

nβ/(2+2β)
+

d

nβ/(1+2β)

))
(1.2)

whereR denotes the risk, the expected negative log-likelihood,k̂ is the number of edges in the estimated
forestF̂ , andk∗ is the number of edges in the optimal forestF ∗ that can be constructed in terms of the kernel
density estimateŝp.

Among the only other previous work analyzing tree structured graphical models is Tan et al. (2009a) and
Chechetka and Guestrin (2007). Tan et al. (2009a) analyze the error exponent in the rate of decay of the error
probability for estimating the tree, in the fixed dimension setting, and Chechetka and Guestrin (2007) give a
PAC analysis. An extension to the Gaussian case is given by Tan et al. (2009b).

In addition to the above results on risk consistency, we alsostudy the problem of estimating forests with
restricted tree sizes. In many applications, one is interested in obtaining a graphical representation of a high
dimensional distribution to aid in interpretation. For instance, a biologist studying gene interaction networks
might be interested in a visualization that groups togethergenes in small sets. Such a clustering approach
through density estimation is problematic if the graph is allowed to have cycles, as this can require marginal
densities to be estimated with many interacting variables.Restricting the graph to be a forest beats the curse
of dimensionality by requiring only univariate and bivariate marginal densities. To group the variables into
small interacting sets, we are led to the problem of estimating a maximum weight spanning forest with a
restriction on the size of each component tree. As we demonstrate, estimating restricted tree size forests can
also be useful in model selection for the purpose of risk minimization. Limiting the tree size gives another
way of regulating tree complexity that provides larger family of forest to select from in the data splitting
procedure.

While the problem of finding a maximum weight forest with restricted tree size may be natural, it appears
not to have been studied previously. We prove that the problem is NP-hard through a reduction from the
problem of Exact 3-Cover (Garey & Johnson, 1979), where we are given a setX and a familyS of 3-element
subsets ofX, and must choose a subfamily of disjoint 3-element subsets to coverX. While finding the exact
optimum is hard, we give a practical4-approximation algorithm for finding the optimal tree restricted forest;
that is, our algorithm outputs a forest whose weight is guaranteed to be at least14w(F ∗), wherew(F ∗) is
the weight of the optimal forest. This approximation guarantee translates into excess risk bounds on the
constructed forest using our previous analysis, as the weight of the forest corresponds to contribution to the
risk coming from the bivariate marginals over the edges in the forest. Our experimental results with this
approximation algorithm show that it can be effective in practice for forest density estimation.

In Section 2 we review some background and notation. In Section 3 we present a two-stage algorithm,
and we provide a theoretical analysis of the algorithm in Section 4, with the detailed proofs collected in the
full arXiv version of this paper (Liu et al., 2010). In Section 6 we present experiments with both simulated
data and gene microarray data, where the problem is to estimate the gene-gene association graph, which has
been previously studied using Gaussian graphical models byWille et al. (2004).

2 Preliminaries and Notation
Let p∗(x) be a probability density with respect to Lebesgue measureµ(·) onR

d and letX(1), . . . ,X(n) ben

independent identically distributedRd-valued data vectors sampled fromp∗(x) whereX(i) = (X
(i)
1 , . . . ,X

(i)
d ).

LetXj denote the range ofX(i)
j and letX = X1 × · · · × Xd.

A graph is a forest if it is acyclic. IfF is ad-node undirected forest with vertex setVF = {1, . . . , d} and
edge setE(F ) ⊂ {1, . . . , d} × {1, . . . , d}, the number of edges satisfies|E(F )| < d, noting that we do not
restrict the graph to be connected. We say that a probabilitydensity functionp(x) is supported by a forestF
if the density can be written as

pF (x) =
∏

(i,j)∈E(F )

p(xi, xj)

p(xi) p(xj)

∏

k∈VF

p(xk), (2.1)



where eachp(xi, xj) is a bivariate density onXi×Xj , and eachp(xk) is a univariate density onXk (Lauritzen,
1996).

LetFd be the family of forests withd nodes, and letPd be the corresponding family of densities:

Pd =

{
p ≥ 0 :

∫

X

p(x) dµ(x) = 1, andp(x) satisfies (2.1) for someF ∈ Fd

}
. (2.2)

To bound the number of labeled spanning forests ond nodes, note that each such forest can be obtained by
forming a labeled tree ond + 1 nodes, and then removing noded + 1. From Cayley’s formula (Cayley, 1889;
Aigner & Ziegler, 1998), we then obtain the following.

Proposition 2.1 The size of the collectionFd of labeled forests ond nodes satisfies

|Fd| < (d + 1)d−1. (2.3)

Define the oracle forest density
q∗ = arg min

q∈Pd

D(p∗‖ q) (2.4)

where the Kullback-Leibler divergenceD(p‖ q) between two densitiesp andq is

D(p‖ q) =

∫

X

p(x) log
p(x)

q(x)
dx, (2.5)

under the convention that0 log(0/q) = 0, andp log(p/0) = ∞ for p 6= 0. The following is proved by Bach
and Jordan (2003).

Proposition 2.2 Let q∗ be defined as in(2.4). There exists a treeT ∗ ∈ Fd, such that

q∗ = p∗T∗ =
∏

(i,j)∈E(T∗)

p∗(xi, xj)

p∗(xi) p∗(xj)

∏

k∈VT∗

p∗(xk) (2.6)

wherep∗(xi, xj) andp∗(xi) are the bivariate and univariate marginal densities ofp∗.

For any densityq(x), the negative log-likelihood riskR(q) is defined as

R(q) = −E log q(X) = −

∫

X

p∗(x) log q(x) dx. (2.7)

It is straightforward to see that the densityq∗ defined in (2.4) also minimizes the negative log-likelihoodloss:

q∗ = arg min
q∈Pd

D(p∗‖ q) = arg min
q∈Pd

R(q) (2.8)

We thus define the oracle risk asR∗ = R(q∗). Using Proposition 2.2 and equation (2.1), we have

R∗ = R(q∗) = R(p∗T∗)

= −

∫

X

p∗(x)

( ∑

(i,j)∈E(T∗)

log
p∗(xi, xj)

p∗(xi)p∗(xj)
+

∑

k∈VT∗

log (p∗(xk))

)
dx

= −
∑

(i,j)∈E(T∗)

∫

Xi×Xj

p∗(xi, xj) log
p∗(xi, xj)

p∗(xi)p∗(xj)
dxidxj −

∑

k∈VT∗

∫

Xk

p∗(xk) log p∗(xk)dxk

= −
∑

(i,j)∈E(T∗)

I(Xi;Xj) +
∑

k∈VT∗

H(Xk), (2.9)

where

I(Xi;Xj) =

∫

Xi×Xj

p∗(xi, xj) log
p∗(xi, xj)

p∗(xi) p∗(xj)
dxidxj (2.10)

is the mutual information between the pair of variablesXi, Xj and

H(Xk) = −

∫

Xk

p∗(xk) log p∗(xk) dxk (2.11)



is the entropy. While the best forest will in fact be a spanningtree, the densitiesp∗(xi, xj) are in practice not
known. We estimate the marginals using finite data, in terms of a kernel density estimateŝpn1

(xi, xj) over a
training set of sizen1. With these estimated marginals, we consider all forest density estimates of the form

p̂F (x) =
∏

(i,j)∈E(F )

p̂n1
(xi, xj)

p̂n1
(xi) p̂n1

(xj)

∏

k∈VF

p̂n1
(xk). (2.12)

Within this family, the best density estimate may not be supported on a full spanning tree, since a full tree
will in general be subject to over fitting. Analogously, in high dimensional linear regression, the optimal
regression model will generally be a fullp-dimensional fit, with a nonzero parameter for each variable.
However, when estimated on finite data the variance of a full model will dominate the squared bias, resulting
in over fitting. In our setting of density estimation we will regulate the complexity of the forest by cross
validating over a held out set.

There are several different ways to judge the quality of a forest structured density estimator. In this paper
we concern ourselves with prediction and density estimation, and thus focus on risk consistency.

Definition 2.3 ((Risk consistency))For an estimator̂qn ∈ Pd, the excess risk is defined asR(q̂n)−R∗. The
estimatorq̂n is risk consistent with convergence rateδn if

lim
M→∞

lim sup
n→∞

P (R(q̂n) − R∗ ≥ Mδn) = 0. (2.13)

In this case we writeR(q̂n) − R∗ = OP (δn).

It is important to note that this criterion is an oracle property, in the sense that the true densityp∗(x) is not
restricted to be supported by a tree; rather, the property assesses how well a given estimatorq̂ approximates
the best forest density (the oracle) within a class.

3 Kernel Density Estimation For Forests
If the true densityp∗(x) were known, by Proposition 2.2, the density estimation problem would be reduced
to finding the best tree structureT ∗

d , satisfying

T ∗
d = arg min

T∈Td

R(p∗T ) = arg min
T∈Td

D(p∗‖ p∗T ). (3.1)

The optimal treeT ∗
d can be found by minimizing the right hand side of (2.9). Sincethe entropy termH(X) =∑

k H(Xk) is constant across all trees, this can be recast as the problem of finding the maximum weight
spanning tree for a weighted graph, where the weight of the edge connecting nodesi andj is I(Xi;Xj).
Kruskal’s algorithm (Kruskal, 1956) is a greedy algorithm that is guaranteed to find a maximum weight
spanning tree of a weighted graph. In the setting of density estimation, this procedure was proposed by Chow
and Liu (1968) as a way of constructing a tree approximation to a distribution. At each stage the algorithm
adds an edge connecting that pair of variables with maximum mutual information among all pairs not yet
visited by the algorithm, if doing so does not form a cycle. When stopped early, afterk < d − 1 edges have
been added, it yields the bestk-edge weighted forest.

Of course, the above procedure is not practical since the true densityp∗(x) is unknown. We replace the
population mutual informationI(Xi;Xj) in (2.9) by the plug-in estimatêIn(Xi,Xj), defined as

În(Xi,Xj) =

∫

Xi×Xj

p̂n(xi, xj) log
p̂n(xi, xj)

p̂n(xi) p̂n(xj)
dxidxj (3.2)

where p̂n(xi, xj) and p̂n(xi) are bivariate and univariate kernel density estimates. Given this estimated

mutual information matrix̂Mn =
[
În(Xi,Xj)

]
, we can then apply Kruskal’s algorithm (equivalently, the

Chow-Liu algorithm) to find the best tree structureF̂n.
Since the number of edges ofF̂n controls the number of degrees of freedom in the final densityestimator,

we need an automatic data-dependent way to choose it. We adopt the following two-stage procedure. First,
randomly partition the data into two setsD1 andD2 of sizesn1 andn2; then, apply the following steps:

1. UsingD1, construct kernel density estimates of the univariate and bivariate marginals and calculate
În1

(Xi,Xj) for i, j ∈ {1, . . . , d} with i 6= j. Construct a full treêF (d−1)
n1 with d − 1 edges, using the

Chow-Liu algorithm.

2. UsingD2, prune the treêF (d−1)
n1 to find a forestF̂ (bk)

n1 with k̂ edges, for0 ≤ k̂ ≤ d − 1.

Once F̂
(bk)
n1 is obtained in Step 2, we can calculatep̂

bF
(bk)
n1

according to (2.1), using the kernel density

estimates constructed in Step 1.



Algorithm 3.1 Chow-Liu (Kruskal)

1: Input dataD1 = {X(1), . . . ,X(n1)}.

2: CalculateM̂n1
, according to (3.3), (3.4), and (3.5).

3: Initialize E(0) = ∅

4: for k = 1, . . . , d − 1 do

5: (i(k), j(k)) ← arg max(i,j) M̂n1
(i, j) such thatE(k−1) ∪ {(i(k), j(k))} does not contain a cycle

6: E(k) ← E(k−1) ∪ {(i(k), j(k))}

7: Output treeF̂
(d−1)
n1 with edge setE(d−1).

3.1 Step 1: Estimating the marginals

Step 1 is carried out on the datasetD1. Let K(·) be a univariate kernel function. Given an evaluation point
(xi, xj), the bivariate kernel density estimate for(Xi,Xj) based on the observations{X(s)

i ,X
(s)
j }s∈D1

is
defined as

p̂n1
(xi, xj) =

1

n1

∑

s∈D1

1

h2
2

K

(
X

(s)
i − xi

h2

)
K

(
X

(s)
j − xj

h2

)
, (3.3)

where we use a product kernel withh2 > 0 as the bandwidth parameter. The univariate kernel density
estimatêpn1

(xk) for Xk is

p̂n1
(xk) =

1

n1

∑

s∈D1

1

h1
K

(
X

(s)
k − xk

h1

)
, (3.4)

whereh1 > 0 is the univariate bandwidth. Detailed specifications forK(·) andh1, h2 will be discussed in
the next section.

We assume that the data lie in ad-dimensional unit cubeX = [0, 1]d. To calculate the empirical mutual
informationÎn1

(Xi,Xj), we need to numerically evaluate a two-dimensional integral. To do so, we calculate
the kernel density estimates on a grid of points. We choosem evaluation points on each dimension,x1i <

x2i < · · · < xmi for theith variable. The mutual information̂In1
(Xi,Xj) is then approximated as

În1
(Xi,Xj) =

1

m2

m∑

k=1

m∑

ℓ=1

p̂n1
(xki, xℓj) log

p̂n1
(xki, xℓj)

p̂n1
(xki) p̂n1

(xℓj)
. (3.5)

The approximation error can be made arbitrarily small by choosingm sufficiently large. As a practical con-
cern, care needs to be taken that the factorsp̂n1

(xki) andp̂n1
(xℓj) in the denominator are not too small; a trun-

cation procedure can be used to ensure this. Once thed×d mutual information matrix̂Mn1
=

[
În1

(Xi,Xj)
]

is obtained, we can apply the Chow-Liu (Kruskal) algorithm to find a maximum weight spanning tree.

3.2 Step 2: Optimizing the forest

The full treeF̂
(d−1)
n1 obtained in Step 1 might have high variance when the dimension d is large, leading to

over fitting in the density estimate. In order to reduce the variance, we prune the tree; that is, we choose forest
with k ≤ d − 1 edges. The number of edgesk is a tuning parameter that induces a bias-variance tradeoff.

In order to choosek, note that in stagek of the Chow-Liu algorithm we have an edge setE(k) (in the
notation of the Algorithm 3.1) which corresponds to a forestF̂

(k)
n1 with k edges, wherêF (0)

n1 is the union ofd
disconnected nodes. To selectk, we choose among thed treesF̂ (0)

n1 , F̂
(1)
n1 , . . . , F̂

(d−1)
n1 .

Let p̂n2
(xi, xj) andp̂n2

(xk) be defined as in (3.3) and (3.4), but now evaluated solely based on the held-
out data inD2. For a densitypF that is supported by a forestF , we define the held-out negative log-likelihood
risk as

R̂n2
(pF ) (3.6)

= −
∑

(i,j)∈EF

∫

Xi×Xj

p̂n2
(xi, xj) log

p(xi, xj)

p(xi) p(xj)
dxidxj −

∑

k∈VF

∫

Xk

p̂n2
(xk) log p(xk) dxk.



The selected forest is then̂F (bk)
n1 where

k̂ = arg min
k∈{0,...,d−1}

R̂n2

(
p̂ bF

(k)
n1

)
(3.7)

and wherêp bF
(k)
n1

is computed using the density estimatep̂n1
constructed onD1.

For computational simplicity, we can also estimatek̂ as

k̂ = arg max
k∈{0,...,d−1}

1

n2

∑

s∈D2

log




∏

(i,j)∈E(k)

p̂n1
(X

(s)
i ,X

(s)
j )

p̂n1
(X

(s)
i ) p̂n1

(X
(s)
j )

∏

k∈V
bF
(k)
n1

p̂n1
(X

(s)
k )


 (3.8)

= arg max
k∈{0,...,d−1}

1

n2

∑

s∈D2

log




∏

(i,j)∈E(k)

p̂n1
(X

(s)
i ,X

(s)
j )

p̂n1
(X

(s)
i ) p̂n1

(X
(s)
j )



 . (3.9)

This minimization can be efficiently carried out by iterating over thed − 1 edges inF̂ (d−1)
n1 .

Oncek̂ is obtained, the final forest density estimate is given by

p̂n(x) =
∏

(i,j)∈E(bk)

p̂n1
(xi, xj)

p̂n1
(xi) p̂n1

(xj)

∏

k

p̂n1
(xk). (3.10)

4 Statistical Properties

In this section we present our theoretical results on risk consistency and structure selection consistency of the
forest density estimatêpn = p̂

bF
(bk)
d

.

To establish some notation, we writean = Ω(bn) if there exists a constantc such thatan ≥ cbn for
sufficiently largen. We also writean ≍ bn if there exists a constantc such thatan ≤ c bn andbn ≤ c an

for sufficiently largen. Given ad-dimensional functionf on the domainX , we denote itsL2(P )-norm and
sup-norm as

‖f‖L2(P ) =

√∫

X

f2(x)dPX(x), ‖f‖∞ = sup
x∈X

|f(x)| (4.1)

wherePX is the probability measure induced byX. Throughout this section, all constants are treated as
generic values, and as a result they can change from line to line.

In our use of a data splitting scheme, we always adopt equallysized splits for simplicity, so thatn1 =
n2 = n/2, noting that this does not affect the final rate of convergence.

4.1 Assumptions on the density

Fix β > 0. For anyd-tupleα = (α1, . . . , αd) ∈ N
d andx = (x1, . . . , xd) ∈ X , we definexα =

∏d
j=1 x

αj

j .
Let Dα denote the differential operator

Dα =
∂α1+···+αd

∂xα1
1 · · · ∂xαd

d

. (4.2)

For any real-valuedd-dimensional functionf on X that is ⌊β⌋-times continuously differentiable at point
x0 ∈ X , let P (β)

f,x0
(x) be its Taylor polynomial of degree⌊β⌋ at pointx0:

P
(β)
f,x0

(x) =
∑

α1+···+αd≤⌊β⌋

(x − x0)
α

α1! · · ·αd!
Dαf(x0). (4.3)

Fix L > 0, and denote byΣ(β, L, r, x0) the set of functionsf : X → R that are⌊β⌋-times continuously
differentiable atx0 and satisfy

∣∣∣f(x) − P
(β)
f,x0

(x)
∣∣∣ ≤ L‖x − x0‖

β
2 , ∀x ∈ B(x0, r) (4.4)

whereB(x0, r) = {x : ‖x − x0‖2 ≤ r} is theL2-ball of radiusr centered atx0. The setΣ(β, L, r, x0) is
called the(β, L, r, x0)-locally Hölder class of functions. Given a setA, we define

Σ(β, L, r,A) = ∩x0∈AΣ(β, L, r, x0). (4.5)

The following are the regularity assumptions we make on the true density functionp∗(x).



Assumption 4.1 For any1 ≤ i < j ≤ d, we assume

(D1) there existL1 > 0 andL2 > 0 such that for anyc > 0 the true bivariate and univariate densities satisfy

p∗(xi, xj) ∈ Σ
(
β, L2, c (log n/n)

1
2β+2 ,Xi ×Xj

)
(4.6)

and
p∗(xi) ∈ Σ

(
β, L1, c (log n/n)

1
2β+1 ,Xi

)
; (4.7)

(D2) there exists two constantsc1 andc2 such that

c1γn ≤ inf
xi,xj∈Xi×Xj

p∗(xi, xj) ≤ sup
xi,xj∈Xi×Xj

p∗(xi, xj) ≤ c2 (4.8)

µ-almost surely, whereγ2
n = Ω

(√
log n + log d

nβ/(β+1)

)
.

These assumptions are mild, in the sense that instead of adding constraints on the joint densityp∗(x), we
only add regularity conditions on the bivariate and univariate marginals.

4.2 Assumptions on the kernel

An important ingredient in our analysis is an exponential concentration result for the kernel density estimate,
due to Gińe and Guillou (2002). We first specify the requirements on thekernel functionK(·).

Let (Ω,A) be a measurable space and letF be a uniformly bounded collection of measurable functions.

Definition 4.2 F is a bounded measurable VC class of functions with characteristicsA andv if it is separa-
ble and for every probability measureP on (Ω,A) and any0 < ǫ < 1,

N
(
ǫ‖F‖L2(P ),F , ‖ · ‖L2(P )

)
≤

(
A

ǫ

)v

, (4.9)

whereF (x) = supf∈F |f(x)| and N(ǫ,F , ‖ · ‖L2(P )) denotes theǫ-covering number of the metric space
(Ω, ‖ · ‖L2(P )); that is, the smallest number of balls of radius no larger than ǫ (in the norm‖ · ‖L2(P )) needed
to coverF .

The one-dimensional density estimates are constructed using a kernelK, and the two-dimensional esti-
mates are constructed using the product kernel

K2(x, y) = K(x) · K(y). (4.10)

Assumption 4.3 The kernelK satisfies the following properties.

(K1)
∫

K(u) du = 1,
∫ ∞

−∞

K2(u) du < ∞ andsup
u∈R

K(u) ≤ c for some constantc.

(K2) K is a finite linear combination of functionsg whose epigraphs epi(g) = {(s, u) : g(s) ≥ u}, can be
represented as a finite number of Boolean operations (union and intersection) among sets of the form
{(s, u) : Q(s, u) ≥ φ(u)}, whereQ is a polynomial onR × R andφ is an arbitrary real function.

(K3) K has a compact support and for anyℓ ≥ 1 and1 ≤ ℓ′ ≤ ⌊β⌋
∫

|t|β |K(t)| dt < ∞, and

∫
|K(t)|ℓdt < ∞,

∫
tℓ

′

K(t)dt = 0. (4.11)

Assumptions (K1), (K2) and (K3) are mild. As pointed out by Nolan and Pollard (1987), both the pyramid
(truncated or not) kernel and the boxcar kernel satisfy them. It follows from (K2) that the classes of functions

F1 =

{
1

h1
K

(
u − ·

h1

)
: u ∈ R, h1 > 0

}
(4.12)

F2 =

{
1

h2
2

K

(
u − ·

h2

)
K

(
t − ·

h2

)
: u, t ∈ R, h2 > 0

}
(4.13)

are bounded VC classes, in the sense of Definition 4.2. Assumption (K3) essentially says that the kernelK(·)
should beβ-valid; see Tsybakov (2008) and Definition 6.1 in Rigollet and Vert (2009) for further details
about this assumption.



We choose the bandwidthsh1 andh2 used in the one-dimensional and two-dimensional kernel density
estimates to satisfy

h1 ≍

(
log n

n

) 1
1+2β

(4.14)

h2 ≍

(
log n

n

) 1
2+2β

. (4.15)

This choice of bandwidths ensures the optimal rate of convergence.

4.3 Risk consistency

Given the above assumptions, we first present a key lemma thatestablishes the rates of convergence of
bivariate and univariate kernel density estimates in thesup norm. Due to space limitations, the proof of this
and our other technical results are provided in the extendedarXiv version of this paper (Liu et al., 2010).

Lemma 4.4 Under Assumptions 4.1 and 4.3, and choosing bandwidths satisfying (4.14) and (4.15), the
bivariate and univariate kernel density estimatesp̂(xi, xj) and p̂(xk) in (3.3)and (3.4)satisfy

max
(i,j)∈{1,...,d}×{1,...,d}

sup
(xi,xj)∈Xi×Xj

|p̂(xi, xj) − p∗(xi, xj)| = OP

(√
log n + log d

nβ/(1+β)

)
(4.16)

and

max
k∈{1,...,d}

sup
xk∈Xk

|p̂(xk) − p∗(xk)| = OP

(√
log n + log d

n2β/(1+2β)

)
. (4.17)

To describe the risk consistency result, letP
(d−1)
d = Pd be the family of densities that are supported by

forests with at mostd− 1 edges, as already defined in (2.2). For0 ≤ k ≤ d− 1, we defineP(k)
d as the family

of d-dimensional densities that are supported by forests with at mostk edges. Then

P
(0)
d ⊂ P

(1)
d ⊂ · · · ⊂ P

(d−1)
d . (4.18)

Now, due to the nesting property (4.18), we have
inf

qF ∈P
(0)
d

R(qF ) ≥ inf
qF ∈P

(1)
d

R(qF ) ≥ · · · ≥ inf
qF ∈P

(d−1)
d

R(qF ). (4.19)

We first analyze the forest density estimator obtained usinga fixed number of edgesk < d; specifically,
consider stopping the Chow-Liu algorithm in Stage 1 afterk iterations. This is in contrast to the algorithm
described in 3.2, where the pruned tree size is automatically determined on the held out data. While this is
not very realistic in applications, since the tuning parameterk is generally hard to choose, the analysis in this
case is simpler, and can be directly exploited to analyze themore complicated data-dependent method.

Theorem 4.5 (Risk consistency)Let p̂ bF
(k)
d

be the forest density estimate with|E(F̂
(k)
d )| = k, obtained after

the firstk iterations of the Chow-Liu algorithm, for somek ∈ {0, . . . , d−1}. Under Assumptions 4.1 and 4.3,
we have

R(p̂ bF
(k)
d

) − inf
qF ∈P

(k)
d

R(qF ) = OP

(
k

√
log n + log d

nβ/(1+β)
+ d

√
log n + log d

n2β/(1+2β)

)
. (4.20)

Note that this result allows the dimensiond to increase at a rateo
(√

n2β/(1+2β)/ log n
)

and the number

of edgesk to increase at a rateo
(√

nβ/(1+β)/ log n
)

, with the excess risk still decreasing to zero asymptot-

ically.
The above results can be used to prove a risk consistency result for the data-dependent pruning method

using the data-splitting scheme described in Section 3.2.

Theorem 4.6 Let p̂
bF
(bk)
d

be the forest density estimate using the data-dependent pruning method in Sec-

tion 3.2, and let̂p bF
(k)
d

be the estimate with|E(F̂
(k)
d )| = k obtained after the firstk iterations of the Chow-Liu

algorithm. Under Assumptions 4.1 and 4.3, we have

R(p̂
bF
(bk)
d

) − min
0≤k≤d−1

R(p̂ bF
(k)
d

) = OP

(
(k∗ + k̂)

√
log n + log d

nβ/(1+β)
+ d

√
log n + log d

n2β/(1+2β)

)
(4.21)

wherek∗ = arg min0≤k≤d−1 R(p̂ bF
(k)
d

).

The proof of this theorem is given in (Liu et al., 2010).



Algorithm 5.1 Approximate Max Weightt-Restricted Forest

1: Input graphG with positive edge weights, and positive integert ≥ 2.

2: Sort edges in decreasing order of weight.

3: Greedily add edges in decreasing order of weight such that
(a) the degree of any node is at mostt;
(b) no cycles are formed.

The resulting forest isF ′ = {T1, T2, . . . , Tm}.

4: Output Ft = ∪jTreePartition(Tj , t).

5 Tree Restricted Forests
We now turn to the problem of estimating forests with restricted tree sizes. As discussed in the introduction,
clustering problems motivate the goal of constructing forest structured density estimators where each con-
nected component has a restricted number of edges. But estimating restricted tree size forests can also be
useful in model selection for the purpose of risk minimization, since the maximum subtree size can be viewed
as an additional complexity parameter.

Definition 5.1 A t-restricted forest of a graphG is a subgraphFt such that

1. Ft is the disjoint union of connected components{T1, ..., Tm}, each of which is a tree;
2. |Ti| ≤ t for eachi ≤ m, where|Ti| denotes the number of edges in theith component.

Given a weightwe assigned to each edge ofG, an optimalt-restricted forestF ∗
t satisfies

w(F ∗
t ) ≥ max

Ft(G)
w(Ft) (5.1)

wherew(F ) =
∑

e∈F we is the weight of a forestF andFt(G) denotes the collection of allt-restricted
forests ofG.

For t = 1, the problem is maximum weighted matching. Unfortunately for t ≥ 2, determining a max-
imum weightt-restricted forest is an NP-hard problem; however, this problem appears not to have been
previously studied. Our reduction is from Exact 3-Cover (X3C), shown to be NP-complete by Garey and
Johnson (1979)). In X3C, we are given a setX, a familyS of 3-element subsets ofX, and we must choose a
subfamily of disjoint 3-element subsets to coverX.

Our reduction constructs a graph with special tree-shaped subgraphs calledgadgets, such that each gadget
corresponds to a 3-element subset inS. We show that finding a maximum weightt-restricted forest on this
graph would allow us to then recover a solution to X3C by analyzing how the optimal forest must partition
each of the gadgets.

Given the difficulty of finding an optimalt-restricted forest, it is of interest to study approximation algo-
rithms. Algorithm 5.1 gives a procedure that has two stages.In the first stage, a forest is greedily constructed
in such a way that each node has degree no larger thant + 1. In the second stage, each tree in the forest is
partitioned in an optimal way by removing edges, resulting in a collection of trees, each of which has size
at mostt. The second stage employs a procedure we callTreePartition that takes a tree and returns
the optimalt-restricted subforest.TreePartition is a divide-and-conquer procedure of Lukes (1974)
that finds a carefully chosen set of forest partitions for each child subtree. It then merges these sets with the
parent node one subtree at a time. The details of theTreePartition procedure are given in (Liu et al.,
2010).

Theorem 5.2 Let Ft be the output of Algorithm 5.1, and letF ∗
t be the optimalt-restricted forest. Then

w(Ft) ≥
1
4w(F ∗

t ).

5.1 Pruning Based ont-Restricted Forests

For a givent, after producing an approximate maximum weightt-restricted forest̂Ft usingD1, we prune away
edges usingD2. To do so, we first construct a new set of univariate and bivariate kernel density estimates
usingD2, as before,̂pn2

(xi) and p̂n2
(xi, xj). We then estimate the “cross-entropies” of the kernel density

estimateŝpn1
for each pair of variables by computing

În2,n1
(Xi,Xj) =

∫
p̂n2

(xi, xj) log
p̂n1

(xi, xj)

p̂n1
(xi)p̂n1

(xj)
dxi dxj (5.2)

≈
1

m2

m∑

k=1

m∑

ℓ=1

p̂n2
(xki, xℓj) log

p̂n1
(xki, xℓj)

p̂n1
(xki) p̂n1

(xℓj)
. (5.3)



Algorithm 5.2 t-Restricted Forest Density Estimation

1: Divide data into two halvesD1 andD2.

2: Compute kernel density estimatorsp̂n1
andp̂n2 for all pairs and single variable marginals.

3: For all pairs(i, j) computeÎn1
(Xi,Xj) according to (3.5) and̂In2,n1

(Xi,Xj) according to (5.3).

4: For t = 0, . . . , tfinal wheretfinal is chosen based on the application

1. Compute or approximate (fort ≥ 2) the optimalt-restricted forest̂Ft usingÎn1
as edge weights.

2. PruneF̂t to eliminate all edges with negative weightsÎn2,n1
.

5: Among all pruned forestŝpF t , select̂t = arg min0≤t≤tfinal
R̂n2

(p̂ bFt
).

We then eliminate all edges(i, j) in F̂t for which În2,n1
(Xi,Xj) ≤ 0. For notational simplicity, we denote

the resulting pruned forest again bŷFt.
To estimate the risk, we simply usêRn2

(p̂ bFt
) as defined before, and select the forestF̂bt according to

t̂ = arg min
0≤t≤d−1

R̂n2
(p̂ bFt

). (5.4)

The resulting procedure is summarized in Algorithm 5.2.
Using the approximation guarantee and our previous analysis, we have that the population weights of the

approximatet-restricted forest and the optimal forest satisfy the following inequality. We state the result for
a generalc-approximation algorithm; for the algorithm given above,c = 4, but tighter approximations are
possible.

Theorem 5.3 Assume the conditions of Theorem 4.5. Fort ≥ 2, let F̂t be the forest constructed using a
c-approximation algorithm, and letF ∗

t be the optimal forest; both constructed with respect to finite sample
edge weightŝwn1

= În1
. Then

w(F̂t) ≥
1

c
w(F ∗

t ) + OP

(
(k∗ + k̂)

√
log n + log d

nβ/(1+β)

)
(5.5)

wherek̂ andk∗ are the number of edges in̂Ft andF ∗
t , respectively, andw denotes the population weights,

given by the mutual information.

As seen below, although the approximation algorithm has weaker theoretical guarantees, it out-performs
other approaches in experiments.

6 Experimental Results

In this section, we report numerical results on both synthetic datasets and microarray data; additional exper-
iments and further details are presented in the extended version of this paper (Liu et al., 2010). We mainly
compare the forest density estimator with sparse Gaussian graphical models, fitting a multivariate Gaussian
with a sparse inverse covariance matrix. The sparse Gaussian models are estimated using the graphical lasso
algorithm (glasso) of Friedman et al. (2007), which is a refined version of an algorithm first derived by
Banerjee et al. (2008). Since the glasso typically results in a large parameter bias as a consequence of theℓ1
regularization, we also compare with a method that we call the refit glasso, which is a two-step procedure—
in the first step, a sparse inverse covariance matrix is obtained by the glasso; in the second step, a Gaussian
model is refit withoutℓ1 regularization, but enforcing the sparsity pattern obtained in the first step.

6.1 Synthetic data

We generate high dimensional Gaussian and non-Gaussian data which are consistent with an undirected
graph. A typical run showing the held-out log-likelihood and estimated graphs is provided in Figure 6.1. We
see that for the Gaussian data, the refit glasso has a higher held-out log-likelihood than the forest density
estimator and the glasso. This is expected, since the Gaussian model is correct. For very sparse models,
however, the performance of the glasso is worse than that of the forest density estimator, due to the large
parameter bias resulting from theℓ1 regularization. We also observe an efficiency loss in the nonparametric
forest density estimator, compared to the refit glasso. The graphs are automatically selected using the held-
out log-likelihood, and we see that the nonparametric forest-based kernel density estimator tends to select a
sparser model, while the parametric Gaussian models tend tooverselect.
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Figure 6.1:Synthetic data, non-Gaussian. Held-out log-likelihood plots show forestdensity (black step function), glasso
(red stars), and refit glasso (blue circles); vertical indicates size of true graph.

Figure 6.2:A 934 gene subgraph of the full estimated 4238 gene network. Left: estimated forest graph. Right: estimated
Gaussian graph. Red edges in the forest graph are missing from the Gaussian graph and vice versa; the blue edges are
shared by both graphs. Note that the layout of the genes is the same for both graphs.

6.2 Microarray Data

Our data comes from Nayak et al. (2009). The dataset containsAffymetrics chip measured expression
levels of 4238 genes for 295 normal subjects in theCentre d’Etude du Polymorphisme Humain(CEPH) and
the International HapMap collections. The 295 subjects come from four different groups: 148 unrelated
grandparents in the CEPH-Utah pedigrees, 43 Han Chinese in Beijing, 44 Japanese in Tokyo, and 60 Yoruba
in Ibadan, Nigeria. Since we want to find common network patterns across different groups of subjects, we
pooled the data together into an = 295 by p = 4238 numerical matrix.

We estimate the full 4238 node graph using both the forest density estimator (described in Section 3.1 and
3.2) and the Meinshausen-Bühlmann neighborhood search method (Meinshausen & Bühlmann, 2006) with
regularization parameter chosen to give it about same number as edges as the forest graph. The forest density
estimated graph reveals one strongly connected component of more than 3000 genes and various isolated
genes; this is consistent with the analysis in Nayak et al. (2009) and is realistic for the regulatory system of
humans. The Gaussian graph contains similar component structure, but the set of edges differs significantly.
We also ran thet-restricted forest algorithm fort = 2000 and it successfully separates the giant component
into three smaller components. Since the forest density estimator produces a sparse and interpretable graph
whose structure is consistent with biological analysis, webelieve that it may be helpful for studying gene
interaction networks.

For visualization purposes, we show only a 934 gene subgraphof the strongly connected component
among the full 4238 node graphs we estimated. We refer the reader to the extended arXiv version of this
paper (Liu et al., 2010) for the full graph and other visualizations.



7 Conclusion

We have studied forest density estimation for high dimensional data. Forest density estimation skirts the
curse of dimensionality by restricting to undirected graphs without cycles, while allowing fully nonparametric
marginal densities. The method is computationally simple,and the optimal size of the forest can be robustly
selected by a data-splitting scheme. We have established oracle properties and rates of convergence for
function estimation in this setting. Our experimental results compared the forest density estimator to the
sparse Gaussian graphical model in terms of both predictiverisk and the qualitative properties of the estimated
graphs for human gene expression array data. Together, these results indicate that forest density estimation
can be a useful tool for relaxing the normality assumption ingraphical modeling.
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Giné, E., & Guillou, A. (2002). Rates of strong uniform consistency for multivariate kernel density estimators.
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