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Abstract

We describe online algorithms for learning a rotation from pairs of unit vectors in Rn. We show
that the expected regret of our online algorithm compared to the best fixed rotation chosen offline
is O(

√
nL), where L is the loss of the best rotation. We also give a lower bound that proves

that this expected regret bound is optimal within a constant factor. This resolves an open problem
posed in COLT 2008. Our online algorithm for choosing a rotation matrix in each trial is based on
the Follow-The-Perturbed-Leader paradigm. It adds a random spectral perturbation to the matrix
characterizing the loss incurred so far and then chooses the best rotation matrix for that loss. We
also show that any deterministic algorithm for learning rotations has Ω(T ) regret in the worst case.

1 Introduction
Rotations are a fundamental object in robotics and vision. The problem of learning rotations, or finding the
underlying rotation from a given set of examples, has numerous applications in these areas (see [Aro09] for a
summary of application areas). As a motivating example, in optical character recognition, rotational (or skew)
correction is an important and challenging problem. Optically read characters need to be aligned before they
can be recognized. A fast, low-regret online learning algorithm for rotations can be used for detecting skew
using a small number of examples.

Besides their practical importance, rotations have been shown to be powerful enough to capture seem-
ingly more general mappings. Rotations can represent arbitrary Euclidean transformations via a conformal
embedding by adding two special dimensions [WCL05]. Also [DHSA93] showed the rotation group provides
a universal representation for all Lie groups.

The batch learning problem has a simple and well known solution [Wah65, Sch66], but the question of
whether there are online algorithms for this problem was posed in [SW08] as an open problem. Recently, an
algorithm was given in [Aro09] based on the Matrix Exponentiated Gradient update [TRW05]. This algo-
rithm elegantly exploits the Lie group/Lie algebra relationship between rotation matrices and skew symmetric
matrices, respectively, and the matrix exponential and matrix logarithm that maps between these domains.
However, this algorithm deterministically predicts with a single rotation matrix in each trial. In this paper, we
prove that any such deterministic algorithm can be forced to have regret at least Ω(T ), where T is the number
of trials.

To achieve regret bounds that are sublinear in T , it is necessary to “hedge our bets” and predict randomly
from a suitable distribution over rotation matrices. There are two ways in which this can be done: either
the algorithm predicts deterministically with a parameter that represents a convex combination of rotation
matrices or it explicitly produces a rotation matrix based on its internal randomization. Our algorithm is of
the latter type and is in the Follow-The-Perturbed-Leader (FPL) [KV05] family of algorithms. At this point
we do not know how to design algorithms of the former type. One promising approach makes use of the
von Mises-Fisher distribution, which is an exponential family distribution over rotations (See discussion in
[SW10]).

In this paper we bypass the differential geometry of rotations altogether and hedge by predicting with
a random rotation matrix. The key insight is that the loss for our rotation learning problem is linear in the
chosen rotation matrix. We add a suitably chosen random perturbation matrix to the matrix characterizing the
loss incurred so far and then simply choose the best rotation matrix for the perturbed matrix. A good choice
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of the perturbation matrix turns out to be a one that has exponentially distributed singular values and random
orthogonal left and right singular vectors. Surprisingly, for this choice, we can show that the regret bound for
the resulting algorithm is optimal within a constant factor.

Outline of paper: We begin with some preliminaries in the next section, the precise problem statement,
and basic properties of rotations. In this section we also prove a lower bound for any deterministic algorithm.
In section 3 we describe our randomized algorithm and give a bound on its expected regret. Following that,
in section 4 we give the lower bound which applies to any algorithm, randomized or otherwise, and which
matches the regret bound of our algorithm up to a constant factor.

2 Preliminaries and Problem Statement
2.1 Notation.
In this paper, all vectors lie in Rn and all matrices in Rn×n. We use SO(n) to denote the special orthogonal
group, i.e. the set of all rotation matrices R. These are all orthogonal matrices of determinant one. For any
vector x, ‖x‖ denotes its `2 norm. For any matrix A, ‖A‖ denotes its spectral norm (or Schatten-∞ norm)
which is the maximum singular value of A. Furthermore, ‖A‖? denotes the trace norm (also known as the
nuclear norm or Schatten-1 norm) which is the sum of all singular values. For two matrices A and B, A •B
denotes the trace product Tr(A>B) =

∑
ij AijBij .

2.2 Online Learning of Rotations problem.
Learning proceeds in a series of trials. In every iteration for t = 1, 2, . . . , T :

1. The online learner is given a unit1 vector xt (i.e. ‖xt‖ = 1).

2. The learner is then required to commit (either deterministically or probabilistically), to a rotation matrix
Rt ∈ SO(n). The choice of Rt gives the predicted vector ŷt = Rtxt.

3. Finally the algorithm obtains true result, a unit vector yt (which is presumably the result of some un-
known rotation applied to xt).

4. The loss to the learner then is half the squared norm of the difference between her predicted vector and
the “true” rotated vector:

Lt(Rt) = 1
2‖Rtxt − yt‖2 = 1

2 [‖Rtxt‖2 + ‖yt‖2 − 2y>t Rtxt] = 1− (ytx>t ) •Rt. (1)

The last equality uses the fact that rotation preserves the `2 norm. Note that the loss is always in the range
[0, 2]. The goal of the learner is to choose rotations Rt in such a way as to minimize the regret on all T
examples given by

RegretT =
T∑
t=1

Lt(Rt)− min
R∈SO(n)

T∑
t=1

Lt(R).

We aim to find online algorithms with regret sublinear in T (Such algorithms are called Hannan consistent
[CBL06]). Henceforth we give an algorithm whose regret is optimal within a constant factor.

We can also consider a setting of the problem that is more difficult for the learner in which xt is not known
at the point when the rotation matrix must be chosen. In this setting the learner first commits to a distribution
over rotations and only then sees a pair xt,yt and incurs the associated expected loss. Our algorithm works
even in this setting and the bound on its expected regret remains valid. However our lower bounds apply to
the above definition that is easier for the learner.

2.3 Main Result.
Our main result is a Follow-The-Perturbed-Leader type algorithm (see Section 3) with the following guaran-
tee on its expected regret:

Theorem 1 There is a randomized online algorithm which for any sequence of T examples for which the loss
L of the best fixed rotation in hindsight, i.e. L = minR∈SO(n)

∑T
t=1 Lt(R), is at least 16n, achieves regret

E[RegretT ] ≤ O(
√
nL).

This algorithm can be implemented to run in O(n3) time per trial.

1Note that there is no loss of generality in restricting xt and yt to be unit vectors. Our algorithm and its analysis,
work unchanged assuming only ‖ytx

>
t ‖? = ‖xt‖‖yt‖ ≤ 1.
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We also can prove a matching lower bound.

Theorem 2 For any integer T > n, and for any online algorithm for learning rotations, there is a sequence
of T examples, such that the algorithm incurs regret at least Ω(

√
nT ).

Since the per trial loss of any rotation is at most 2, the loss L of the best rotation chosen in hindsight is at
most 2T , and therefore any lower bound of Ω(

√
nT ) on the regret implies a lower bound of Ω(

√
nL). This

shows that the regret of our algorithm (given in Theorem 1 above) is tight up to constant factors.

2.4 Solving the Offline Problem.
Before describing our online algorithm, we need to understand how to solve the optimization problem of
offline (batch) algorithm:

argmin
R∈SO(n)

T∑
t=1

Lt(R) = argmax
R∈SO(n)

T∑
t=1

(ytx>t ) •R.

The equality follows from rewriting the loss function Lt as in (1). In general, an optimization problem of the
form

argmax
R∈SO(n)

M •R

for some matrix M, is a classical problem known as Wahba’s problem [Wah65]. Figure 1 gives a simple
example of the challenges in solving Wahba’s problem: degeneracies can arise unexpectedly.

−y

R x

rotation applied

x

y

Figure 1: If we have two examples (x,y) and (x,−y), then regardless of which rotation R we choose,
Rx has loss exactly 2. This a consequence of the geometric fact that the diameter connecting y to −y
subtends a right angle at Rx, and therefore Pythagoras’ theorem applies. Algebraically, for any R, we have
L1(R) + L2(R) = 2− (yx> − yx>) •R = 2− 0 = 2.

Nevertheless, Wahba’s problem has a very elegant solution2 via any singular value decomposition (SVD)
of M.

Lemma 3 Let M = UΣV> be any SVD of M, i.e. U and V are orthogonal matrices, and
Σ = diag(σ1, σ2, . . . , σn) is the diagonal matrix of non-negative singular values. Assume that σn is the
smallest singular value. Let s := det(U) det(V), where det denotes determinant. Since U and V are or-
thogonal, s ∈ {+1,−1}. Now if W := diag(1, 1, . . . , 1, s), then UWV> is a solution to Wahba’s problem,
i.e.

UWV> ∈ argmax
R∈SO(n)

M •R,

and the value of the optimal solutions is
∑n−1
i=1 σi + sσn, which is always non-negative.

2Note that the solution to Wahba’s problem may not be unique, in which case we are satisfied with any solution
amongst the optimal set of solutions.
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This solution is a rotation matrix since it is a product of three orthogonal matrices, and its determinant
equals det(U) det(V) det(W) = 1. The solution can be found in O(n3) time by constructing a SVD of M.

We have been unable to find a complete proof of this lemma for dimensions more than 3 in the literature
and for the sake of completeness we give a self-contained proof in Appendix A.

Note that if we are simply optimizing over all orthogonal matrices R ∈ O(n), with no condition on
det(R), then the construction becomes simpler (also proven in Appendix A):

Lemma 4 Let M = UΣV> be a SVD of M as in Lemma 3. Then

UV> ∈ argmax
R∈O(n)

M •R

and the value of the optimum solutions is
∑n
i=1 σi.

This is also a classical problem known as the “Orthogonal Procrustes Problem”, first solved by Schönemann
[Sch66].

2.5 The necessity of randomization in learning rotations.
We give an adversary strategy that forces any deterministic algorithm such as the simple Follow-The-Leader
algorithm (which predicts with the rotation matrix minimizing the loss on the past examples) or Arora’s
deterministic algorithm [Aro09] to have linear regret. This shows that randomization is essential for obtaining
good regret bounds for learning rotations.

Theorem 5 Any algorithm which deterministically predicts with a single rotation matrix at each trial has
worst case regret at least T on example sequences of length T .

Proof: Consider the following problem instance. In each iteration, the adversary always sets xt = e1. Since
the algorithm is deterministic, the adversary can then compute the matrix Rt in every iteration. The algorithm
predicts with ŷt = Rtxt and the adversary chooses yt as −ŷt. Therefore the algorithm’s per trial loss is

1
2‖ŷt − yt‖2 = 1

2‖2ŷt‖2 = 2,

amounting to a loss 2T in all trials.
On the other hand the loss of the optimum rotation is

min
R∈SO(n)

1
2‖Rxt − yt‖2 = T − max

R∈SO(n)
WT •R,

where WT =
∑T
t=1 ytx>t . By Lemma 3, maxR∈SO(n) WT •R ≥ 0. Thus, the loss of the optimum rotation

is at most T . Hence, the algorithm has regret at least 2T − T = T .

In view of this lower bound, only randomized algorithms can hope to achieve sublinear regret. As we
observed in equation (1), the square loss over the (non-convex) set SO(n) is linear. Therefore it is natural
to apply the Follow-The-Perturbed-Leader (FPL) type algorithm [KV05], as this generic template is capable
of handling non-convex decision sets. A direct application of the Kalai-Vempala result gives the following
algorithm:

Rt = argmin
R∈SO(n)

t−1∑
i=1

Li(R)−N •R,

where N is a random matrix whose entries are i.i.d. uniform random numbers in the range [0, 1
ε ] for some pa-

rameter ε. However, tuning ε to its optimal value gives a suboptimal regret bound ofO(n5/4
√
T ). The reason

for this suboptimality is that uniform sampling of the components of N does not match the characteristics of
our problem.

2.6 Sampling Random Orthogonal Matrices.
A fundamental task in our better implementation of FPL is sampling of random orthogonal matrices “uni-
formly”, in the sense that the density of the distribution at any two matrices U and V in O(n) is the same.
Technically, this distribution is given by the Haar measure ν on O(n) scaled so that ν(O(n)) = 1. The
distribution ν has the property that for any fixed orthogonal matrix U ∈ O(n), if V is sampled from ν, then
the distribution on O(n) induced by UV is also ν. This implies the desired uniformity property.

To sample a random orthogonal matrix from such a uniform distribution is essentially to choose a random
orthogonal basis. The following process generates such basis incrementally: start with a random unit vector,
and then repeatedly pick a random unit vector orthogonal to all vectors seen so far. This process can be
implemented by running the Gram-Schmidt process on a set of n random vectors. Indeed, the efficient way
of doing essentially this is by using the QR-decomposition of a random matrix with independent standard
Gaussian entries (see [Ste80] for more details).
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3 Algorithm and Analysis
Instead of using uniform randomness, the correct perturbation matrix turns out to be one with singular values
chosen from an exponential distribution with randomly chosen left and right singular vectors, as given in the
algorithm below. The online algorithm can be implemented in O(n3) time per trial by uniformly sampling
orthogonal matrices as outlined in Section 2.6 and by optimizing a linear function over rotations as done in
the solution of the off-line problem (see Sections 2.4).

Algorithm 1 FSPL: Follow-The-Spectrally-Perturbed-Leader
1: Select n non-negative real numbers σ1, σ2, . . . , σn independently from the exponential distribution with

rate parameter ε, i.e. with density ε exp(−εσ)dσ. Let Σ = diag(σ1, σ2, . . . , σn).
2: Select two random orthogonal matrices U,V ∈ O(n) uniformly from the Haar measure.
3: Define N = UΣV>.
4: for t = 1 to T do
5: Let Rt be the result of the following optimization problem:

Rt = argmin
R∈SO(n)

t−1∑
i=1

Li(R)−N •R = argmax
R∈SO(n)

[
t−1∑
i=1

(yix>i ) + N

]
•R.

6: Obtain vector xt. Predict ŷt = Rtxt and observe the result vector yt. Suffer loss Lt(Rt).
7: end for

We point out that our algorithm is basis-invariant in the following sense: fix an orthogonal matrix (i.e.
an orthonormal basis) B ∈ O(n). Consider two problem instances, one with examples (xt,yt) for t =
1, 2, . . . , T , and another with the same examples expressed in the alternate basis B, viz (Bxt,Byt), and
consider running the algorithm on these two sequences of examples. Geometrically, the instances are the
same, so it is desirable for the algorithm to behave the same way, modulo the change of basis.

In our algorithm, the orthogonal matrices U and V are drawn from the uniform Haar measure over
orthogonal matrices, the distribution of N and that of BNB> is the same. This fact allows us to correlate the
choice of the perturbations in the algorithms running over the two instances by choosing the perturbation N
for the first instance, and the perturbation BNB> for the second instance.

Thus, if

Rt = argmax
R∈SO(n)

[
t−1∑
i=1

(yix>i ) + N

]
•R,

then

BRtB> = argmax
R∈SO(n)

[
t−1∑
i=1

(Byi(Bxi)>) + BNB>
]
•R.

Note that BRtB> is simply the rotation matrix Rt expressed in basis B. The prediction of BRtB> on
the transformed example (Bxt,Byt) is BRtB>Bxt which simplifies to BRtxt. This prediction is the
same as the prediction of Rt on the original example (xt,yt), i.e. Rtxt, and while premultiplying with the
transformation B. Geometrically, our algorithms is doing the same thing on the original and the transformed
sequence of examples, and the losses are the same well.

Before launching into the analysis, we make a few observations regarding the noise matrix N. Essentially,
the noise matrix is sampled by constructing each component of its SVD randomly. With probability 1, the
singular values of N, viz. σ1, σ2, . . . , σn are all distinct, so in the sequel we assume this is the case whenever
we talk about the noise matrix N.

In the induced probability distribution over matrices N, if the SVD of N is N = UΣV>, the density of
the distribution at N is

dµ(N) = 2nn!εn exp

[
−ε

n∑
i=1

σi

]
dσ1dσ2 . . . dσndν(U)dν(V),

where dν(U) is the density at U in the Haar measure over O(n). The leading factor of 2nn! is because the
SVD is uniquely determined by the ordering of the singular values and the sign multiplying the n pairs of
right and left singular vectors. Note that

∑n
i=1 σi = ‖N‖?, the trace norm of N . Thus, since ν is the uniform

Haar measure on O(n), we may (informally) say that

dµ(N) ∝ exp(−ε‖N‖?).
Now, we can analyze FSPL. The following Theorem implies Theorem 1.
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Theorem 6 For any target rotation matrix R?, the algorithm FSPL attains the following regret bound:

E

[
T∑
t=1

Lt(Rt)

]
−

T∑
t=1

Lt(R?) ≤ ε

1− ε

T∑
t=1

Lt(R?) +
2n

(1− ε)ε
.

If L ≥ 16n and ε is set to
√

n
L , where L =

∑T
t=1 Lt(R

?), then the expected regret is bounded3 by 4
√
nL.

Proof: The analysis of FSPL is based on the technique of Kalai and Vempala [KV05] for analyzing the
Follow-The-Perturbed-Leader style algorithms.

For convenience of notation, define Wt =
∑t−1
i=1 yix>i , and the functionR : Rn×n → SO(n) to be

R(M) := argmax
R∈SO(n)

M •R.

Now the rotation matrix Rt chosen by the algorithm is denoted asR(Wt+N). The first step of analyzing any
Follow-The-Perturbed-Leader algorithm, is the following inequality which is essentially proved in [KV05],
but we give the proof in Appendix B for the sake of completeness.

Claim 7 For any target rotation matrix R?, we have
T∑
t=1

Lt(Rt)−
T∑
t=1

Lt(R?) ≤
T∑
t=1

Lt(Rt)− Lt(Rt+1) + N •R1 −N •R?.

Now, to bound the expected regret, we prove the following two bounds:

E[Lt(Rt)− Lt(Rt+1)] ≤ εE[Lt(Rt)], (2)

and
E[N • (R1 −R?)] ≤ 2n

ε
. (3)

Combining these two bounds, and some algebra, we get the stated bound on the regret:

E

[
T∑
t=1

Lt(Rt)

]
−

T∑
t=1

Lt(R?) ≤ ε

1− ε

T∑
t=1

Lt(R?) +
2n

(1− ε)ε
.

If we set ε =
√

n
L , where L =

∑T
t=1 Lt(R

?), then the expected regret is bounded by E[Regret] ≤ 4
√
nL,

assuming4 L ≥ 16n.
We prove the inequality (2) now. Since we are only interested in expected values, it doesn’t matter whether

we choose the noise at the beginning, or if we re-randomize every trial. Thus, denoting by N and N′ the
noise chosen in the tth and (t+ 1)st trials respectively, we have

E[Lt(Rt)]− E[Lt(Rt+1)]

=
∫
N

Lt(R(Wt + N))dµ(N)−
∫
N′
Lt(R(Wt+1 + N′))dµ(N′)

=
∫
N

Lt(R(Wt + N))dµ(N)− Lt(R(Wt + N))dµ(N− ytx>t )

(doing a change of variables in the integration: N′ = N− ytx>t )

≤
∫
N

εLt(R(Wt + N))dµ(N)

= εE[Lt(Rt)].

The last inequality follows from the fact that for any N, we have

dµ(N)− dµ(N− ytx>t ) ≤ εdµ(N),

which we prove now:

dµ(N− ytx>t )
dµ(N)

=
exp(−ε‖N− ytx>t ‖?)

exp(−ε‖N‖?)
≥ exp(−ε‖ytx>t ‖?) ≥ exp(−ε) ≥ 1− ε.

3Standard techniques such as the “doubling trick” (see e.g. [CBFH+97]), can be used to obtain the same type of regret
bound even if L is not known in advance while only slightly increasing the constant in front of the square root.

4A slightly better constant is obtainable via some further optimization over ε.
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We use the triangle inequality for the ‖ · ‖? norm in the first inequality, and ‖ytx>t ‖? ≤ 1 in the second
inequality.

Now, we prove inequality (3). To this end, we show that for any rotation matrix R, we have E[|N•R|] ≤
n
ε . To prove this, note that

|N •R| ≤ ‖N‖?‖R‖,
by the Hölder inequality for trace norm (Schatten 1-norm) and its dual matrix norm (Schatten ∞-norm).
Clearly, ‖R‖ = 1 since all singular values of an orthogonal matrix are one. For the noise matrix N, if
σ1, σ2, . . . , σn are its singular values, then

E[‖N‖?] = E

[
n∑
i=1

σi

]
=

n∑
i=1

E[σi] =
n

ε

since the σi’s are independently distributed exponential random variables with mean 1
ε . Putting the bounds

together, we get that

E[N • (R1 −R?)] ≤ 2n
ε
.

4 Lower Bound
We now show a lower bound against any algorithm (including probabilistic ones). This matches the upper
bound for the FSPL algorithm up to constant factors.

Proof of Theorem 2. We assume for convenience that the dimension is n+ 1, rather than n. For any online
algorithm for the rotations problem we construct an example sequence of length T for which this algorithm
has regret Ω(

√
nT ).

Let ei denote the i-th standard basis vector, i.e. the vector with 1 in its i-th coordinate and 0 everywhere
else. In trial t < T , set xt = ef(t), where f(t) = (t mod n) + 1 (i.e., cycle through the coordinates
1, 2, . . . , n), and yt = σtef(t), where σt ∈ {−1, 1} uniformly at random. For any coordinate i ∈ 1, 2, . . . , n,
let Xi =

∑
t: f(t)=i σt. For the final trial T , set xT = en+1, and yT = σTen+1, where σT ∈ {−1, 1} is

chosen in a certain way specified momentarily. First, note that

WT+1 =
T∑
t=1

ytx>t = diag(X1, X2, . . . , Xn, σT ).

We choose σT so that

det(WT+1) = σT

n∏
i=1

Xi > 0.

In other words, σT = sgn(
∏n
i=1Xi).

By Lemma 3, the solution to the offline problem is the rotation matrix R? = argmaxR∈SO(n) WT+1•R,
where

R? = diag(sgn(X1), sgn(X2), . . . , sgn(Xn), σT ),
and the loss of this matrix is

T∑
t=1

Lt(R?) = T −WT+1 •R? = T −
n∑
i=1

|Xi| − 1.

Since each Xi is a sum of bT−1
n c Rademacher variables (give or take 1), standard probabilistic bounds (such

as Khintchine’s inequality [Haa82]) imply that E[|Xi|] = Ω(
√
T/n), where the expectation is taken over the

choice of the σt’s. Thus, the expected loss of the optimal rotation is bounded as follows:

E

[
T∑
t=1

Lt(R?)

]
= T − E[WT+1 •R?] = T − Ω(

√
T/n · n) = T − Ω(

√
nT ).

Finally, note that for t < T , regardless of which specific rotation matrix Rt is selected by the algorithm,

Eσt
[Lt(Rt)] = 1− Eσt

[ytx>t •Rt] = 1− Eσt
[σt] · e>f(t)Rtef(t) = 1.

In trial T , the algorithm might at best have a loss of 0. Thus, the expected loss of the algorithm is at least
T − 1, and hence its expected regret is Ω(

√
nT ). This implies that there is a choice of the σt’s so that the

actual regret of the algorithm is Ω(
√
nT ), as required. �
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5 Conclusions
We have presented tight bounds on the regret for online learning of rotation matrices. Our main technique
is a Follow-The-Perturbed-Leader type algorithm with spectral perturbations. Essentially the same algorithm
works in a different setting as well: online learning of a basis (or more colorfully, the Online Orthogonal
Procrustes problem). Here, the learner is presented the example xt, and now the learner chooses an orthogonal
matrix Ut ∈ O(n) instead of a rotation matrix and predicts ŷt = Utxt. This corresponds to a change of
basis. Then the actual vector yt is revealed, and the loss is defined the same way: 1

2‖ŷt − yt‖2. The goal is
to minimize regret with respect to the best change of basis in hindsight. It is apparent from the algorithm’s
analysis that we can use the same algorithm with the same perturbations, except that we optimize over O(n)
rather than SO(n), an even simpler task (c.f. Lemma 4). Our regret bounds carry over to this setting.

It would be very interesting to find other applications of the spectral perturbations idea. In particular, the
matrix version of the FPL algorithm might lead to speedups of the Matrix Hedge [WK06] and more generally
the Matrix Exponentiated Gradient algorithm which both optimize over density matrices. To realize these
speedups one would either have to get away with a single perturbation matrix or perturbation matrices that
can be sampled inO(n2) time per trial. We expand on these ideas in an open problem posed in this conference
[HKW10].
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A Solutions of Wahba’s problem and the Orthogonal Procrustes Problem
We first prove Lemma 4, since it is simpler and it gives a reduction which will be useful for the proof of
Lemma 3.

Proof of Lemma 4: Recall that we want to compute

max
R∈O(n)

M •R.

Let M = UΣV> be an SVD of M, so that U and V are orthogonal matrices, and Σ = diag(σ1, σ2, . . . , σn)
is a diagonal matrix of the non-negative singular values σi.

Now, we do a change of variables. Instead of maximizing over an orthogonal matrix R, we maximize
over orthogonal matrix W = U>RV. This lets us rewrite the dot product we are minimizing over

M •R = Tr(M>UWV>) = Tr(VΣ>U>UWV>) = Tr(Σ>W) = Σ •W. (4)

Since W is an orthogonal matrix, we have |Wii| ≤ 1 for all i. Hence, the linear expression Σ •W =∑
i σiWii is maximized when W = I, the identity matrix. We conclude that R = UV> is an optimal

solution to maxR∈O(n) M •R and all maxima has the value
∑n
i=1 σi. �

We have been unable to find a complete, rigorous solution of Wahba’s problem in the literature for di-
mensions more than 3. For the sake of completeness, we give a complete proof. This proof was obtained
in collaboration with Abhishek Kumar, simplifying a previous version given in the submitted version of this
paper.

Proof of Lemma 3: Recall that we want to compute

max
R∈SO(n)

M •R.

As in the proof of Lemma 4, let M = UΣV> be an SVD of M. As before, we do a change of variables from
a rotation matrix R to an orthogonal matrix W = U>RV, with the following condition on the determinant
of W:

det(W) = det(U) det(R) det(V) = det(U) det(V) =: s ∈ {+1,−1}.
Using equation (4), the problem now reduces to:

max
W∈O(n),det(W)=s

Σ •W. (5)

The case det(W) = 1 is easy. We already showed in the previous lemma that

I ∈ argmax
W∈O(n)

Σ •W.

Thus in this case the constraint on the determinant of W is immaterial and the value of the maxima is∑n
i=1 σi =

∑n−1
i=1 σi + sσn, where σn is the smallest singular value.

The case det(W) = −1 is considerably harder. We need to show W = diag(1, 1, . . . , 1,−1) is an
optimal solution which has value

∑n−1
i=1 σi− σn =

∑n−1
i=1 σi + sσn, where σn is the smallest singular value.

Let W be an arbitrary orthogonal matrix of determinant−1. We make the following observations regard-
ing W. First, if λ1, λ2, . . . , λn are the n (real or complex) eigenvalues of W, then we have

n∏
i=1

λi = det(W) = −1.

Since W ∈ O(n), all eigenvalues λi have magnitude |λi| = 1: this is because if λ is an eigenvalue of W
with eigenvector v, i.e. Wv = λv, then

1 = ‖v‖ = ‖Wv‖ = ‖λv‖ = |λ|‖v‖ = |λ|,

where the second equality uses W ∈ O(n).
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We claim that at least one eigenvalue of the matrix W is −1. This is so because all the complex eigen-
values of the real matrix M must occur in complex conjugate pairs, a + ib and a − ib, for some b 6= 0 and
a2 + b2 = 1. Now, the product of any such complex conjugate pair of eigenvalues is (a + ib)(a − ib) =
a2 + b2 = 1. Hence, the product of all complex eigenvalues is 1. Since the product of all eigenvalues (real or
complex) is −1, and all real eigenvalues are either +1 or −1, we must have at least one eigenvalue being −1.

For convenience of notation, let λn = −1. Now, we have

tr(W) =
n−1∑
i=1

λi + λn =
n−1∑
i=1

real(λi)− 1 ≤ n− 1− 1 = n− 2.

Here, real(z) is the real part of a complex number z, and we use the fact that the sum of two complex
conjugate eigenvalues a+ ib and a− ib is 2a, which is the sum of their real parts. We also used the fact that
for any eigenvalue λi, real(λi) ≤ 1 since |λi| = 1.

Finally, note that |Wii| ≤ 1 since W is an orthogonal matrix. Now, consider the following linear program
which is a relaxation of the optimization problem (5) (This is a relaxation since the last inequality holds for
all solutions of (5) and we drop the constraint that W is an orthogonal matrix of determinant −1):

max
n∑
i=1

σiWii

∀i : −1 ≤ Wii ≤ 1
n∑
i=1

Wii ≤ n− 2.

The optimal solution to this linear program is obtained at a vertex of the polytope defined by the constraints.
We now characterize the vertices of the polytope as follows:

Claim 8 Any vertex of the polytope defined by the constraints of the above linear program satisfies Wii ∈
{+1,−1} for all i, with at least one Wii set to −1.

Proof: Any vertex is obtained by setting n of the inequalities to equalities.
Case 1: n of the −1 ≤ Wii ≤ 1 inequalities are tight. Then all Wii ∈ {−1,+1}, and to satisfy∑n
i=1Wii ≤ n− 2, we must have at least one −1.
Case 2:

∑n
i=1Wii equals the integer n− 2, exactly n− 1 of the inequalities −1 ≤Wii ≤ 1 are tight for

say 1 ≤ i ≤ n − 1, and the last one is not tight, i.e. −1 < Wnn < 1. Then for all 1 ≤ i ≤ n − 1, we have
Wii ∈ {+1,−1}, since

∑n
i=1Wii = n− 2, an integer, Wnn is also an integer, and hence must be zero. But

then with Wii ∈ {+1,−1} for 1 ≤ i ≤ n − 1 the sum
∑n−1
i=1 Wii is either n − 1 or at most n − 3. Thus∑n

i=1Wii = n− 2 can’t be satisfied and case 2 does not give any more vertices. �
With this characterization of the vertices, since the σn is the smallest singular value, the optimal vertex

for the linear program is the one where Wii = 1 for 1 ≤ i ≤ n− 1, and Wnn = −1. Thus the optimum value
of the linear program is

∑n−1
i=1 σi− σn. Since this is a relaxation to the original problem, this optimum value

is only larger than the optimum of the original problem. However, by setting W = diag(1, 1, . . . , 1,−1),
which is an orthogonal matrix of determinant−1, we achieve the same value in the original problem as in the
relaxed LP, and hence the optimal solution to the original problem is given by this W.

B Proof of Claim 7
For notational convenience, define a “hallucinated” 0-th trial with loss function L0(R) := −N • R over
rotation matrices. With this notation, Rt = arg minR∈SO(n)

∑t−1
τ=0 Lt(R), for any t ≥ 1. We prove by

induction that for any T ≥ 0, we have

T∑
t=0

Lt(Rt+1) ≤
T∑
t=0

Lt(RT+1).

The statement holds trivially for T = 0. So assume that it holds for some T ≥ 0, and now we prove it for
T + 1. For this, we have

T+1∑
t=0

Lt(Rt+1) ≤
T∑
t=0

Lt(RT+1) + LT+1(RT+2) ≤
T∑
t=0

Lt(RT+2) + LT+1(RT+2) =
T+1∑
t=0

Lt(RT+2).
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Here, the first inequality follows from the induction hypothesis, and the second from the fact that RT+1 =
arg minR∈SO(n)

∑T
t=0 Lt(R). Thus, the induction is complete.

We now continue by using RT+1 = arg minR∈SO(n)

∑T
t=0 Lt(R) a second time:

T∑
t=0

Lt(Rt+1) ≤
T∑
t=0

Lt(RT+1) ≤
T∑
t=0

Lt(R?).

This implies that

T∑
t=1

Lt(Rt)−
T∑
t=1

Lt(R?) ≤
T∑
t=1

(Lt(Rt)− Lt(Rt+1))− L0(R1) + L0(R?),

as required.
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