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Abstract

We study graph estimation and density estimation in highedisions, using a family of density

estimators based on forest structured undirected grdphiodels. For density estimation, we do
not assume the true distribution corresponds to a forasemrave form kernel density estimates of
the bivariate and univariate marginals, and apply Kruskajorithm to estimate the optimal forest
on held out data. We prove an oracle inequality on the exigssfrthe resulting estimator relative

to the risk of the best forest. For graph estimation, we aw@rsihe problem of estimating forests
with restricted tree sizes. We prove that finding a maximunghtespanning forest with restricted

tree size is NP-hard, and develop an approximation algarftr this problem. Viewing the tree

size as a complexity parameter, we then select a forest wkitay splitting, and prove bounds
on excess risk and structure selection consistency of theepure. Experiments with simulated
data and microarray data indicate that the methods are sigalaglternative to sparse Gaussian
graphical models.

1 Introduction

One way to explore the structure of a high dimensional distion P for a random vectoX = (X1,..., X4)

is to estimate its undirected graph. The undirected g@@ssociated withP hasd vertices corresponding
to the variablesX, ..., X4, and omits an edge between two nodgsand X if and only if X; and X are
conditionally independent given the other variables. @utity, the most popular methods for estimati@g
assume that the distributia? is Gaussian. Finding the graphical structure in this cassuas to estimating
the inverse covariance matii¥ the edge betweeX ; and X, is missing if and only if2;;, = 0. Algorithms

for optimizing the/, -regularized log-likelihood have recently been proposed éfficiently produce sparse
estimates of the inverse covariance matrix and the unaerigiaph (Banerjee et al., 2008; Friedman et al.,
2007).

In this paper our goal is to relax the Gaussian assumptiont@uigvelop nonparametric methods for
estimating the graph of a distribution. Of course, estintgal high dimensional distribution is impossible
without making any assumptions. The approach we take h&wdasce the graphical structure to be a forest,
where each pair of vertices is connected by at most one patls, Tve relax the distributional assumption of
normality but we restrict the family of undirected graphattare allowed.

If the graph forP is a forest, then its densifycan be written as
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whereF is the set of edges in the forest. Thus, it is only necessaegtimate the bivariate and univariate
marginals. Given any distributioR with densityp, there is a tred and a density whose graph i§" and
which is closest in Kullback-Leibler divergencegoWhen P is known, then the best fitting tree distribution
can be obtained by Kruskal's algorithm (Kruskal, 1956), threp algorithms for finding a maximum weight
spanning tree. In the discrete case, the algorithm can Heedp the estimated probability mass function,
resulting in a procedure originally proposed by Chow and(LR68). Here we are concerned with continuous
random variables, and we estimate the bivariate marginigilsnenparametric kernel density estimators.

In high dimensions, fitting a fully connected spanning trae be expected to over fit. We regulate the
complexity of the forest by selecting the edges to includegia data splitting scheme, a simple form of



cross validation. In particular, we consider the family ofefst structured densities that use the marginal
kernel density estimates constructed on the first partiiotine data, and estimate the risk of the resulting
densities over a second, held out partition. The optimadoin terms of the held out risk is then obtained by
finding a maximum weight spanning forest for an appropriatesedge weights.

While tree and forest structured density estimation has bmenrecognized as a useful tool, there has
been little theoretical analysis of the statistical proijesrof such density estimators. The main contribution
of this paper is an analysis of the asymptotic propertie®st density estimation in high dimensions. We
allow both the sample sizeand dimensioml to increase, and prove oracle results on the risk of the rdetho
In particular, we assume that the univariate and bivariaegimal densities lie in a élder class with exponent
0 (see Section 4 for details), and show that

~ N k* +k d
R(pgp) — mFmR(pp) =Op ( log(nd) <nﬁ/(2+25) + nﬁ/(1+2ﬁ)>> (1.2)

where R denotes the risk, the expected negative log-likelihdod the number of edges in the estimated
forestF, andk* is the number of edges in the optimal for@stthat can be constructed in terms of the kernel
density estimates.

Among the only other previous work analyzing tree strudugeaphical models is Tan et al. (2009a) and
Chechetka and Guestrin (2007). Tan et al. (2009a) analgzertbr exponent in the rate of decay of the error
probability for estimating the tree, in the fixed dimensietting, and Chechetka and Guestrin (2007) give a
PAC analysis. An extension to the Gaussian case is givenibgflal. (2009b).

In addition to the above results on risk consistency, we stisdy the problem of estimating forests with
restricted tree sizes. In many applications, one is intedeis obtaining a graphical representation of a high
dimensional distribution to aid in interpretation. Fortansce, a biologist studying gene interaction networks
might be interested in a visualization that groups togegjegres in small sets. Such a clustering approach
through density estimation is problematic if the graph isve¢d to have cycles, as this can require marginal
densities to be estimated with many interacting varialiRestricting the graph to be a forest beats the curse
of dimensionality by requiring only univariate and bivaeianarginal densities. To group the variables into
small interacting sets, we are led to the problem of estimyadi maximum weight spanning forest with a
restriction on the size of each component tree. As we demaiasestimating restricted tree size forests can
also be useful in model selection for the purpose of risk migation. Limiting the tree size gives another
way of regulating tree complexity that provides larger fignaf forest to select from in the data splitting
procedure.

While the problem of finding a maximum weight forest with refeed tree size may be natural, it appears
not to have been studied previously. We prove that the pnolideNP-hard through a reduction from the
problem of Exact 3-Cover (Garey & Johnson, 1979), where wejen a seX and a familyS of 3-element
subsets ofX, and must choose a subfamily of disjoint 3-element subsatsuwerX . While finding the exact
optimum is hard, we give a practic&lapproximation algorithm for finding the optimal tree réstted forest;
that is, our algorithm outputs a forest whose weight is guaed to be at leasfw(F*), wherew(F*) is
the weight of the optimal forest. This approximation guseantranslates into excess risk bounds on the
constructed forest using our previous analysis, as thehweitthe forest corresponds to contribution to the
risk coming from the bivariate marginals over the edges nftirest. Our experimental results with this
approximation algorithm show that it can be effective ingpice for forest density estimation.

In Section 2 we review some background and notation. In &&iwe present a two-stage algorithm,
and we provide a theoretical analysis of the algorithm inti§ec, with the detailed proofs collected in the
full arXiv version of this paper (Liu et al., 2010). In Segciié we present experiments with both simulated
data and gene microarray data, where the problem is to dstiimagene-gene association graph, which has
been previously studied using Gaussian graphical modelilky et al. (2004).

2 Preliminaries and Notation

Letp* () be a probability density with respect to Lebesgue meag(jeonR? and letX ™) ..., X () pen
independent identically distributéti’-valued data vectors sampled frarf{z:) whereX ) = (xV ... x"),

Let X; denote the range CX;Z) andletX = X} x --- x Xj.

A graph is a forest if it is acyclic. IF is ad-node undirected forest with vertex 3t = {1, ...,d} and
edge sef’(F) C {1,...,d} x {1,...,d}, the number of edges satisfigs(F')| < d, noting that we do not
restrict the graph to be connected. We say that a probabgitity functiorp(x) is supported by a forest’
if the density can be written as

e = I 2t T ), (2.1)
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where each(z;, z;) is a bivariate density 0A; x X;, and eaclp(x},) is a univariate density oft;, (Lauritzen,
1996).
Let 7, be the family of forests witld nodes, and leP,; be the corresponding family of densities:

Pa = {p >0: / p(z) du(z) = 1, andp(z) satisfies (2.1) for somg € fd} . (2.2)
X
To bound the number of labeled spanning forestd modes, note that each such forest can be obtained by

forming a labeled tree o+ 1 nodes, and then removing node- 1. From Cayley’s formula (Cayley, 1889;
Aigner & Ziegler, 1998), we then obtain the following.

Proposition 2.1 The size of the collectiaft; of labeled forests o nodes satisfies

|Fa| < (d+1)471, (2.3)
Define the oracle forest density
q" = argminD(p"| q) (2.4)
q€Pa

where the Kullback-Leibler divergend®(p|| ¢) between two densitigsandq is

D(p|lq) = /X (2) log E §da: (2.5)

under the convention thatlog(0/¢) = 0, andplog(p/0) = oo for p # 0. The following is proved by Bach
and Jordan (2003).

Proposition 2.2 Let¢* be defined as if2.4). There exists a tre€™ € F,, such that

== ] 555” I » (x0) (2.6)
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wherep* (z;, z;) andp*(z;) are the bivariate and univariate marginal densitiegptf

For any density;(z), the negative log-likelihood risR(q) is defined as

R(q) = ~Eloga(X) = - [ () oga(e) da. (2.7)
X
It is straightforward to see that the densjtydefined in (2.4) also minimizes the negative log-likelihdosk:
¢* = argminD(p*|| ¢) = argminR(q) (2.8)
q€Pa q€Pa

We thus define the oracle risk & = R(q¢*). Using Proposition 2.2 and equation (2.1), we have
R* = R(¢") = R(pr-)

-/ p*m( 3 logzw+zbg(p*(xk»>dx
(

i,j)EE(T™) prwp(es) g
* * Tiy Xy * %
= = Z / p(xﬁwj)lOgdeidxj_ Z / p*(wk) log p* (zy)dxy,
(i) €B(T*) 7 XXX P (@ipr(z;) K€V X
= = D> IXaX)+ Y H(X), (2.9)
(i,7)EE(T™*) keVp=
where
* p ($17$J)
I(Xi; X =/ p* (i, 25) log —— "9 d; (2.10)
KEXD = [ 703108 Gy iy i

is the mutual information between the pair of variabigs X ; and

H(Xy) = —/X p*(z) log p*(w) day, (2.11)



is the entropy. While the best forest will in fact be a spannieg, the densities*(z;, z;) are in practice not
known. We estimate the marginals using finite data, in terhaskernel density estimatég,, (x;, z;) over a
training set of sizer,. With these estimated marginals, we consider all foressitieastimates of the form

N Nz,
pr@) = ] p— T o (n)- (2.12)
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Within this family, the best density estimate may not be sufgal on a full spanning tree, since a full tree
will in general be subject to over fitting. Analogously, ighidimensional linear regression, the optimal
regression model will generally be a fyltdimensional fit, with a nonzero parameter for each variable
However, when estimated on finite data the variance of a falehwill dominate the squared bias, resulting
in over fitting. In our setting of density estimation we wilgulate the complexity of the forest by cross
validating over a held out set.

There are several different ways to judge the quality of adbstructured density estimator. In this paper
we concern ourselves with prediction and density estimatiad thus focus on risk consistency.

Definition 2.3 ((Risk consistency))For an estimatog,, € P, the excess risk is defined B$g,,) — R*. The
estimatorg, is risk consistent with convergence rdigif
hm limsup P(R(q,) — R* > MJ,) =0. (2.13)
— n—oo

In this case we writdR(g,,) — R* = Op(dy,).

Itis important to note that this criterion is an oracle pntpdn the sense that the true dengityx) is not
restricted to be supported by a tree; rather, the propesiysass how well a given estimatbapproximates
the best forest density (the oracle) within a class.

3 Kernel Density Estimation For Forests

If the true density*(x) were known, by Proposition 2.2, the density estimation |enmbwould be reduced
to finding the best tree structufg, satisfying
T; = argminR(p}) = argminD(p*| pj). (3.1)
TeT, TeT,
The optimal tred’; can be found by minimizing the right hand side of (2.9). Sitleeentropy ternf (X)) =
> x H(X}) is constant across all trees, this can be recast as the prafiléinding the maximum weight
spanning tree for a weighted graph, where the weight of tlyge ednnecting nodesandj is I(X;; X;).
Kruskal's algorithm (Kruskal, 1956) is a greedy algorithhat is guaranteed to find a maximum weight
spanning tree of a weighted graph. In the setting of denstiynation, this procedure was proposed by Chow
and Liu (1968) as a way of constructing a tree approximatboa distribution. At each stage the algorithm
adds an edge connecting that pair of variables with maximurtuah information among all pairs not yet
visited by the algorithm, if doing so does not form a cycle. Wktopped early, aftér < d — 1 edges have
been added, it yields the bdstdge weighted forest.
Of course, the above procedure is not practical since tieedemsityp*(x) is unknown. We replace the
population mutual informatiodi(X;; X ;) in (2.9) by the plug-in estimatg, (X;, X;), defined as
T pn (.T“ *Tj)
I,(X:, X; :/ Pn(@i, xj)log ="~
( j) X X X ( J) pn(xz)pn(xJ)
wherep, (z;,x;) andp,(z;) are bivariate and univariate kernel density estimates.etGihis estimated

mutual information matriﬂ/\Zn = [fn(Xi, Xj)}, we can then apply Kruskal's algorithm (equivalently, the

dx;dx (3.2)

Chow-Liu algorithm) to find the best tree structur.

Since the number of edgesE‘,fL controls the number of degrees of freedom in the final dewesitiynator,
we need an automatic data-dependent way to choose it. We gaofollowing two-stage procedure. First,
randomly partition the data into two séy andD, of sizesn; andns; then, apply the following steps:

1. Using Dy, construct kernel density estimates of the univariate dawariate marginals and calculate
I, (X, X;)fori,j € {1,...,d} with ¢ # j. Construct a full treeﬂﬁf‘l) with d — 1 edges, using the
Chow-Liu algorithm.

2. UsingD,, prune the treé?,gf_l) to find a forestl?,glf) with & edges, fof < k<d-1.

Onceﬁé'f) is obtained in Step 2, we can calculqﬁ‘g(;) according to (2.1), using the kernel density
estimates constructed in Step 1. h



Algorithm 3.1 Chow-Liu (Kruskal)

1: Input dataD; = {XM), ... X0},

2: CaIcuIate]\?nl, according to (3.3), (3.4), and (3.5).
Initialize E(© = (

fork=1,...,d—1do

w

AN

(i®),j®)) — argmay; ;) M, M, (i, §) such thatE =1 U {(i®, j(*))} does not contain a cycle

E® — B U (i, j#))

: Output treeﬁﬁ“f’l)

@

with edge seE (¢~ 1),

~

3.1 Step 1: Estimating the marginals

Step 1 is carried out on the datagt. Let K(-) be a univariate kernel function. Given an evaluation point
(x;,z;), the bivariate kernel density estimate fo¥;, X;) based on the observatiof; (2) X(S)}éep1 is

defined as
X(g) ) X(S) — .
Dy (T4, 5) Z h2 < 2 >K< J " 7, (3.3)

5€D

where we use a product kernel with > 0 as the bandwidth parameter. The univariate kernel density

estimatep,,, (xx) for Xy is
X(S)
§ it 4
Pny (1) h1 3 : (3.4)

s€D1
whereh; > 0 is the univariate bandwidth. Detailed specifications&gFr) andhy, he will be discussed in

the next section.
We assume that the data lie infadimensional unit cub&’ = [0, 1]¢. To calculate the empirical mutual

informationfn1 (Xi, X;), we need to numerically evaluate a two-dimensional infegmdo so, we calculate
the kernel density estimates on a grid of points. We chees¥aluation points on each dimensian, <

To; < -+ < Xy fOr theith variable. The mutual informatioﬁ11 (X3, X,) is then approximated as

= 1 & ~ pn (mkﬂ .’IJ@)
L (X X5) = —5 > i, x0;) log A0 0 35
() = 2 2 P08 S o ) (39

The approximation error can be made arbitrarily small byosiitegm sufficiently large. As a practical con-
cern, care needs to be taken that the fagigréz ;) andp,,, (x¢;) in the denominator are not too small; a trun-
cation procedure can be used to ensure this. OnaésthEmutual information matriX/\J\nl = [Am (X, Xj)}

is obtained, we can apply the Chow-Liu (Kruskal) algorittofihd a maximum weight spanning tree.

3.2 Step 2: Optimizing the forest

The full treeﬁ({f—l) obtained in Step 1 might have high variance when the dimanéie large, leading to
over fitting in the density estimate. In order to reduce théavece, we prune the tree; that is, we choose forest
with & < d — 1 edges. The number of edgess a tuning parameter that induces a bias-variance tradeoff

In order to choosé;, note that in stagé of the Chow-Liu algorithm we have an edge $&t) (in the
notation of the Algorithm 3.1) which corresponds to a forégi) with k£ edges, whereF,(L?) is the union ofd
disconnected nodes. To seléctve choose among thtreesE, EV .. F@D,

Let Dy, (z;, z;) andp,, (zx) be defined as in (3.3) and (3.4), but now evaluated solelydbas¢he held-
out data inD,. For a density r that is supported by a forest, we define the held-out negative log-likelihood
risk as

. p@i,zy) /
= - Py (i, 24) log ———— d:c dx Dy (1) log p(zy) dag.
Dy Prelawslon p sy = 3% [ (o) ol

(LJ)EEFR” keVe



The selected forest is thdAFa(L’f) where

k= arg min ﬁ (pF<k)) (3.7)
ke{o,...,d—1} "1

and wherep ) is computed using the density estimatg constructed orD;.
ny

For computational simplicity, we can also estimatas

arg max n% Z log H H Dny (X (3.8)

ke{0,...,d—1} €Dy (4,5)EE® pnl ()((é ) Anl (Xj( 5) k;EVA(k)
By (X, X))

Fry
arg max L g JI = J

k€{0,...,d=1} "2 =5 (i,j)eEG) Py (Xqi(S))ﬁnl(X](‘S))

E pnl(X( s) (9)

(3.9)

This minimization can be efficiently carried out by iteratiover thed — 1 edges inﬁ,ﬁ‘f‘l).
Oncek is obtained, the final forest density estimate is given by

~ pn ‘rla‘r
(@)= 1] S () Hpm k). (3.10)
(i.))€E® P (@) P (25)

4 Statistical Properties

In this section we present our theoretical results on risisistency and structure selection consistency of the
forest density estimatg, = pA(k>

To establish some notat|on we writg = Q(b,,) if there exists a constamtsuch thata,, > cb,, for
sufficiently largen. We also writea,, = b,, if there exists a constamtsuch thatz,, < cb,, andb,, < ca,
for sufficiently largen. Given ad-dimensional functiory’ on the domaint, we denote itd.5(P)-norm and
sup-norm as

1|y = /sz(fv)dPX(T/% [flloo = sup £ ()] (4.1)

where Py is the probability measure induced By. Throughout this section, all constants are treated as
generic values, and as a result they can change from lineeo li

In our use of a data splitting scheme, we always adopt eqsealbd splits for simplicity, so that; =
ng = n/2, noting that this does not affect the final rate of convergenc

4.1 Assumptions on the density

Fix 3 > 0. For anyd-tuplea = (a4, ...,aq) € N*andz = (z1,...,14) € X, we definer® = H?=1 g
Let D denote the differential operator
14y
D = 87 (4.2)

oxt - 0xy?

For any real-valued-dimensional functionf on X that is | 3]-times continuously differentiable at point
x9 € X, IetP([iC)0 (z) be its Taylor polynomial of degrejg5| at pointxg:

PO @= Y T gy @3)

oo a
ar+-+ag<| 8] a a!

Fix L > 0, and denote by¥(3, L, r, zo) the set of functiong’ : X — R that are| 5]-times continuously
differentiable atry and satisfy

fizo

f(@) = P2, (@) < Lo = a0, Vo € Blao,7) (4.4)

whereB(zg,7) = {z : || — zo||2 < r} is the Ly-ball of radiusr centered aty. The set(5, L, r, zo) is
called the(3, L, r, z)-locally Holder class of functions. Given a sét we define
E(ﬂ,L,T’,A) = mIOEAE(ﬁvLaTaxO)‘ (45)
The following are the regularity assumptions we make ontine density functiop*(z).



Assumption 4.1 For anyl < i < j < d, we assume

(D1) there exist.; > 0 and L, > 0 such that for any: > 0 the true bivariate and univariate densities satisfy

p(zi,xj) €2 (ﬂ,Lz,c(logn/n)ﬁ , X X Xj) (4.6)

and )
p*(@;) € = (8, Ly, e logn/m) 771 X,) @.7)

(D2) there exists two constants andc, such that
i = %1%}5%& X/‘-’jp (x“wj) N wi,xjseuzgx/’\fjp (x“xj) =@ (48)
logn + logd
2 _
u-almost surely, where;, = 2 ( BT )

These assumptions are mild, in the sense that instead afgddnstraints on the joint densipy (z), we
only add regularity conditions on the bivariate and unat&imarginals.
4.2 Assumptions on the kernel

An important ingredient in our analysis is an exponentiaaamtration result for the kernel density estimate,
due to Gire and Guillou (2002). We first specify the requirements orkéireel functionk(-).
Let (€2, .4) be a measurable space and#ebe a uniformly bounded collection of measurable functions.

Definition 4.2 F is a bounded measurable VC class of functions with charaties A andw if it is separa-
ble and for every probability measufeéon (2,.4) and any0 < € < 1,

A v
N (@ o) < () @9)

whereF(z) = sup;cx |f(z)] and N(e, F, || - [|z,(p)) denotes the-covering number of the metric space

(- |, (p))s that is, the smallest number of balls of radius no largenthdin the norm|| - || ., p)) needed
to coverF.

The one-dimensional density estimates are constructeg askernel’, and the two-dimensional esti-
mates are constructed using the product kernel

Ks(z,y) = K(z) - K(y). (4.10)
Assumption 4.3 The kernelK satisfies the following properties.
(K1) /K(u) du =1, / K?(u) du < oo andsup K (u) < ¢ for some constant.
— 0 u€eR

(K2) K is a finite linear combination of functionswhose epigraphs efj) = {(s,u) : g(s) > u}, can be
represented as a finite number of Boolean operations (unizhiatersection) among sets of the form
{(s,u) : Q(s,u) > ¢(u)}, where@ is a polynomial orR x R and¢ is an arbitrary real function.

(K3) K has a compact support and for ady> 1 and1 < ¢/ < | ]
/W |K (t)| dt < oo, and /|K(t)|‘dt < o0, /tf’K(t)dt =0. (4.11)

Assumptions (K1), (K2) and (K3) are mild. As pointed out byl&toand Pollard (1987), both the pyramid
(truncated or not) kernel and the boxcar kernel satisfy tHefollows from (K2) that the classes of functions

Fo= {1K<“'>:ueR, h1>0} (4.12)
i

1 U — - t—-
= (<K K(—): R 4.1
Fo {h% <h2) (h2> u,t € ,h2>0} (4.13)
are bounded VC classes, in the sense of Definition 4.2. AssomK3) essentially says that the kerrd€(-)

should beg-valid; see Tsybakov (2008) and Definition 6.1 in Rigollet and V@@QQ) for further details
about this assumption.




We choose the bandwidtlis andhs used in the one-dimensional and two-dimensional kernesiten
estimates to satisfy

1
1+28
b = (IOg”) (4.14)
n
1
] 7355
hy = (Oi”) . (4.15)

This choice of bandwidths ensures the optimal rate of cgarere.

4.3 Risk consistency

Given the above assumptions, we first present a key lemmaegtablishes the rates of convergence of
bivariate and univariate kernel density estimates insttyenorm. Due to space limitations, the proof of this
and our other technical results are provided in the extead€d version of this paper (Liu et al., 2010).

Lemma 4.4 Under Assumptions 4.1 and 4.3, and choosing bandwidthsfgaig (4.14) and (4.15), the
bivariate and univariate kernel density estimaggs;, z;) andp(z) in (3.3)and(3.4) satisfy

. logn + logd
o) —pt (i) = Op [ /B2 T 08 4.16
e B (mi’xjsitelgémj |p(zi25) — p* (4, 25)| P< BT ) (4.16)
~ N - logn + logd
el 0k, L) =P (o)) = Or (\/ nmwn) ' (447)

To describe the risk consistency result,ﬁf_l) = P, be the family of densities that are supported by

forests with at most — 1 edges, as already defined in (2.2). Bot k < d—1, we definePC(lk) as the family
of d-dimensional densities that are supported by forests withcstk edges. Then

and

PO cp® ... P, (4.18)
Now, due to the nesting property (4.18), we have
inf R(gr)> inf R(gp)>---> inf R(qp). (4.19)
qF 677((10) QFEPC(;) QFEPfldfl)

We first analyze the forest density estimator obtained uaifiged number of edgés < d; specifically,
consider stopping the Chow-Liu algorithm in Stage 1 aftéterations. This is in contrast to the algorithm
described in 3.2, where the pruned tree size is automatidatermined on the held out data. While this is
not very realistic in applications, since the tuning pareenkis generally hard to choose, the analysis in this
case is simpler, and can be directly exploited to analyzenwe complicated data-dependent method.

Theorem 4.5 (Risk consistency)Letp ) be the forest density estimate Miiﬁ(ﬁ(ﬁ’“)ﬂ = k, obtained after
d

the firstk iterations of the Chow-Liu algorithm, for sorkec {0,...,d—1}. Under Assumptions 4.1 and 4.3,
we have

~ . _ logn + logd logn + logd
R(pppm) — lnf()R(QF)—OP (k\/ =50 +d\/ perries il B (4.20)

k
qreP,

Note that this result allows the dimensidto increase at a rate(\/n%/(l“@)/ log n) and the number

of edgest to increase ata rate(« /nP/(1+6) [log n) , with the excess risk still decreasing to zero asymptot-

ically.
The above results can be used to prove a risk consistendy f@stihe data-dependent pruning method
using the data-splitting scheme described in Section 3.2.

Theorem 4.6 Let ﬁﬁ@) be the forest density estimate using the data-dependemingunethod in Sec-
d

tion 3.2, and lep ;) be the estimate WitlE(ﬁagk)ﬂ = k obtained after the first iterations of the Chow-Liu
d
algorithm. Under Assumptions 4.1 and 4.3, we have

- . ~ _ .~ [logn+logd logn + logd
R(ppe) = min  R(pm) = Op (U‘“ + k)\/ BT (T+B) +d\/ 2B/ (1+25) (4.21)

wherek* = argmin ., -, ; R(ﬁﬁé’”)'

The proof of this theorem is given in (Liu et al., 2010).



Algorithm 5.1 Approximate Max Weight-Restricted Forest

1. Input graphG with positive edge weights, and positive integer 2.
2: Sort edges in decreasing order of weight.

3: Greedily add edges in decreasing order of weight such that

(a) the degree of any node is at maist
(b) no cycles are formed.

The resulting forest i$” = {11, T, ..., T}
4: Output Fy = U;TreeParti ti on(T},t).

5 Tree Restricted Forests

We now turn to the problem of estimating forests with resdddree sizes. As discussed in the introduction,
clustering problems motivate the goal of constructing $ostructured density estimators where each con-
nected component has a restricted number of edges. Butatistinrestricted tree size forests can also be
useful in model selection for the purpose of risk minimiaatisince the maximum subtree size can be viewed
as an additional complexity parameter.

Definition 5.1 A t-restricted forest of a graplt’ is a subgraphF; such that

1. F; is the disjoint union of connected componefits, ..., T,,, }, each of which is a tree;
2. |T;| < tfor eachi < m, where|T;| denotes the number of edges in ttlecomponent.

Given a weightw,. assigned to each edge @f an optimalt-restricted forest}" satisfies
) > F, 5.1
w( t)_gtl(ag)w( t) (5.1)

wherew(F) = > . w. is the weight of a forest’ and F;(() denotes the collection of aftrestricted
forests ofG.

Fort = 1, the problem is maximum weighted matching. Unfortunatelytf> 2, determining a max-
imum weightt-restricted forest is an NP-hard problem; however, thidlemm appears not to have been
previously studied. Our reduction is from Exact 3-Cover C¥3shown to be NP-complete by Garey and
Johnson (1979)). In X3C, we are given a 3gta family S of 3-element subsets df, and we must choose a
subfamily of disjoint 3-element subsets to covér

Our reduction constructs a graph with special tree-shaplegraphs calledadgetssuch that each gadget
corresponds to a 3-element subsefinWe show that finding a maximum weightestricted forest on this
graph would allow us to then recover a solution to X3C by araly how the optimal forest must partition
each of the gadgets.

Given the difficulty of finding an optimat-restricted forest, it is of interest to study approximataigo-
rithms. Algorithm 5.1 gives a procedure that has two stalyethe first stage, a forest is greedily constructed
in such a way that each node has degree no largertthah. In the second stage, each tree in the forest is
partitioned in an optimal way by removing edges, resultimg icollection of trees, each of which has size
at mostt. The second stage employs a procedure weTaadlePar ti ti on that takes a tree and returns
the optimalt-restricted subforestTr eePartiti on is a divide-and-conquer procedure of Lukes (1974)
that finds a carefully chosen set of forest partitions foheatld subtree. It then merges these sets with the
parent node one subtree at a time. The details offtteePar ti t i on procedure are given in (Liu et al.,
2010).

Theorem 5.2 Let F; be the output of Algorithm 5.1, and Iét* be the optimal-restricted forest. Then
w(Fy) > Tw(FY).

5.1 Pruning Based on-Restricted Forests

For a givenrt, after producing an approximate maximum weighestricted foresﬁ usingD;, we prune away
edges using,. To do so, we first construct a new set of univariate and kat@rdkernel density estimates

usingD,, as beforep,,, (z;) andp,, (x;, z;). We then estimate the “cross-entropies” of the kernel dgnsi
estimate®,,, for each pair of variables by computing

N . ﬁn (xivxj)
1, n X, X, = /pn Tiy Ty IOg%dl‘l dz; (52)
2 1( J) 2( ]) pnl(x’i)pnl(xj) !
1 s Py (T, Te5)
~ L o (T, 707) log = AL . (5.3)
m2 ZZ 2 (This Te5) D (Ti) Py (205)



Algorithm 5.2  ¢-Restricted Forest Density Estimation

1: Divide data into two halve®; andD,.

2: Compute kernel density estimatgts, andp,» for all pairs and single variable marginals.

3: For all pairs(i, j) computefn1 (Xi, X;) according to (3.5) andanl (Xi, X;) according to (5.3).
4: Fort =0, ..., tina Wheretsng is chosen based on the application

1. Compute or approximate (for> 2) the optimalt-restricted foresf, usingIAn1 as edge weights.
2. Prunef; to eliminate all edges with negative weights ,,, .

5: Among all pruned forestgy, select = arg Miny <, <y ﬁm (ﬁﬁ)'

We then eliminate all edg€s, j) in E for which IA"M1 (Xi, X;) < 0. For notational simplicity, we denote
the resulting pruned forest again By.
To estimate the risk, we simply usg,, (pz, ) as defined before, and select the foEsaccording to
t= argminR,,, (5. (5.4)
0<t<d—1

The resulting procedure is summarized in Algorithm 5.2.

Using the approximation guarantee and our previous arsaly& have that the population weights of the
approximate-restricted forest and the optimal forest satisfy the feifay inequality. We state the result for
a generak-approximation algorithm; for the algorithm given aboves= 4, but tighter approximations are
possible.

Theorem 5.3 Assume the conditions of Theorem 4.5. For 2, let ﬁt be the forest constructed using a
c-approximation algorithm, and lek;" be the optimal forest; both constructed with respect todisample

edge weightss,,, = I,,,. Then

~ . « =~ [logn+logd

wherek and k* are the number of edges ﬁ and F;, respectively, anay denotes the population weights,
given by the mutual information.

—_

As seen below, although the approximation algorithm haskeretheoretical guarantees, it out-performs
other approaches in experiments.

6 Experimental Results

In this section, we report numerical results on both syithdstasets and microarray data; additional exper-
iments and further details are presented in the extendeibweof this paper (Liu et al., 2010). We mainly
compare the forest density estimator with sparse Gaussaghigal models, fitting a multivariate Gaussian
with a sparse inverse covariance matrix. The sparse Gaussidels are estimated using the graphical lasso
algorithm (glasso) of Friedman et al. (2007), which is a ediversion of an algorithm first derived by
Banerjee et al. (2008). Since the glasso typically resnltslarge parameter bias as a consequence df the
regularization, we also compare with a method that we caltdfit glasso which is a two-step procedure—

in the first step, a sparse inverse covariance matrix is médaby the glasso; in the second step, a Gaussian
model is refit without; regularization, but enforcing the sparsity pattern oladim the first step.

6.1 Synthetic data

We generate high dimensional Gaussian and non-Gaussianmtéth are consistent with an undirected
graph. A typical run showing the held-out log-likelihooddagstimated graphs is provided in Figure 6.1. We
see that for the Gaussian data, the refit glasso has a higlteotielog-likelihood than the forest density
estimator and the glasso. This is expected, since the Gaussddel is correct. For very sparse models,
however, the performance of the glasso is worse than thateofdrest density estimator, due to the large
parameter bias resulting from tlie regularization. We also observe an efficiency loss in theoacametric
forest density estimator, compared to the refit glasso. Taphg are automatically selected using the held-
out log-likelihood, and we see that the nonparametric fepased kernel density estimator tends to select a
sparser model, while the parametric Gaussian models teovktselect.
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Figure 6.1:Synthetic data, non-Gaussian. Held-out log-likelihood plots show fdessity (black step function), glasso
(red stars), and refit glasso (blue circles); vertical indicates sizeefraph.

Figure 6.2:A 934 gene subgraph of the full estimated 4238 gene network. Left: @gtihfiorest graph. Right: estimated
Gaussian graph. Red edges in the forest graph are missing from tissi@agraph and vice versa; the blue edges are
shared by both graphs. Note that the layout of the genes is the san@tiarhphs.

6.2 Microarray Data

Our data comes from Nayak et al. (2009). The dataset congsffygmetrics chip measured expression
levels of 4238 genes for 295 normal subjects in@atre d’Etude du Polymorphisme Hum#&@EPH) and
the International HapMap collections. The 295 subjectsedrmm four different groups: 148 unrelated
grandparents in the CEPH-Utah pedigrees, 43 Han Chineseijind 44 Japanese in Tokyo, and 60 Yoruba
in Ibadan, Nigeria. Since we want to find common network pagt@cross different groups of subjects, we
pooled the data together intawa= 295 by p = 4238 numerical matrix.

We estimate the full 4238 node graph using both the foresgtitiemstimator (described in Section 3.1 and
3.2) and the MeinshauserniiBImann neighborhood search method (Meinshauserii8irBann, 2006) with
regularization parameter chosen to give it about same nuasbedges as the forest graph. The forest density
estimated graph reveals one strongly connected compofienbre than 3000 genes and various isolated
genes; this is consistent with the analysis in Nayak et #1092 and is realistic for the regulatory system of
humans. The Gaussian graph contains similar componewttey but the set of edges differs significantly.
We also ran the-restricted forest algorithm far = 2000 and it successfully separates the giant component
into three smaller components. Since the forest densitgnatir produces a sparse and interpretable graph
whose structure is consistent with biological analysis,b&beve that it may be helpful for studying gene
interaction networks.

For visualization purposes, we show only a 934 gene subgoépine strongly connected component
among the full 4238 node graphs we estimated. We refer thderda the extended arXiv version of this
paper (Liu et al., 2010) for the full graph and other visuatians.



7 Conclusion

We have studied forest density estimation for high dimemdiadlata. Forest density estimation skirts the
curse of dimensionality by restricting to undirected gmapfithout cycles, while allowing fully nonparametric
marginal densities. The method is computationally simgtel the optimal size of the forest can be robustly
selected by a data-splitting scheme. We have establistedeoproperties and rates of convergence for
function estimation in this setting. Our experimental Hssaompared the forest density estimator to the
sparse Gaussian graphical model in terms of both prediétkend the qualitative properties of the estimated
graphs for human gene expression array data. Togethee tesglts indicate that forest density estimation
can be a useful tool for relaxing the normality assumptiographical modeling.
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