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Abstract

One of the most widely used techniques for data clustering is agglomerative clustering. Such
algorithms have been long used across many different fields ranging from computational
biology to social sciences to computer vision in part because their output is easy to interpret.
Unfortunately, it is well known, however, that many of the classic agglomerative clustering
algorithms are not robust to noise [14]. In this paper we propose and analyze a new robust
algorithm for bottom-up agglomerative clustering. We show that our algorithm can be
used to cluster accurately in cases where the data satisfies a number of natural properties
and where the traditional agglomerative algorithms fail. We also show how to adapt our
algorithm to the inductive setting where our given data is only a small random sample of
the entire data set.

1 Introduction

Many data mining and machine learning applications ranging from computer vision to biology prob-
lems have recently faced an explosion of data. As a consequence it has become increasingly important
to develop effective, accurate, robust to noise, fast, and general clustering algorithms, accessible to
developers and researchers in a diverse range of areas.

One of the oldest and most commonly used methods for clustering data, widely used in many
scientific applications, is hierarchical clustering [5, 6, 8, 10, 7, 11, 12, 14, 9, 13, 15]. In hierarchical
clustering the goal is not to find a single partitioning of the data, but a hierarchy (generally repre-
sented by a tree) of partitions which may reveal interesting structure in the data at multiple levels of
granularity. The most widely used hierarchical methods are the agglomerative clustering techniques;
most of these techniques start with a separate cluster for each point and then progressively merge
the two closest clusters until only a single cluster remains. In all cases, we assume that we have a
measure of similarity between pairs of objects, but the different schemes are distinguished by how
they convert this into a measure of similarity between two clusters. For example, in single linkage
the similarity between two clusters is the maximum similarity between points in these two different
clusters. In complete linkage, the similarity between two clusters is the minimum similarity between
points in these two different clusters. Average linkage has various variants, for example, a common
one defines the similarity between two clusters as the average similarity between points in these two
different clusters [7, 12].

Such algorithms have been used in a wide range of application domains ranging from biology
applications to social sciences to computer vision applications mainly because they are quite fast
and the output is quite easy to interpret. It is well known, however, that one of the main limitations
of the agglomerative clustering algorithms is that they are not robust to noise [14]. In this paper
we propose and analyze a robust algorithm for bottom-up agglomerative clustering. We show that
our algorithm satisfies formal robustness guarantees and it will be successful in cases where the
traditional agglomerative algorithms fail.

In order to formally analyze correctness of our algorithm we use the framework introduced by
Balcan et. al [2]. In this framework, we assume there is some target clustering (much like a k-class
target function in the multi-class learning setting) and we say that an algorithm correctly clusters
data satisfying property P if on any data set having property P , the algorithm produces a tree such
that the target is some pruning of the tree. For example if all points are more similar to points



in their own target cluster than to points in any other cluster (this is called the strict separation
property), then any of the standard agglomerative algorithms will succeed. See Figure 1. However,
with just tiny bit of noise, for example if each point has even just one point from a different cluster
that it is similar too, then the standard algorithms will all fail (we elaborate on this in Section 2.2).
See Figure 2. This brings up the question: is it possible to design an agglomerative algorithm that is
robust to these types of situations and can tolerate a substantial degree of noise? The contribution
of our paper is to provide a positive answer to this question; we develop a robust, linkage based
algorithm that will succeed in interesting cases where standard agglomerative algorithms will fail.

At a high level, our new algorithm is robust to noise in two different and important ways. First,
it uses more global information for creating an interesting starting point for a linkage procedure, a
set of not too small, but also not too large blobs that are mostly “pure” (these blobs are created
by grouping together vertices with a lot of neighbors in common); second, it uses a robust linkage
procedure (which is based on a score involving the median) for merging large enough blobs. Using
blobs and the median lend the robustness, since, roughly speaking, noisy similarities are outvoted.

1.1 Our Results

We present a new and robust algorithm for agglomerative clustering and we show that our algorithm
will be successful in many cases where standard agglomerative algorithms will fail.

In particular, we show that if the data satisfies a natural good neighborhood property, then our
algorithm can be used to cluster well in the tree model (i.e., to output a hierarchy such that the
target clustering is a pruning of that hierarchy). The good neighborhood property roughly says
after a small number of malicious points have been removed, for the remaining points, most of their
nearest neighbors are from their target cluster. We also show how to adapt our algorithm to the
inductive setting, where our given data is only a small random sample of the entire data set. Based
on such a sample, our algorithm outputs an implicit hierarchy of clusterings of the full domain, that
is evaluated with respect to the underlying distribution. A nice property of the condition and of the
algorithm we analyze is that they are insensitive to any monotone transformation of the similarities.

It is worth noting that the good neighborhood property is much broader than the ν-strict sepa-
ration property, a generalization of the simple strict separation property discussed above, requiring
that after a small number of outliers have been removed all points are strictly more similar to points
in their own cluster than to points in other clusters. Balcan et. al [2] also analyzed the ν-strict
separation condition and provided an algorithm for producing a hierarchy with the desired property,
but via a much more computationally expensive (non-agglomerative) algorithm. Our algorithm is
simpler, faster, and much more generally applicable compared to the algorithm in [2] specifically
designed for ν-strict separation.

1.2 Related Work

In agglomerative hierarchical clustering [8, 7, 11, 12] the goal is not to find a single partitioning of the
data, but a hierarchy (generally represented by a tree) of partitionings which may reveal interesting
structure in the data at multiple levels of granularity. Traditionally, only clusterings at a certain
level are considered, but as we argue in Section 2 it is more desirable to consider all the prunings of
the tree, since this way we can then handle much more general situations. As mentioned above, it is
well known that standard agglomerative hierarchical clustering techniques are not tolerant to noise.

2 Definitions. A Formal Setup

We consider a clustering problem (S, ℓ) specified as follows. Assume we have a data set S of n
objects. Each x ∈ S has some (unknown) “ground-truth” label ℓ(x) in Y = {1, . . . , k}, where we
will think of k as much smaller than n. We let Ci = {x ∈ S : ℓ(x) = i} denote the set of points of
label i (which could be empty), and denote the target clustering as C = {C1, . . . , Ck}. Given another
proposed clustering h, h : S → Y , we define the error of h with respect to the target clustering to
be the the fraction of points on which h and C disagree under the optimal matching of clusters in h
to clusters in C; i.e.,

err(h) = min
σ∈Sk

[

Pr
x∈S

[σ(h(x)) 6= ℓ(x)]

]

,

where Sk is the set of all permutations on {1, . . . , k}. Equivalently, the error of a clustering C′ =
{C′

1, . . . , C
′
k} can be expressed as

min
σ∈Sk

1

n

∑

i

|Ci − C′

σ(i)|.



Figure 1: Consider a document clustering problem. Assume that data lies in multiple regions
Algorithms, Complexity, Learning, Planning, Squash, Billiards, Football, Baseball. Suppose that
K(x, y) = 0.999 if x and y belong to the same inner region; K(x, y) = 3/4 if x ∈ Algorithms and
y ∈ Complexity, or if x ∈ Learning and y ∈ Planning, or if x ∈ Squash and y ∈ Billiards, or if
x ∈ Football and y ∈ Baseball; K(x, y) = 1/2 if x is in (Algorithms or Complexity) and y is in
(Learning or Planning), or if x is in (Squash or Billiards) and y is in (Football or Baseball); define
K(x, y) = 0 otherwise. Both clusterings {Algorithms∪Complexity ∪ Learning∪ Planning, Squash ∪
Billiards,Football∪Baseball} and {Algorithms∪Complexity,Learning∪Planning, Squash∪Billiards∪
Football ∪ Baseball} satisfy the strict separation property.

We will be considering clustering algorithms whose only access to their data is via a pairwise
similarity function K(x, x′) that given two examples outputs a number in the range [−1, 1]. We will
say that K is a symmetric similarity function if K(x, x′) = K(x′, x) for all x, x′. In this paper we
assume that the similarity function K is symmetric. For A ⊆ S, we denote by nA the number of
points in A.

Our goal is to produce a hierarchical clustering that contains a pruning that is close to the
target clustering. Formally, the goal of the algorithm is to produce a hierarchical clustering: that
is, a tree on subsets such that the root is the set S, and the children of any node S′ in the tree
form a partition of S′. The requirement is that there must exist a pruning h of the tree (not
necessarily using nodes all at the same level) that has error at most ǫ. Balcan et. al [2] have shown
that this type of output is necessary in order to be able to analyze non-trivial properties of the
similarity function. For example, even if the similarity function satisfies the requirement that all
points are more similar to all points in their own cluster than to any point in any other cluster (this
is called the strict separation property) and even if we are told the number of clusters, there can
still be multiple different clusterings that satisfy the property. In particular, one can show examples
of similarity functions and two significantly different clusterings of the data satisfying the strict
separation property. See Figure 1 for an example. However, under the strict separation property,
there is a single hierarchical decomposition such that any consistent clustering is a pruning of this
tree. This motivates clustering in the tree model and this is the model we consider in this work as
well.

Given a similarity function satisfying the strict separation property (see Figure 1 for an exam-
ple), we can efficiently construct a tree such that the ground-truth clustering is a pruning of this
tree [2]. Moreover, almost any of the standard linkage based algorithms (e.g., single linkage, average
linkage, or complete linkage) would work well under this property. However, one can show that if
the similarity function slightly deviates from the strict separation condition, then all the standard
agglomerative algorithms will fail (we elaborate on this in section 2.2). In this context, the main
question we address in this work is: Can we develop other more robust, linkage based algorithms
that will succeed under more realistic and yet natural conditions on the similarity function?

Note: Note that strict separation does not guarantee that all the cutoffs for different points x are
the same, so single linkage would not necessarily have the right clustering if just stopped once it has
k clusters; however the target clustering will provably be a pruning of the final single linkage tree;
this is why we define success based on prunings.



2.1 Properties of the similarity function

We describe here some natural properties of the similarity functions that we analyze in this paper.
We start with a noisy version of the simple strict separation property (mentioned above) which was
introduced in [2] and we then define an interesting and natural generalization of it.

Property 1 The similarity function K satisfies ν-strict separation for the clustering problem
(S, ℓ) if for some S′ ⊆ S of size (1 − ν)n, K satisfies strict separation for (S′, ℓ). That is, for all
x, x′, x′′ ∈ S′ with x′ ∈ C(x) and x′′ 6∈ C(x) we have K(x, x′) > K(x, x′′).

So, in other words we require that the strict separation is satisfied after a number of bad points
have been removed. A somewhat different condition is to allow each point to have some bad imme-
diate neighbors as long as most of its immediate neighbors are good. Formally:

Property 2 The similarity function K satisfies α-good neighborhood property for the clustering
problem (S, ℓ) if for all points x we have that all but αn out of their nC(x) nearest neighbors belong

to the cluster C(x).1

Note that α-good neighborhood property is different from the ν-strict separation property. For
the ν-strict separation property we can have up to νn bad points that can misbehave; in particular,
these νn bad points can have similarity 1 to all the points in S; however, once we remove these
points the remaining points are more similar to points in their own cluster than to points in other
cluster. On the other hand, for the α-good neighborhood property we require that for all points x all
but αn out of their nC(x) nearest neighbors belong to the cluster C(x). (So we cannot have a point
that has similarity 1 to all the points in S.) Note however that different points might misbehave on
different αn neighbors. We can also consider a property that generalizes both the ν-strict separation
property and the α-good neighborhood. Specifically:

Property 3 The similarity function K satisfies (α, ν)-good neighborhood property for the clus-
tering problem (S, ℓ) if for some S′ ⊆ S of size (1 − ν)n, K satisfies α-good neighborhood property
for (S′, ℓ). That is, for all for all points x ∈ S′ we have that all but αn out of their nC(x)∩S′ nearest

neighbors in S′ belong to the cluster C(x).

It is easy to see that:

Fact 1 If the similarity function K satisfies the α-good neighborhood property for the clustering
problem (S, ℓ), then K also satisfies the (α, 0)-good neighborhood property for the clustering problem
(S, ℓ).

Fact 2 If the similarity function K satisfies the ν-strict separation property for the clustering prob-
lem (S, ℓ), then K also satisfies the (0, ν)-good neighborhood property for the clustering problem
(S, ℓ).

Balcan et. al [2] have shown that if K satisfies the strict separation property with respect to
the target clustering, then as long as the smallest target cluster has size 5νn, one can in polynomial
time construct a hierarchy with the guarantee that the ground-truth is ν-close to a pruning of
the hierarchy. Unfortunately the algorithm presented in [2] is computationally very expensive: it
first generate a large list of Ω(n2) candidate clusters and repeatedly runs pairwise tests in order to
laminarize these clusters; its running time is a large unspecified polynomial. Our new robust linkage
algorithm can be used to get a simpler and much faster algorithm for clustering accurately under
the ν-strict separation property. Additionally, our algorithm is much more general as well.

As shown in [2], the (2, ǫ) BBG-condition for k-median implies the ν-strict separation condi-
tion [1], for ν = 5ǫ. One can show a similar result for the (ν, c, ǫ)-condition for k-median introduced
by [3], and so the condition we analyze is strictly more general than these conditions.

As we show below, if the data satisfies the good neighborhood property, then most of the standard
linkage based algorithms will fail. The contribution of our paper is to develop a robust, linkage
based algorithm that will succeed under these natural conditions.



Figure 2: Same as Figure 1 except let us match each point in Algorithms with a point in Squash,
each point in Complexity with a point in Billiards, each point in Learning with a point in Football,
and each point in Planning with a point in region Baseball. Define the similarity measure to be the
same as in Figure 1 except that we let K(x, y) = 1 if x and y are matched. Note that for α = 1/n the
similarity function satisfies the α-good neighborhood property with respect to any of the prunings
of the tree above. However, single linkage, average linkage, and complete linkage would initially link
the matched pairs and produce clusters with very high error with respect to any such clustering.

2.2 Standard linkage based algorithms are not robust

We can show an example where simple linkage based algorithm would perform very badly, but
where our algorithm would work well. In particular, if we slightly modify the example in Figure 1,
by adding a little bit of noise, to form links of high similarity between points in different inner blobs,
we can show that many of the classic linkage based algorithms will perform poorly2. See Figure 2
for a precise description of the similarity measure.

In particular, the single linkage algorithm, the average linkage algorithm, and the complete
linkage algorithm, would in the first n/2 stages merge the matched pairs of points. From that
moment on, no matter how they perform, none of the natural and desired clusterings will be even
1/2 close to any of the prunings of the hierarchy produced. Notice however, that the similarity K
satisfies α-good neighborhood property with respect to any of the desired clusterings (for α = 1/n),
and that our algorithm will be successful on this instance. The ν-strict separation is not satisfied in
this example either, for any constant ν.

3 Robust Hierarchical Clustering

In this section we describe an algorithm that we prove is successful if the data satisfies the good
neighborhood property. This procedure has two phases: first, it uses somewhat more global infor-
mation for creating an interesting starting point for a linkage procedure – a set of not too small, but
also not too large blobs that are mostly “pure”. In a second phase, it runs robust linkage procedure
on this set of blobs. Both steps have to be done with care and we will describe in detail in the fol-
lowing sections both steps of our algorithm. In particular, in section 3.1 we describe the procedure
for generating a set of interesting blobs and in section 3.2 we describe the linkage procedure.

We start with a useful definition.

Definition 1 For A ⊆ S, B ⊆ S we define Kmedian(A,B) = median{K(x, x′);x ∈ A, x′ ∈ B} and
we call this the median similarity of A to B.

For simplicity we denote Kmedian({x}, B) as Kmedian(x,B).

Notation: For the rest of this section we assume that the similarity function K satisfies the (α, ν)–
good neighborhood property for the clustering problem (S, ℓ). Let S′ ⊆ S be the set of (1 − ν)n

1Note that we assume that for any given point we have a canonical order for its neighbors, and so the
set of t nearest neighbors of a given point is always well defined.

2Since, usually, the similarity function between pairs of objects is constructed based on heuristics, this
can easily happen; for example we could have a similarity measure that puts a lot of weight on features such
as date or names, and so we could easily have a document about Learning being more similar to a document
about Football than to other documents about Learning.



Algorithm 1 Robust Agglomerative Hierarchical Clustering

Input: Similarity function K, set of points S, ν > 0, α > 0.

1. Run Algorithm 2 with parameters ν, α to generate an interesting list L of blobs that partitions
the whole set S.

2. Run the linkage Algorithm 3 on these blobs to get the tree T .

Output: Tree T on subsets of S.

points such that K satisfies α–good neighborhood property with respect to S′. We call the points
in S′ good points and the points in S \ S′ bad points. Let Gi = Ci ∩ S′ be the good set of label
i. Let G = ∪Gi the whole set of good points; so G = S′. Clearly |G| ≥ n− νn. Denote by CG the
restriction of the target clustering to the set G.

Note that the following is a useful consequence of the definition.

Claim 2 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood property
for the clustering problem (S, ℓ). As long as t is smaller than nCi

for any good point x ∈ Ci all but
at most (ν + α)n out of its t nearest neighbors lie in its good set Ci(x) ∩G.

3.1 Generating an interesting starting point

In this section we describe our procedure for generating a set of interesting blobs, i.e., a set of not
too small, but also not too large blobs that are almost pure.

Algorithm 2 Generate interesting blobs

Input: similarity function K, set of points S, ν > 0, α > 0.

Let the initial threshold t = 6(ν + α)n+ 1. Let L be empty. Let AS = S.

Step 1 Construct the graph Ft where we connect points x and y in AS if they share at least
t− 2(ν + α)n points in common out of their t nearest neighbors with respect to the whole
set of points S.

Step 2 Construct the graph Ht by connecting points x and y if they share at least 3(ν + α)n
neighbors in the graph Ft.

Step 3 (i) Add to L all the components C of Ht with |C| ≥ 3(ν+α)n and remove from AS all the
points in all these components.

(ii) For all points x in AS check if (ν + α)n out of their 5(ν + α)n nearest neighbors are in
L. If so, then assign point x to any of the blobs in L of highest median. Remove the
points in all these components from AS .

Step 4 While |AS | ≥ 3(ν + α)n and t < n, increase the critical threshold and go to Step 1.

Step 5 Assign all points x that do not belong to any of the blobs in L arbitrarily to one of the
blobs.

Output: A list of blobs which form a partition of S.

We can show the following:

Theorem 3 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood prop-
erty for the clustering problem (S, ℓ). So long as the smallest target cluster has size greater than
9(ν + α)n, then we can use Algorithm 2 to create a list L of blobs each of size at least 3(ν + α)n
such that:

• The blobs in L form a partition of S.

• Each blob in the list L contains good points from only one good set; i.e., for any C ∈ L,
C ∩G ⊆ Gi for some i ≤ k.

Proof: In the following we denote by nCi
the number of points in the target cluster i. Without loss

of generality assume that nC1
≤ nC2

≤ ... ≤ nCk
. We will show by inductions on i ≤ k that:



(a) For any t ≤ nCi
, any blob in the list L only contains good points from a single good set Gi; all

blobs have size at least 3(ν + α)n.

(b) At the beginning of the iteration t = nCi
+ 1, any good point x ∈ Cj ∩ G, j ∈ {1, 2, . . . , i} has

already been assigned to a blob in the list L that contains points only from Cj ∩ G and has
more good points than bad points.

These two claims clearly imply that each blob in the list we output contains good points from only
one good set. Moreover at t = nCk

all good points have been assigned to one of the blobs in L.
Since we assign the remaining points x that do not belong to any of the blobs in L (these can only
be bad points) arbitrarily to one of the blobs, we also get that the blobs in L form a partition of S,
as desired.

Claims (a) and (b) are clearly both true initially. We show now that as long as t ≤ nC1
, the

graphs Ft and Ht have the following properties:

(1) No good point in cluster i is connected in Ft to a good point in a different cluster j, for i, j ≥ 1,
i 6= j. Since K satisfies the (α, ν)-good neighborhood property for the clustering problem (S, ℓ),
by Claim 2, we know that as long as t is smaller than nCi

for any good point x ∈ Ci all but
at most (ν + α)n out of its t nearest neighbors lie in its good set, i.e., Ci(x) ∩ G; similarly,
as long as t is smaller than nCj

for any good point y ∈ Cj , all but at most (ν + α)n out of
its t nearest neighbors lie in its good set, i.e., |Cj(x) ∩ G|; so it cannot be the case that for
6(ν+α)n ≤ t ≤ nC1

two good points in two different clusters i, j ≥ 1 share t− 2(ν+α)n points
in common out of their t nearest neighbors.

(2) No bad point is connected in Ft to both a good point in cluster i and a good point in different
cluster j, for i, j ≥ 1, i 6= j. This again follows from the fact that since t ≤ nCi

for all i, for any
good point x all but at most (ν+α)n out of its t nearest neighbors lie in its good set Ci(x)∩G
(by Claim 2); so for a bad point z to share t − 2(ν + α)n points out of its t nearest neighbors
in common with the t nearest neighbors of a good point x in Gi it must be the case that z has
t− 3(ν + α)n points out of its t nearest neighbors in Gi; but that means that there cannot be
other good point y in Gj , where j 6= i such that z and y share t− 2(ν+α)n points among their
t nearest neighbors, because we would need to have that t − 3(ν + α)n of points out of z’s t
nearest neighbors lie in Gi and t− 3(ν +α)n of points out of z’s t nearest neighbors in Gj ; but
this cannot happen if t > 6(ν + α)n since 2(t− 3(ν + α)n) > t for t > 6(ν + α)n.

(3) All the components of Ht of size at least 3(ν + α)n will only contain good points from one
cluster. Since in Ft bad points can only connect to one good set, we get that no two good
points in the different clusters connect in Ht.

We can use (1), (2), and (3) to argue that as long as t ≤ nC1
, each blob in L contains good

points from at most one target cluster. This is true at the beginning and by (3), for any t ≤ nC1
,

anytime we insert a whole new blob in L in Step 3(i), that blob must contain good points from at
most one target cluster. We now argue that this property is never violated as we assign points to
blobs already in L based on the median test in Step 3(ii). Note that at all time steps all the blobs
in L have size at least 3(ν + α)n. Assume that a good point x has more than (ν + α)n out of its
5(ν + α)n nearest neighbors in S in the list L. By Lemma 5, there must exist a blob in L that
contains only good points from C(x). By Lemma 4, if we assign x based on the median test in Step
3(ii), then we will add x to a blob containing good points only from C(x), and so we maintain the
invariant that each blob in L contains good points from at most one target cluster.

We now show that at the beginning of the iteration t = nC1
+ 1, all the good points in C1 have

already been assigned to a blob in the list L that only contains good points from C1 ∩G. There are
a few cases. First, if prior to t = nC1

we did not yet extract in the list L a blob with good points
from C1, then it must be the case that all good points in C1 connect to each other in the graph
Ft; so there will be a component of Ht that will contain all good points from C1 and potentially
bad points, but no good points from another target cluster; moreover this |C1| ≥ 9(ν + α)n, this
component will be output in Step 3(i). Second, if prior to t = nC1

we did extract some, but still,
more than 3(ν + α)n points from the good set G1 do not belong to blobs in the list L, then more
than 3(ν + α)n of good points will connect to each other in Ft, and then in Ht, so we will add one
blob to L containing these good points (plus at most νn bad points). Finally, it could be that by
the time we reach t = nC1

all but l < 3(ν + α)n good points in C1 have been assigned to a blob
in the list L that has good points only from C1. Since |C1| ≥ 9(ν + α)n we must have assigned at
least 9(ν + α)n− 3(ν + α)− νn ≥ 5(ν + α)n good points from C1 to the list L. This together with



the (α, ν)-good neighborhood property implies that the good points in C1 that do not belong to the
list L yet, must have (ν + α)n out of their 5(ν + α)n nearest neighbors in S in the list L (at most
ν out of the 5(ν + α)n nearest neighbors can be bad points, at most αn can be good points from a
different cluster, and at most 3(ν + α)n can be good points in C1 that do not yet belong to L ). So
we will assign these points to blobs in L based on the median test in Step 3(ii). By Lemma 4, when
we assign them based on the median test in Step 3(ii), we will add them to a blob containing good
points from C1 and no good points from other cluster Cj , as desired.

We then iterate the argument on the remaining set AS . The key point is that for t ≥ ni, i > 1,
once we start analyzing good points in Cni+1 we have that all the good points in Cni

, Cni−1
, ...,

Cn1
have already been assigned to blobs in L.

We prove below two useful lemmas used in the above proof.

Lemma 4 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood property
for the clustering problem (S, ℓ). Assume that L is a list of disjoint clusters each of size at least
3(ν+α)n. Assume also that each cluster in L intersects at most a good set; i.e., for any C in L, we
have C ∩G ⊆ Gi for some i. Consider x ∈ G such that there exist C in L with C ∩G ⊆ C(x) ∩G.

Let C̃ be the blob in L of highest median similarity to x. Then C̃ ∩G ⊆ C(x) ∩G.

Proof: Let us fix a good point x. Let C′ and C′′ be such that C′∩G ⊆ C(x)∩G and C′′∩G ⊆ Ci∩G,
for Ci 6= C(x). Since K is a symmetric similarity function satisfying the (α, ν)-good neighborhood
property, by Claim 2, we have that x can be more similar to at most νn + αn points in C′′ than
with any point in C′ ∩G. Since |C′| ≥ 3(ν + α)n and |C′′| ≥ 3(ν + α)n we get that

Kmedian(x,C
′) ≥ Kmedian(x,C

′′).

This then implies that the blob C̃ in L of highest median similarity to xmust satisfy C̃∩G ⊆ C(x)∩G,
as desired.

Lemma 5 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood property
for the clustering problem (S, ℓ). Assume that L is a list of clusters each of size at least 3(ν + α)n.
Assume also that each cluster in L intersects at most a good set; i.e., for any C in L, we have
C ∩G ⊆ Gi for some i. Consider x ∈ G such that there is no cluster C in L with C ∩G ⊆ C(x)∩G.
Then at most (α+ ν)n of its t nearest neighbors for any t ≤ nC(x) can be in L and all the rest are
outside.

Proof: Since K satisfies the (α, ν)-good neighborhood property, by Claim 2, for all x ∈ G, for all
t ≤ nC(x) at most (α + ν)n of its t nearest neighbors are not from C(x). Consider x ∈ G such that
there is no cluster C in L with C ∩ G ⊆ C(x) ∩ G. So, the list L contains no good points from C,
which implies that at most (α+ ν)n of its t nearest neighbors for any t ≤ nC(x) can be in L.

3.2 A robust linkage procedure

Our linkage procedure is given by Algorithm 3.

Algorithm 3 A robust linkage procedure

Input: A list L of blobs; similarity function K on pairs of points.

• Repeat till only one cluster remains in L:

(a) Find clusters C,C′ in the current list which maximize score(C,C′)

(b) Remove C and C′ from L merge them into a single cluster and add that cluster to L.

• Let T be the tree with single elements as leaves and internal nodes corresponding to all the
merges performed.

Output: Tree T on subsets of S.

We describe in the following the notion of similarity between pairs of blobs used in Algorithm 3.

Definition 6 Let L = {A1, . . . , Al} be a list of disjoint subsets of S. For each i, for each point x
in Ai we compute Kmedian({x}, Aj), j 6= i, sort them in increasing order, and define rank(x,Aj) as
the rank of Aj in the order induced by x. We define

rank(Ai, Aj) = medianx∈Ai
[rank(x,Aj)].



For example, if Aj1 is the subset of highest median similarity to x out of all Aj , j 6= i, then
rank(x,Aj1 ) = l. Similarly, if Aj2 is the subset of smallest median similarity to x out of all Aj , j 6= i,
then rank(x,Aj2 ) = 1.

Definition 7 Let L = {A1, . . . , Al} be a list of disjoint subsets of S. We define the score between
Ai and Aj as

score(Ai, Aj) = min[rank(Ai, Aj), rank(Aj , Ai)].

Note that while the rank(·, ·) might be asymmetric, score(·, ·) is designed to be symmetric. We
now present a useful lemma.

Lemma 8 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood property
for the clustering problem (S, ℓ). Let L be a list of disjoint clusters, all of size at least 2(α + ν)n.
Assume that B ∩G ⊆ Gi, B

′ ∩G ⊆ Gi, and (B′′ ∩G) ∩Gi = ∅. Then we have both

score(B,B′) < score(B,B′′) and score(B,B′) < score(B′, B′′).

Proof: Let x be a good point. The (α, ν)-good neighborhood property implies that there exists cx
such that at most αn points z ∈ G, z /∈ C(x) can have similarity K(x, z) greater or equal to cx and
at most αn points y ∈ G ∩ C(x) can have similarity K(x, z) strictly smaller than cx. Since each of
the blobs has size at least 2(α + ν)n and since each blob contains at most νn bad points, we get
that for all blobs B′ and B′′ such that B′ ∩G ⊆ C(x) ∩G and (B′′ ∩G) ∩ (C(x) ∩G) = ∅ we have

Kmedian({x}, B
′) > Kmedian({x}, B

′′).

So a good point x will rank blobs B′ s.t. B′ ∩ G ⊆ C(x) ∩ G later than blobs B′′ such that
(B′′∩G)∩ (C(x)∩G) = ∅ in the order it induces. Assume that there are exactly r blobs B in L such
that (B∩G)∩ (C(x)∩G) = ∅ . Since there are at most νn bad points and each of the blobs has size
at least 2(α+ ν)n, we obtain that for all B, B′ in L such that B ∩G ⊆ Ci ∩G and B′ ∩G ⊆ Ci ∩G,
and for all B′′ in L with (B′′ ∩G) ∩ (Ci ∩G) = ∅ we have both

rank(B,B′) > r ≥ rank(B,B′′) and rank(B′, B) ≥ r ≥ rank(B′, B′′).

This then implies that

score(B,B′) = score(B′, B) = min[rank(B,B′), rank(B′, B)] > r.

Similarly,
score(B,B′′) = score(B′′, B) = min[rank(B,B′′), rank(B′′, B)] > r.

Finally, we have

score(B′, B′′) = score(B′′, B′) = min[rank(B′, B′′), rank(B′′, B′)] ≤ r.

These imply:

score(B,B′) > score(B,B′′) and score(B,B′) > score(B′, B′′),

as desired.

We now show that is the similarity function we have satisfies the good neighborhood property,
given a good starting point, Algorithm 3 will be successful in outputting a good hierarchy.

Theorem 9 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood prop-
erty for the clustering problem (S, ℓ). Assume that L is a list of clusters each of size at least 3(ν+α)n
that partition the entire set of points. Assume also that each cluster in L intersects at most a good
set; i.e., for any C in L, we have C ∩ G ⊆ Gi for some i. Then Algorithm 3 constructs a binary
tree such that the ground-truth clustering is ν-close to a pruning of this tree.

Proof: First note that at each moment the list L of clusters is a partition of the whole dataset and
that all clusters in L have size at least 3(ν +α)n. We prove by induction that at each time step the
list of clusters restricted to G is laminar w.r.t. CG.

In particular, assume that our current list of clusters restricted to G is laminar with respect to
CG (which is true at the start). This implies that for each cluster C in our current clustering and
each Cr in the ground truth, we have either

C ∩G ⊆ G(Cr) or G(Cr) ⊆ C ∩G or (C ∩G) ∩G(Cr) = ∅.



Now, consider a merge of two clusters C and C′. The only way that laminarity could fail to be
satisfied after the merge is if for one of the two clusters, say, C′, we have that C′ ∩ G is strictly
contained inside Cr′∩G, for some ground-truth cluster Cr′ (so, (Cr′∩G)\(C′∩G) 6= ∅, (C′∩G) ⊂ Cr′)
and yet C ∩G is disjoint from Cr′ ∩G. But there must exist C′′ in the list L such that

(C′′ ∩G) ⊂ Cr′ \ (C
′ ∩G), |C′′| ≥ 3(ν + α)n.

By Lemma 8 we know that

score(C′, C′′) > score(C′, C).

However, this contradicts the specification of the algorithm, since by definition it merges the pair
C, C′ such that score(C′, C) is greatest.

3.3 The Main Result

Our main result is the following:

Theorem 10 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood
property for the clustering problem (S, ℓ) As long as the smallest target cluster has size greater than
9(ν+α)n, then we can use Algorithm 1 in order to produce a tree such that the ground-truth clustering
is ν-close to a pruning of this tree in O(nω+1) time, where O(nω) is the state of the art for matrix
multiplication.

Proof: The correctness follows immediately from Theorems 3 and 9. For a proof of the running
time see the full version of the paper [4].

3.4 The Inductive Setting

In this section we consider an inductive model in which S is merely a small random subset of points
from a much larger abstract instance space X . Based on such a sample, our algorithm outputs a
hierarchy over the sample, which also implicitly represents a hierarchy of the whole space which is
evaluated with respect to the underlying distribution. Let us assume for simplicity that X is finite
and that the underlying distribution is uniform over X .

Our goal is to design an algorithm that based on the sample produces a tree of small error
with respect to the whole distribution. Formally, we assume that each node in the tree derived
over the sample S induces a cluster (a subset of X) which is implicitly represented as a function
f : X → {0, 1}. For a fixed tree T and a point x, we define T (x) as the subset of nodes in T that
contain x (the subset of nodes f ∈ T with f(x) = 1). We say that a tree T has error at most ǫ if
T (X) has a pruning f1, ..., fk′ of error at most ǫ.

Algorithm 4 Inductive Robust Agglomerative Hierarchical Clustering

Input: Similarity function K, parameters α, ν, k ∈ Z+, δ; n = n(α, ν, k, δ);

• Pick a set S = {x1, . . . , xn} of n random examples from X .

• Run Algorithm 1 with parameters 2α, 2ν on the set S and obtain a tree T on the subsets of S.
Let Q be the set of leaves of this tree.

• Associate each node u in T a function fu (which induces a cluster) specified as follows:

Consider x ∈ X , and let q(x) ∈ Q be the leaf given by argmaxq∈QKmedian(x, q); if u appears on
the path from q(x) to the root, then set fu(x) = 1, otherwise set fu(x) = 0.

• Output the tree T .

Let N = |X |. For the rest of this section we assume that the similarity function K satisfies
the (α, ν)–good neighborhood property for the clustering problem (X, ℓ). Let S′ ⊆ S be the set of
(1− ν)N points such that K satisfies α–good neighborhood property with respect to S′. We call the
points in S′ good points and the points in S \ S′ bad points. Let Gi = Ci ∩ S′ be the good set of
label i. Let G = ∪Gi the whole set of good points; so G = S′.

Our main result in this section is the following:



Theorem 11 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood
property for the clustering problem (X, ℓ). As long as the smallest target cluster has size greater than

18(ν + α)N , then using Algorithm 4 with parameters α, ν, k, δ, and n = Θ
(

1
min(α,ν) ln

k
δ·min(α,ν)

)

,

we can produce a tree with the property that the ground-truth is ν + δ-close to a pruning of this tree

with probability 1− δ. Moreover, the size of this tree is O
(

1
min(α,ν) ln

k
δ·min(α,ν)

)

.

Proof: Note that n is large enough so that with probability at least 1−δ/2 we have that S contains
at most 2νn bad points and K satisfies the (2α, 2ν)-good neighborhood property with respect to the
clustering induced over the sample (by Lemma 12) and each target cluster has at least 9(ν + α)n
points in the sample (by Chernoff bounds).

Assume below that this happens. So, by Theorem 10 we get that the tree T induced over the
sample has error at most 2ν over the sample. Let L be the list of leaves of T . By Theorem 3, we
know that L forms a partition of S and that each element of L has size at least 6(ν + α)n and it
contains good points from only one good set i.e., for any C ∈ L, C ∩ G ⊆ Gi for some i ≤ k. Let
us fix a good point x. By Lemma 13, with probability at least 1− δ2/2 at most 2αn of the nC̃G(x)

nearest points to x from G ∩ S can be outside C(x) ∩ G, where nC̃G(x) is |C(x) ∩ G ∩ S|. We can

show that C̃, the blob in L of highest median similarity to x, satisfies C̃ ∩ G ⊆ C(x) ∩ G. To see
this, let C′ and C′′ in L be such that C′ ∩G ⊆ C(x) ∩G and C′′ ∩G ⊆ Ci ∩G, for Ci 6= C(x). By
the above facts we know that x can be more similar to at most 2νn+ 2αn points in C′′ than with
any point in C′ ∩G. Since |C′| ≥ 6(ν + α)n and |C′′| ≥ 6(ν + α)n we get that

Kmedian(x,C
′) ≥ Kmedian(x,C

′′).

This then implies that the blob C̃ in L of highest median similarity to xmust satisfy C̃∩G ⊆ C(x)∩G,
as desired. So, for any given point x, with probability 1− δ2/2 over the draw of the random sample,
the leaf in T of highest median similarity to x has the property that all its good points are from
C(x). Since this is true for any x, by Markov inequality, we get that with probability 1− δ/2 a 1− δ
fraction of the good points connect to a leaf that contain good points from their own cluster only.

Adding back the δ/2 chance of failure due to either K not satisfying the (2α, 2ν)-good neighbor-
hood property or having more than 2νn bad points in S, we get that with probability 1− δ the the
error rate of the hierarchy implied by T over the whole set X is at most ν + δ.

Lemma 12 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood prop-

erty for the clustering problem (X, ℓ). If we draw a set S of n = Θ
(

1
min(α,ν) ln

1
δmin(α,ν)

)

, then

with probability 1− δ, S contains at most 2νn bad points and the similarity function K satisfies the
(2α, 2ν)-good neighborhood property with respect to the target clustering restricted to the sample S.

Proof: Since n ≥ 3
ν
ln 2

δ
, by Chernoff bounds, we have that with probability 1 − δ/2 at most 2νn

bad points fall into the sample. Let us fix a good point x in S and let us denote by nC̃G(x) the

number of points in C(x) ∩G ∩ S. By Lemma 13 we have that for n = Θ
(

1
α
ln n

δ

)

, with probability
at least 1− δ/(2n) (over the draw of the other points in the sample) we have that all but 2αn of the
nC̃G(x) nearest neighbors of x from S ∩ G are points from the set C(x) ∩ G. By union bound over

all points x in S we have that simultaneously for all good points x in S, all but 2αn of their nC̃G(x)

nearest neighbors in S ∩G come from C(x) ∩G.

These together imply that if n = Θ
(

1
min(α,ν) ln

n
δ

)

, then with probability 1− δ at most 2νn bad

points fall into the sample and the similarity function K satisfies the (2α, 2ν)-good neighborhood
property with respect to the target clustering restricted to the sample S. Using the inequality

lnx ≤ αx− lnα− 1

for α, x > 0, we then get the desired result.

Lemma 13 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood prop-

erty for the clustering problem (X, ℓ). Consider x ∈ G. If we draw a set S of n = Θ
(

1
α
ln 1

δ

)

random
points from X, then with probability at most 1 − δ we have that at most 2αn of the nC̃G(x) nearest

points to x from G ∩ S can be outside C(x) ∩G, where nC̃G(x) is |C(x) ∩G ∩ S|.



Proof: Let CG(x) denote C(x) ∩G and let

nCG(x) = |C(x) ∩G|.

Let us define NN(x) to be the nearest nCG(x) points to x in G. Since K satisfies the (α, ν)-good
neighborhood property for the clustering problem (X, ℓ) we have:

Prz∼X [z ∈ NN(x) \ CG(x)] ≤ α.

Since NN(x) and CG(x) have the same size, this is equivalent to the statement:

Prz∼X [z ∈ CG(x) \NN(x)] ≤ α.

So, by Chernoff bounds applied to both of the above, with probability at most 1 − δ we have that
at 2αn points are in (NN(x) \ CG(x)) ∩ S and at most 2αn points are in (CG(x) \NN(x)) ∩ S.

We now argue that at most 2αn of the nC̃G(x) nearest points to x in G∩S can be outside C(x)∩G,

where nC̃G(x) = |C(x) ∩G ∩ S|. Let

n1 = |(NN(x) \ CG(x)) ∩ S|,

n2 = |(CG(x) \NN(x)) ∩ S|,

n3 = |(CG(x) ∩NN(x)) ∩ S|.

By construction, we have
nC̃G(x) = n2 + n3,

and we are given that n1, n2 ≤ 2αn. We now distinguish two cases.
The first case is n1 ≥ n2. In this case we have

n1 + n3 ≥ n2 + n3 = nC̃G(x).

This implies that the nearest nC̃G(x) points to x in G∩S all lie inside NN(x), since by definition all

points inside NN(x) are closer to x than any point in G outside NN(x). Since we are given that
at most n1 ≤ 2αn of them can be outside CG(x), we get that at most 2αn of the nC̃G(x) nearest

neighbors of x are not from CG(x), as desired.
The second case is n1 ≤ n2. This implies that the nearest nC̃G(x) good points to x in the sample

include all the points in NN(x) in the sample, plus possibly some others too. But this implies in
particular that it includes all the n3 points in CG(x) ∩NN(x) in the sample. So, it can include at
most

nC̃G(x) − n3 ≤ 2α · n

points not in CG(x) ∩ NN(x), and even if all those are not in CG(x), it is still ≤ 2αn; so at most
2αn of the nC̃G(x) nearest neighbors of x are not from CG(x), as desired.

Note: Note that if we are willing to lose a bit in the accuracy the analysis in this section allows
us to speed up the algorithm in Theorem 10.

4 Discussion and Open Questions

In this paper we propose and analyze a new robust algorithm for hierarchical clustering. We show
that our algorithm can be used to cluster accurately in interesting cases where traditional agglom-
erative algorithms fail. In particular, we show that our algorithm is provably correct if the data
satisfies a natural good neighborhood property, a relaxation of the strict separation property that
allows for substantial degrees of noise.3 We also show how to adapt our algorithm to the inductive
setting where our given data is only a small random sample of the entire data set.

The running time of our algorithm is currently O(nω+1), where O(nω) is the state of the art
for matrix multiplication and n is either the size of the dataset or the size of the sample in the
inductive case. It would be interesting to develop even faster algorithms achieving the same accuracy
guarantees.

It would also be interesting to see if our algorithmic approach can be shown to work for other
natural properties. For example, it would be particularly interesting to analyze a noisy versions of
the max stability property in [2] which was shown to be a necessary and sufficient condition for
single linkage to succeed, or of the average stability property which was shown to be a sufficient
condition for average linkage to succeed.

3As mentioned in the introduction, most of the traditional agglomerative algorithms would succeed under
the strict separation property with no noise, but even tiny amount of noise would cause them to fail badly.
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