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Abstract
There are common intuitions about how social graphs are generated (for example, it is common to
talk informally about nearby nodes sharing a link). There are also common heuristics for predicting
whether two currently unlinked nodes in a graph should be linked (e.g. for suggesting friends in an
online social network or movies to customers in a recommendation network). This paper provides
what we believe to be the first formal connection between these intuitions and these heuristics. We
look at a familiar class of graph generation models in which nodes are associated with locations in a
latent metric space and connections are more likely between closer nodes. We also look at popular
link-prediction heuristics such as number-of-common-neighbors and its weighted variants (Adamic
& Adar, 2003) which have proved successful in predicting missing links, but are not direct deriva-
tives of latent space graph models. We provide theoretical justifications for the success of some
measures as compared to others, as reported in previous empirical studies. In particular we present
a sequence of formal results that show bounds related to the role that a node’s degree plays in its
usefulness for link prediction, the relative importance of short paths versus long paths, and the ef-
fects of increasing non-determinism in the link generation process on link prediction quality. Our
results can be generalized to any model as long as the latent space assumption holds.

1 Introduction
Link prediction is a key problem in graph mining. It underlies recommendation systems (e.g., movie rec-
ommendations in Netflix, music recommendation engines like last.fm), friend-suggestions in social net-
works, market analysis, and so on. As such, it has attracted a lot of attention in recent years, and several
heuristics for link prediction have been proposed (Adamic & Adar, 2003). In-depth empirical studies com-
paring these heuristics have also been conducted (Liben-Nowell & Kleinberg, 2003) and (Brand, 2005), and
two observations are made consistently: (1) a simple heuristic, viz., predicting links between pairs of nodes
with the most common neighbors, often outperforms more complicated heuristics, (2) a variant of this heuris-
tic that weights common neighbors using a carefully chosen function of their degrees (Adamic & Adar, 2003)
performs even better on many graphs and (3) heuristics which use an ensemble of short paths between two
nodes (Katz, 1953) often perform better than those which use longer paths. However, there has been little
theoretical work on why this should be so. We present, to our knowledge, the first theoretical analysis of link
prediction on graphs. We show how various heuristics compare against each other, and under what conditions
would one heuristic be expected to outperform another. We are able to provide theoretical justifications for
all of the empirical observations mentioned above.

We define the link prediction problem as follows. There is a latent space in which the nodes reside, and
links are formed based on the (unknown) distances between nodes in this latent space. Individual differences
between nodes can also be modeled with extra parameters. The quality of link prediction now depends on
the quality of estimation of distance between points. We show how different estimators provide bounds on
distance. Clearly, the tighter the bounds, the better we can distinguish between pairs of nodes, and thus the
better the quality of link prediction.

While any latent space model can be used, we extend a model by (Raftery et al., 2002) due to two
characteristics: (1) it is simple to state and analyze, (2) yet, it is powerful enough to show all of the effects
that affect estimation, such as node degree, lengths of paths, etc. Our results do not assume any degree
distribution on the graph; in fact, they depend on very simple properties that should be generalizable to other
models as well.

Our primary contributions are as follows:

• We formulate the link prediction problem as a problem of estimating distances between pairs of nodes,
where the nodes lie at unknown positions in some latent space and the observed presence or absence of
links between nodes provides clues about their distances.



• We show that the number of common neighbors between a pair of nodes gives bounds on the distance
between them, with the upper bound on distance decreasing quickly as the count of common neighbors
increases. This justifies the popular heuristic of predicting links simply by picking node pairs with the
maximum number of common neighbors.

• Empirical studies (Liben-Nowell & Kleinberg, 2003) have shown that another popular heuristic (Adamic
& Adar, 2003) that uses a carefully weighted count of common neighbors often outperforms the un-
weighted count. We present theoretical justification for this, and generalize it to other possible weighting
schemes that should be similarly useful.

• Finally, another set of heuristics consider longer paths between pairs of nodes, e.g., hitting-time and
other measures based on random walks. Our results here are twofold. (1) We show that while the
number of long paths can, indeed, provide bounds on distance, these are looser than the bounds obtained
if enough short paths (or ideally, common neighbors) exist. Thus, longer paths are more useful if shorter
paths are rare or non-existent. (2) We also show that the bounds obtained from long paths can get much
tighter given just the knowledge of existence of a short path. Thus, even the existence of a single short
path can improve bounds obtained from long paths.

• Our results can be applied to any social network model where: nodes are distributed independently
in some latent metric space; probability of a link satisfies homophily; given the positions links are
independent of each other.

This paper is organized as follows. In section 2 we introduce related work and background on link pre-
diction and latent space models. Sections 3 and 4 consist of a formal relationship between popular heuristics
like common neighbors and our graph model with same and distinct radii. In section 5, we analyze the impli-
cation of paths of length ` > 2. Section 6 shows how to extend the analysis to handle non-determinism in the
link generation process. In section 7, we summarize this paper and discuss several implications of our work.

2 Review of Previous Empirical Studies
We will briefly describe the link prediction problem, and the observations from previous empirical studies.
Then we will describe the latent space model we use, and conclude with the relation of this model to link
prediction.

2.1 Link Prediction
Many real world graph-mining problems can be framed as link prediction. Popular applications include
suggesting friends on Facebook, recommending movies (Netflix, MovieLens) or music (last.fm, Pandora)
to users. Link prediction on informal office-network has been shown to be useful for suggesting potential
collaborators (Raghavan, 2002). Also in intelligence analysis (Schroeder et al., 2003), link-prediction can
suggest potential involvement between a group of individuals, who do not have prior records of interaction.

In general popular graph-based proximity measures like personalized pagerank (Jeh & Widom, 2002),
hitting and commute times (Aldous & Fill, 2001), Adamic/Adar (Adamic & Adar, 2003) are used for link
prediction on graphs. The experimental setup varies from predicting all absent links at once (Liben-Nowell
& Kleinberg, 2003) to predicting the best link for a given node (Brand, 2005),(Sarkar & Moore, 2007).

These papers mostly use co-authorship graphs and movie-recommendation networks. We will sketch a
few of the observations from earlier empirical evaluation. We would divide heuristics into roughly two parts,
simple variants of the number of common neighbors (Adamic/Adar, Jaccard etc.), and measures based on
ensemble of paths. Here is a summary of the most interesting observations from (Liben-Nowell & Kleinberg,
2003; Brand, 2005), and (Sarkar & Moore, 2007).

1. The number of common neighbors performs surprisingly well on most data-sets, and in many cases
beats more complex measures (Liben-Nowell & Kleinberg, 2003).

2. Adamic/Adar, which is analogous to common neighbors with a skewed weighting scheme mostly
outperforms number of common neighbors (Liben-Nowell & Kleinberg, 2003).

3. Shortest path performs consistently poorly (Liben-Nowell & Kleinberg, 2003) and (Brand, 2005). We
have also noted this behavior.

4. Ensemble of paths which looks at long paths (hitting and commute times) does not perform very
well (Liben-Nowell & Kleinberg, 2003) and (Brand, 2005).

5. Ensemble of paths which down-weights long paths exponentially (e.g. Katz, personalized pagerank)
perform better than those which are sensitive to long paths (Liben-Nowell & Kleinberg, 2003) and (Brand,
2005).

While these are interesting results, there has not been any work which theoretically justifies this behavior
of different heuristics for link prediction on social networks. In our work, we analyze a simple social network
model to justify these empirical results.



2.2 Latent Space Models for Social Network Analysis

Social network analysis has been an active area of research in sociology and statistics for a long time. One
important assumption in social networks is the notion of homophily. (McPherson et al., 2001) write in their
well-known paper, “Similarity breeds connection. This principle-the homophily principle-structures network
ties of every type, including marriage, friendship, work, advice, support, information transfer, exchange,
comembership, and other types of relationship.” More formally, there is a higher probability of forming a
link, if two nodes have similar characteristics. These characteristics can be thought of as different features of
a node, i.e. geographic location, college/university, work place, hobbies/interests etc. This notion of social
space has been examined by (McFarland & Brown, 1973) and (Faust, 1988).

In 2002, (Raftery et al., 2002) introduced a statistical model which explicitly associates every node with
locations in a D-dimensional space; links are more likely if the entities are close in latent space. In the
original model, the probability of a link between two nodes is defined as a logistic function of their distance.
All the pairwise events are independent, conditioned on their latent positions, i.e. distances in the latent space.
We alter this model to incorporate radius r in the exponent (for the RHH model r = 1). r can be interpreted
as the sociability of a node. We name this model- the non-deterministic model (section 6).

RHH model: P (i ∼ j|dij) =
1

1 + eα(dij−1)
Our model: P (i ∼ j|dij) =

1

1 + eα(dij−r)

The model has two parameters α and r. Parameter α ≥ 0 controls the sharpness of the function whereas r
determines the threshold. Setting α = ∞ in our model, yields a simple deterministic model, on which we
build our analysis. It may be noted that given the distances the links are deterministic; but given the links,
inferring the distances is an interesting problem. In section 6, we show how this analysis can be carried over
to the non-deterministic case with large but finite α. This assumption is reasonable, because low values of α
leads to a random graph; α = 0 is exactly the GN,1/2 random graph model. Clearly, it is impossible to perform
better than a random predictor in a random graph. With distinct radii for each node, the deterministic model
can be used for generating both undirected and directed graphs; however for simplicity we use a realistic
directed graph model (section 4).

We assume that the nodes are uniformly distributed in a D dimensional Euclidian space. Hence P (dij ≤
x) = V (1)xD, where V (1) is the volume of a unit radius hypersphere. This uniformity assumption has been
made in earlier social network models, e.g. by (Kleinberg, 2000), where the points are assumed to lie on
a two dimensional grid. In order to normalize the probabilities, we assume that all points lie inside a unit
volume hypersphere in D dimensions. The maximum r satisfies V (r) = V (1)rD = 1.

Connection to the Link Prediction Problem. A latent space model is well-fitted for link prediction because,
for a given node i, the most likely node it would connect to is the non-neighbor at the smallest distance. The
measure of distance comes from the definition of the model, which could be:

1. Undirected graph with identical r. Here distance from node i to j is simply dij .
2. Directed graph where i connects with j if dij is smaller than radius of j (or smaller that radius of i)

leading to a distance of dij − rj (or dij − ri).
In all these cases, the predicting distances between a pair of nodes is the key. While this can be obtained

by maximizing the likelihood of the underlying statistical model, we show that one can obtain high probability
bounds on distances from graph based heuristics. In fact we show that the distance to the node picked using a
popular heuristic is within a small factor of the true distance. This factor quickly goes to zero as N becomes
large. Although our analysis uses an extension of the RHH model to actually obtain the bounds on distances,
the only property we use is of homophily in a latent metric space, i.e. if two nodes are close in some social
space, then they are likely to form a link. Hence this idea should carry over to other social network models
as well.

3 Deterministic Model with Identical Radii

Consider a simple version of the RHH model where all radii are equal to r, and α→∞. This implies that two
nodes i and j share a link (henceforth, i ∼ j) iff the distance dij between them is constrained by dij < r.
Thus, given node positions, links are deterministic; however the node positions are still non-deterministic.
While this might appear to be a strong constraint, we will show later in Section 6 that similar results are
applicable even for finite but large α. We now analyze the simplest of heuristics: counting the common
neighbors of i and j. Let there be N nodes in total.

Let N (i) be the set of neighbors of node i. Let Yk be a random variable which is 1 if k ∈ N (i) ∩ N (j),
and 0 otherwise. Given dij , for all k /∈ {i, j}, the Yk’s are independent since they only depend on the position



Figure 1: Common neighbors of two nodes must lie in the intersection A(r, r, dij).

of point k. Hence, we have

E[Yk|dij ] = P (i ∼ k ∼ j|dij) =

∫
dik,djk

P (i ∼ k|dik)P (j ∼ k|djk)P (dik, djk|dij)d(dij) (1)

In the deterministic model, this quantity is exactly equal to the volume of intersection of two balls of radius r
centered at i and j (see Figure 1). Denote this volume by A(r, r, dij). Also, the observed value of

∑
k Yk is

simply the number of common neighbors η. From now on we will drop the dij part when we write expectation
for notational convenience. However any expectation in terms of area of intersection is obviously computed
given the pairwise distance dij . Thus by using empirical Bernstein bounds (Maurer & Pontil, 2009), we have:

P

[∣∣∣∣∣∑
k

Yk/N − E[Yk]

∣∣∣∣∣ ≥
√

2varN (Y ) log 2/δ

N
+

7 log 2/δ

3(N − 1)

]
≤ 2δ

(2)

varN (Y ) is the sample variance of Y , i.e.
η(1− η/N)

N − 1
. Setting ε =

√
2varN (Y ) log 2/δ

N
+

7 log 2/δ

3(N − 1)

P
[ η
N
− ε ≤ A(r, r, dij) ≤

η

N
+ ε
]
≥ 1− 2δ (3)

A(r, r, dij) is twice the volume of a spherical cap whose base is dij/2 distance away from the center:

A(r, r, dij) = 2
π
D−1

2 rD

Γ
(
D+1
2

)
cos−1

(
dij
2r

)∫
0

sinD(t)dt (4)

Given the above bounds on A(r, r, dij), we can obtain bounds on dij by solving eq. (4) numerically. How-
ever, weaker analytic formulas can be obtained by using hyperspheres bounding this intersection, as shown
in Figure 1. V (r) is the volume of a D dimensional hypersphere of radius r.(

1− dij
2r

)D
≤ A(r, r, dij)

V (r)
≤

(
1−

(
dij
2r

)2
)D/2

(5)

Using this in eq. (3) gives us bounds on dij :

2r

(
1−

(
η/N + ε

V (r)

)1/D
)
≤ dij ≤ 2r

√
1−

(
η/N − ε
V (r)

)2/D

Using common neighbors in link prediction. Let us recall that in link prediction, we want to pick the node
which is most likely to be a neighbor of i, and is not currently a neighbor (call this OPT). If we knew the
positions, we would pick the non-neighbor with the minimum distance (dOPT ). However, since positions
in latent space are unknown, we instead predict a link to the node that shares the most common neighbors



with i (call this MAX). Here we will show that (Lemma 3.2) the distance to the node with largest common
neighbors (dMAX ) is within an additive factor of dOPT . This factor goes to zero as N increases. This again
shows that, as N increases, link prediction using the number of common neighbors converges to the optimal
prediction.

Let the number of common neighbors between i and OPT be ηOPT , and between i and MAX be ηMAX .
Now we will try to relate dOPT with dMAX . Note that both these distances are larger than r. Denote the area
of intersections of these two nodes with i as AOPT and AMAX respectively. Then, we have:

Lemma 3.1 Define εo =

√
2varN (YOPT ) log 2/δ

N
+

7 log 2/δ

3(N − 1)
and εm =

√
2varN (YMAX) log 2/δ

N
+

7 log 2/δ

3(N − 1)
,

where YOPT and YMAX denote the random variable for common neighbors between i and OPT, and i and
MAX respectively.

AOPT ≥ AMAX P [AMAX ≥ AOPT − εo − εm] ≥ 1− 2δ

Proof: Using the high probability bounds from eq. (3) we have (w.h.p),

AMAX −AOPT ≥
ηMAX

N
− εm − (

ηOPT
N

+ εo)

By definition, ηMAX ≥ ηOPT . This and the high probability empirical Bernstein bound on AOPT yield the
result.

This means that as N becomes large, the node with the highest number of common neighbors will be the
optimal node for link prediction. Now we will give a bound on how far dOPT is from dMAX .

Theorem 3.2 Define εo =

√
2varN (YOPT ) log 2/δ

N
+

7 log 2/δ

3(N − 1)
, εm =

√
2varN (YMAX) log 2/δ

N
+

7 log 2/δ

3(N − 1)
,

and εf = εo + εm.

dOPT ≤ dMAX

w.h.p

≤ dOPT + 2r

(
εf
V (r)

)1/D

≤ dOPT + 2

(
εf
V (1)

)1/D

4 Deterministic Model with Distinct Radii
Until now our model has used the same r for all nodes. The degree of a node is distributed as Bin(N,V (r)),
where V (r) is the volume of a radius r. Thus r determines the degree of a node in the graph, and identical r
will lead to a roughly regular graph. In practice, social networks are far from regular. In order to accommodate
complex networks we will now allow a different radius (ri) for node i. For this section, we will assume
that these radii are given to us. The new connectivity model is: i → j iff dij ≤ rj , where i → j now
represents a directed edge from i to j. While variants of this are possible, this is similar in spirit to a citation
network, where a paper i tends to cite a well-cited paper j (with larger number of in-neighbors) than another
infrequently cited paper on the same topic; here, rj can be thought of as the measure of popularity of node j.
Under this model, we will show why some link prediction heuristics work better than others.

As in the previous section, we can use common neighbors to estimate distance between nodes. We can
count common neighbors in 4 different ways as follows:

(Type-1) All k, s.t. k → i and k → j: all nodes which point to both i and j. The probability of this given dij is
P (dik ≤ ri ∩ djk ≤ rj |dij), which can be easily shown to be A(ri, rj , dij).

(Type-2) All k, s.t. i → k and j → k: all nodes to which both i and j point. The probability of this given dij is
A(rk, rk, dij).

(Type-3) All k, s.t. i→ k and k → j: all directed paths of length 2 from i to j. The probability of this given dij
is given by A(rk, rj , dij).

(Type-4) All k, s.t. j → k and k → i: all directed paths of length 2 from j to i. The probability of this given dij
is given by A(ri, rk, dij).

If we count type-1 nearest neighbors, the argument from section 3 carries over, and if there are enough
common neighbors of this type, we can estimate dij by computing A(ri, rj , dij). However, if both ri and rj
are small, there might not be many common neighbors; indeed, if dij > ri + rj , then there will be no type-1
common neighbors. In such cases, we consider type-2 neighbors, i.e. the ones which both i and j point to.
The analysis for type-3 and type-4 neighbors is very similar to that for type-2, and hence we do not discuss



these any further. In the type-2 case, the radii rk of the common neighbors play an important role. Intuitively,
if both i and j point to a very popular node (high radius rk), then that should not give us a lot of information
about dij , since it is not very surprising. In particular, any type-2 common neighbor k leads to the following
constraint: dij ≤ dik + djk ≤ 2rk. Obviously, the bound is stronger for small values of rk. This argues for
weighting common neighbors differently, depending on their radii. We formalize this intuition using a toy
example now. The analysis in the following section can be generalized to graphs, where the radii of the nodes
form a finite set.

Recall that common neighbors can be expressed as a sum of random variables Yk, which is 1, if k is a
common neighbor of i and j.

Motivating Example. Take a toy network where the nodes can have two different radii R and R′, with
R < R′. The total number of low radii nodes is NR, whereas that of large radii nodes is NR′ .

The expectation of the number of type-2 common neighbors will now have a mixture of A(R,R, dij)
and A(R′, R′, dij). One solution is to estimate high probability bounds on distances from the two different
classes of common neighbors separately, and then examine the intersection of these bounds. We will discuss
a new estimator based on this intuition at the end of this section. The other solution is to look at weighted
combinations of common neighbors from different radii. The weights will reflect how important one common
neighbor is relative to another. For example, consider a pair of papers which both cite a book on introduction
to algorithms (cited by 5000 other papers, e.g. higher radius), and a specific article on randomized algorithms
(cited by 30 other papers, e.g. lower radius). The second article gives more evidence on the “closeness” or
similarity of the pair. We will consider this approach next.

Suppose we observe ηR common neighbors of NR nodes of small radius, and ηR′ common neighbors of
NR′ nodes of large radius, between pair of nodes i, j. The likelihood of these observations, given the pairwise
distance dij is:

P (ηR, NR, ηR′ , NR′ |dij) =
∏

r∈{R,R′}

(
Nr
ηr

)
A(r, r, dij)

ηr (1−A(r, r, dij))
Nr−ηr (6)

We want to rank pairs of nodes using the distance estimate d∗, which maximizes the likelihood of this partial
set of observations. However, if ηR > 0, the logarithm of the above is defined only when dij ≤ 2R. To
make the likelihood well-behaved, we introduce a small noise parameter β: node i connects to node j with
probability 1 − β (if dij ≤ rj), or with probability β (otherwise). Now, the probability of having a type-2
common neighbor of radius r will be β + A(r, r, dij)(1 − β). For ease of exposition we will denote this by
Aβ(r, r, dij). The new likelihood will be exactly as in eq. (6), except we will use Aβ instead of A. Setting
the derivative of the logarithm yields:

w(R, d∗)NRAβ(R,R, d∗) + w(R′, d∗)NR′Aβ(R′, R′, d∗) = w(R, d∗)ηR + w(R′, d∗)ηR′ (7)

where, w(R, d∗) =
− dAβ(R,R,dij)

dij

∣∣∣
d∗

Aβ(R,R, d∗)(1−Aβ(R,R, d∗))
. Note that the negative sign is only to make both sides

positive, since Aβ decreases with distance.
Using Leibnitz’s rule on eq. 4, the derivative of A w.r.t dij can be written as:

A′(R,R, dij) =
dA(R,R, dij)

dij
=

−CDrD−1
(

1− d2ij
4r2

)D−1
2

If dij ≤ 2r

0 Otherwise
(8)

A′β(R,R, dij) =
dAβ(R,R, dij)

dij
= (1− β)A′(R,R, dij)

Suppose we could approximate w(R, dij) with some wR that depends only on R and not on dij . Then, the
RHS of eq. (7) can be obtained from the data alone. Also, it can be shown that the L.H.S. of eq. (8) is a
monotonically decreasing function of d∗. Hence, a pair of nodes with higher RHS will have lower distance
estimate, implying that ranking based on the RHS will be equivalent to ranking based on distance. All that
remains is finding a good approximation wR.

We start by bounding A′(R,R, dij) in terms of A(R,R, dij). Consider D > 11. Combining eq. (8) with
eq. (5) yields a lower bound: A′(R,R, d) ≥ c′D

A√
r2−d2/4

. For the upper bound, we note that the volume of

the spherical cap can be lower bounded by the volume of a sphere inD−1 dimensions of radius
√
r2 − d2/4,

1When D = 1, A′ is constant, and A(r, r, d) = 2r − d.



Figure 2: For a given distance d, we plot w(r, d), Adamic/Adar and 1/r with increasing r. Note that both
axes are scaled to a maximum of 1. Note that 1/r closely matches w(r, d) for a wide range of radii.

times the height d − 2r, times a constant depending only on D: A(r, r, d) ≥ kD

(
r2 − d2

4

)D−1
2 (

r − d
2

)
Combining with eq. (8) gives: −A′(r, r, d) ≤ k′D A

r−d/2 . Given that β is extremely small, we have

1

r
c′′D

1√
1− d2

4r2

.
|A′β(r, r, d)|

Aβ(r, r, d)(1−Aβ(r, r, d))
≤ 1

r
k′′D

1

(1− V (r))(1− d
2r )

For a given distance d and increasing radius r, the weight w(r, d) first decreases sharply but increases
again once r becomes close to the maximum radius, i.e., V (r) ≈ 1 (see Figure 2). Thus, it is high for both
nodes of very low and very high radius. Clearly, the presence of a low-radius common neighbor gives strong
evidence that d is small. On the other hand, the absence of a very high degree node gives strong evidence that
d is very large. Note that, the presence of low radius common neighbors in the absence of very high radius
common neighbors is extremely unlikely. This is because, if a pair of nodes are close enough to connect to a
low radius node, they are also very likely to both be within the radius of some very high radius node.

SinceNV (r) is the expectation of the indegree of a node of radius r, such high-radius nodes are expected
to have extremely high degrees. However, high-degree nodes in real-world settings typically connect to no
more than 10− 20% of the set of nodes, which is why a practical weighting only needs to focus on situations
where 1 − V (r) ≈ 1. For relatively small d (which are the interesting candidates for link prediction), the
weights w(r, d) are then well approximated by w(r) = 1/r up to a constant. Note that this is identical to
weighting a node by 1/(NV (r))1/D, i.e., essentially weighting a common neighbor i by 1/ deg(i)1/D.

Now we will discuss a popular weighting scheme, namely Adamic/Adar, which weights the common
neighbors by 1/ log(deg(i)).

Adamic/Adar: A popular link prediction heuristic. In practice, the radius of a node is analogous to its de-
gree, and hence it is natural to weight a node more if it has lower degree. The Adamic/Adar measure (Adamic
& Adar, 2003) was introduced to measure how related two home-pages are. The authors computed this by
looking at common features of the webpages, and instead of computing just the number of such features, they
weighted the rarer features more heavily. In our social networks context, this is equivalent to computing sim-
ilarity between two nodes by computing the number of common neighbors, where each is weighted inversely
by the logarithm of its degree.

Adamic/Adar =
∑

k∈N (i)∩N (j)

1

log(deg(k))

(Liben-Nowell & Kleinberg, 2003) have shown that this out-performs the number of common neighbors in a
variety of social and citation networks, confirming the positive effect of a skewed weighting scheme that we
observed in the motivating example. Adamic/Adar would be expected to perform relatively poorly only in
case (iv), but since the weighting factor for a node k is only 1/ log(d(k)), it takes exponentially high degrees
for the skew to have a significant negative impact on performance.



We can analyze the Adamic/Adar measure as follows. In our model, the expected degree of a node k
of radius rk is simply NV (rk), so we set the weights as wk = 1/ log(NV (rk)). Let S =

∑
k wkYk,

where random variable Yk = 1 if k is a type-2 common neighbor of i and j, and zero otherwise. Clearly,
E[S] =

∑
k wkA(rk, rk, dij) =

∑
k A(rk, rk, dij)/ log(NV (rk)). Let the minimum and maximum radii be

rmin and rmax respectively. The following can be easily obtained from the Chernoff bound.

Lemma 4.1 S
N

(
1−

√
3 log(NV (rmax)) ln(1/δ)
N ·A(rmax,rmax,dij)

)
≤ E[S]

N ≤ S
N

(
1 +

√
3 log(NV (rmin)) ln(1/δ)
N ·A(rmin,rmin,dij)

)
Clearly, the error terms decay with increasing N , and for large N , we can tightly bound E[S]. Since E[S] is
monotonically decreasing function of dij , this translates into bounds on dij as well.

New estimators. Based on the analysis of the motivating example discussed before, we can get a lot of
intuition about a general graph. We have seen that low radius common neighbors imply that distance is small,
whereas fewer high degree common neighbors in the absence of any low degree common neighbors imply
that distance is large. Based on these observations, we will define the following two estimators.

Consider the estimateQR, which is simply the fraction of nodes with radius smaller thanR that are type-2
neighbors of i and j. Let NR be the number of nodes with radius less than R. We define QR as follows:

QR =

∑
rk≤R Yk

NR
→ E[QR] =

∑
rk≤RA(rk, rk, dij)

NR
< A(R,R, dij) (9)

QR is large when many low-radius nodes are type-2 common neighbors of i and j. Application of Hoeffding
bounds give:

P

[
QR ≤ E[QR] +

√
1

2NR
ln

(
1

δ

)]
≥ 1− δ

We pick R so that E[QR] is large enough. While iterative algorithms can give an exact value of the upper
bound on dij , we will also provide a simple intuitive bound:

QR ≤ A(R,R, dij) +

√
1

2NR
ln

(
1

δ

)
≤ V (R)

(
1−

d2ij
4R2

)D/2
+

√
1

2NR
ln

(
1

δ

)

⇒ dij ≤ 2R

√√√√1−

(
QR −

√
ln(1/δ)/2NR

V (R)

)2/D

If we observe a large QR for a small R, then this upper bound gets smaller. This shows that a large number
of neighbors of small degree gives a tighter upper-bound on dij . In the same spirit, we can define another
estimator TR′ , such that

TR′ =

∑
rk≥R′

Yk

NR′
→ E[TR′ ] =

∑
rk≤R′

A(rk, rk, dij)

NR′
≥ A(R′, R′, dij)

A similar analysis yields a high probability lower-bound on dij :

TR′ ≥ A(R′, R′, dij)−

√
1

2NR′
ln

(
1

δ

)
≥ V (R′)

(
1− dij

2R′

)D
−

√
1

2NR′
ln

(
1

δ

)

⇒ dij ≥ 2R′

1−

(
TR′ +

√
ln(1/δ)/2NR′

V (R′)

)1/D


Smaller values of TR′ yield tighter lower bounds. This tells us that if many high degree nodes are not
common neighbors of i and j then, we are more confident than i and j are far away.

While QR and TR′ could be used with any R and R′, we could also perform a sweep over the range of
possible radii, computing bounds on dij for each radius using both estimators, and then retaining the best.

5 Estimators using Longer Paths in the Deterministic Model
The bounds on the distance dij described in the previous sections apply only when i and j have common
neighbors. However, there will be no common neighbors if (for the undirected case) (a) dij > 2r , or (b) no
points fall in the intersection area A(r, r, dij) due to small sample size N . In such cases, looking at paths
of length ` > 2 between i and j can yield bounds on dij . Such bounds can be useful even when common



Figure 3: Triangulation for bounding dij using `-hop paths.

neighbors exist; in fact, we show that the mere existence of one common neighbor leads to stronger bounds
for long paths.

We first discuss how dij can be upper-bounded using the observed number of simple `-hop paths for any
given ` > 2. A stronger upper bound and a lower bound can be derived when i and j are known to have at
least one common neighbor. We demonstrate this for ` = 3, with a similar technique being applicable for
longer paths as well. For the sake of simplicity, we restrict ourselves to the case of identical and known r.

An Upper Bound for ` > 2. Let Y (i, k1, . . . , k`−2, j) = 1 if there is a simple path of length ` such
that i ∼ k1 ∼ k2 ∼ . . . k`−2 ∼ j, with no node being repeated in the path. Let S(`) be the set of or-
dered sets of ` distinct elements from {1, . . . , N}; thus, S(`) represents all possible paths of length `. Let
η`(i, j|X1, . . . , XN ) be the number of paths of length ` between i and j, given the positions of all N points:

η`(i, j|X1, ...XN ) =
∑

k1,...k`−2∈S(`−2)

Y (i, k1, . . . , k`−2, j).

We need to infer bounds on dij given the observed number of simple paths η`(i, j). Our first step is to
bound the maximum degree ∆ of any graph generated by the RHH model. Next, we use ∆ to bound both
the maximum possible value of η`(i, j) and the change that can be induced in it by moving any one point.
Finally, we compute the expected value E[η`(i, j)]. Combining these will give us a bound linking dij to the
number of simple `-hop paths.

Under the assumption that the positions Xk are uniformly distribution in the unit hypersphere, we can
bound ∆, as follows:

Lemma 5.1 ∆ < NV

(
1 +

√
ln(N/δ)
2NV

)
with probability at least 1− δ.

Proof: The degree d(k) of any node k is a binomial random variable with expectationE[d(k)] = NV , where

V is the volume of a hypersphere of radius r. Thus, using the Chernoff bound, d(k) < NV

(
1 +

√
ln(N/δ)
2NV

)
holds with probability at least (1− δ/N). Applying the union bound on all nodes yields the desired proposi-
tion.

Lemma 5.2 For any graph with maximum degree ∆, we have: η`(i, j) ≤ ∆`−1.
Proof: This can be proved using a simple inductive argument. If the graph is represented by adjacency matrix
M, then the number of length ` paths between i and j is given by M`(i, j). Trivially M2

ij can be at most ∆.
This happens when both i and j have degree ∆, and their neighbors form a perfect matching. Assuming this
is true for all m < `, we have: M`(i, j) =

∑
pM(i, p)M`−1(p, j) ≤ ∆`−2∑

pM(i, p) ≤ ∆`−1

Lemma 5.3 For ` < ∆, |η`(i, j|X1, . . . , Xp, . . . , XN )− η`(i, j|X1, . . . , X̃p, . . . XN )| ≤ (`− 1) ·∆`−2

Proof: The largest change in η`(.) occurs when node p was originally unconnected to any other node, and is
moved to a position where it can maximally add to the number of `-hop paths between i and j (or vice versa).
Consider all paths where p is m hops from i (and hence ` −m hops from j. From Lemma 5.2, the number
of such paths can be at most ∆m−1 ·∆`−m−1 = ∆`−2. Since m ∈ {1, . . . , `− 1}, the maximum change is
(`− 1) ·∆`−2.

The bounds in both Lemma 5.2 and 5.3 are tight, as can be seen by considering a clique of i, j, and ∆−1
other nodes. Next, we compute the expected number of `-hop paths. Define A(r1, r2, d) as the volume of
intersection of two balls of radii r1 and r2, whose centers are distance d apart (as always, the dimension D is
implicit). Define Pr`(i, j) as the probability of observing an `-hop path between points i and j.



Theorem 5.4 E[η`(i, j)] ≤ ∆`−1∏`−1
p=1A(r, p×r, (dij−(`−p−1)r)+), where x+ is defined as max(x, 0).

Proof: Consider an `-hop path between nodes i and j as in figure 3. The solid lines are the edges in the path,
whereas the dotted lines are the distance variables we will introduce in order to compute the probability of
this path. For clarity of notation, let us denote the distances dik1 , dik2 etc. by a1, a2, up to a`−1. These are
all less than r, since the corresponding edges are present. We also denote the distances djk1 , djk2 , etc. by
d1, d2, up to d`−1. From the triangle inequality, d`−2 ≤ a`−1 + a` ≤ 2r, and by induction, dk ≤ (` − k)r.
Similarly, d1 ≥ (dij − a1)+ ≥ (dij − r)+, and by induction, dk ≥ (dij − kr)+. We can now compute the
probability of observing an `-hop path:

Pr`(i, j) = P (i ∼ k1 ∼ . . . ∼ k`−1 ∼ j|dij)
= P (a1 ≤ r ∩ . . . ∩ a` ≤ r|dij)

=

∫
d1,...,d`−2

P (a1 ≤ r, . . . , a`−1 ≤ r, d1, . . . , d`−2|dij)

=

(`−1)r∫
d1=(dij−r)+

· · ·
2r∫

d`−2=(dij−(`−2)r)+

P (a`−1 ≤ r, a` ≤ r|dk−2)P (a`−2 ≤ r, d`−2|d`−3) . . . P (a1 ≤ r, d1|dij)

≤ A(r, r, (dij − (`− 2)r)+)×A(r, 2r, (dij − (`− 3)r)+)× . . .×A(r, (`− 1)r, dij)

≤
`−1∏
p=1

A(r, p× r, (dij − (`− p− 1)r)+) (10)

Since there can be at most ∆`−1 possible paths (from Lemma 5.2), the theorem statement follows.

Corollary 5.5 For 3-hop paths, we have:

Pr3(i, j) ≤ A(r, r, (dij − r)+)) ·A(r, 2r, dij) AND E[η3(i, j)] ≤ ∆2 ·A(r, r, (dij − r)+)) ·A(r, 2r, dij)

Theorem 5.6

η`(i, j) ≤ (NV )`−1


`−1∏
p=1

A(r, p× r, (dij − (`− p− 1)r)+) +
(`− 1)

√
1/δ

2

√
NV

(
1 +

√
ln(N/δ)

2NV

)

(

1 +

√
ln(N/δ)

2NV

)`−1

with probability at least (1− 2δ).

Proof: From McDiarmid’s inequality (McDiarmid, 1989), we have:

η`(i, j) ≤ E[η`(i, j)] + (`− 1)∆`−2

√
N ln(1/δ)

2

≤ ∆`−2

[
∆
∏`−1
p=1A(r, p× r, (dij − (`− p− 1)r)+) + (`− 1)

√
N ln(1/δ)

2

]

≤ (NV )`−1

∏`−1
p=1A(r, p× r, (dij − (`− p− 1)r)+) +

(`− 1)
√

ln(1/δ)
2

√
NV

(
1 +

√
ln(N/δ)
2NV

)
(1 +

√
ln(N/δ)
2NV

)`−1

where Theorem 5.4 is applied in the step 2, and Lemma 5.1 in step 3. Note that as N increases, the second
term in the summation decays, yielding tighter bounds.

Bounding dij . Theorem 5.6 yields an upper bound dij as follows. Only the first term in the summation
depends on dij , and this term decreases monotonically with increasing dij . Thus, a simple binary search can
give us the value of dij that achieves the equality in Theorem 5.6, and this is an upper bound on dij .



A looser but analytic bound can be obtained by upper-bounding all but one of the A(.) terms by 1. For
example, using A(r, 2r, dij) ≤ 1 in Corollary 5.5 yields E[η3(i, j)] ≤ ∆2A(r, r, (dij − r)+). Using this in
McDiarmid’s inequality yields a bound of the form

A(r, r, (dij − r)+) ≥ η3(i, j)

c(N, δ)
− c′(N, δ)⇒ dij ≤ r + 2r

√
1−

(
η3(i, j)/c(N, δ)− c′(N, δ)

V (r)

)2/D

In general, bounds for `-hop paths are of the form dij ≤ `r(1−g(η`(i, j), ε)). Thus, for some `′ > `, η`′(i, j)
needs to be much larger than η`(i, j) for the bound using `′ to be stronger than that for `. In particular,
this shows that when enough common neighbors are present (i.e., 2-hop paths), looking at longer paths is
unlikely to improve bounds and help link prediction, thus theoretically confirming the empirical observations
of (Liben-Nowell & Kleinberg, 2003).

Better bounds when shorter paths exist. While the above applies in the general case, it suffers from two
weaknesses: (1) the upper bound on E[η`(i, j)] (and hence on dij) derived in Theorem 5.4 gets progressively
weaker as ` increases, and (2) we could not derive a useful lower bound onE[η`(i, j)] (the trivial lower bound
is zero, which is achieved when dij = `r). Both of these can be remedied if we know that at least one path of
length less than ` exists. We demonstrate the idea for ` = 3, but it can be used for larger ` in a similar fashion.
First, we prove two bounds on the probability Pr3(i, j) of observing a 3-hop path between two points whose
distance is dij .

Lemma 5.7 If there exists any 3-hop path between i and j, then, for any d′ ∈ [(dij − 2r)+, 2r],

A(r, d′, dij) ·A(r, r, d′) ≤ Pr3(i, j) ≤ [A(r, r, (dij − r)+)−A(r, r, d′)]A(r, d′, dij) +A(r, r, d′) ·A(r, 2r, dij)

Proof: Consider all points that are within distance r of point i, and within a distance range (x, x + ∆x) of
point j; here, ∆x refers to an infinitesimal change in x. Since these points are within r of i, they can be
the first hop in a 3-hop path from i to j. Also, since they are all equidistant from j, and the probability of
a common neighbor between two points depends only on their distance, all of these points have the same
probability A(r, x, dij) of forming a common neighbor with j. Let p(r, x, dij) denote the probability density
function for such points. Triangle inequalities imply that 2r ≥ x ≥ (dij − r)+ for any 3-hop path to exist.
Then,

Pr3(i, j) =

2r∫
(dij−r)+

p(r, x, dij) ·A(r, r, x)dx ≥
d′∫

(dij−r)+

p(r, x, dij) ·A(r, r, x)dx

≥ A(r, r, d′)

d′∫
(dij−r)+

p(r, x, dij)dx ≥ A(r, d′, dij) ·A(r, r, d′)

This proves the lower-bound on Pr3(i, j). The proof for the upper bound is similar:

Pr3(i, j) =

d′∫
(dij−r)+

p(r, x, dij) ·A(r, r, x)dx+

2r∫
d′

p(r, x, dij) ·A(r, r, x)dx

≤ A(r, r, (dij − r)+) ·A(r, d′, dij) +A(r, r, d′) · [A(r, 2r, dij)−A(r, d′, dij)]

≤ [A(r, r, (dij − r)+)−A(r, r, d′)]A(r, d′, dij) +A(r, r, d′) ·A(r, 2r, dij)

The difficulty in using these bounds arises from the fact that d′ ∈ [(dij − r)+, 2r], and dij is unknown.
When we only know that some 3-hop path exists, then dij ≤ 3r, and hence d′ = 2r is the only value of d′
that is guaranteed to lie within the required interval. In fact, using d′ = 2r yields exactly the statement of
Corollary 5.5. However, suppose we also knew that at least one 2-hop path exists. Then, dij ≤ 2r, and so
any d′ in the range r ≤ d′ ≤ 2r is valid. In particular, we can use d′ = r to get the following bounds.

Theorem 5.8 When dij ≤ 2r, then

A(r, r, dij) ·A(r, r, r) ≤ Pr3(i, j) ≤ [A(r, r, (dij − r)+)−A(r, r, r)]A(r, r, dij) +A(r, r, r) ·A(r, 2r, dij)



Lemma 5.9 The upper bound in Theorem 5.8 is smaller (and hence, better) than the upper bound in Corol-
lary 5.5.

Proof: The proof follows from basic algebraic manipulations.

Thus, the presence of even one common neighbor between i and j offers better bounds using 3-hop
paths. In addition, we also have a lower bound that was unavailable in the general case. These translate to
sharper bounds on dij , which can be obtained via binary search as described previously. Similar results can
be obtained for paths of length ` > 3.

Observations. Our analysis of `-hop paths yields the following observations. (1) When short paths are non-
existent or rare, the bounds on dij that we obtain through them can be loose. Longer paths can be used to
yield better bounds in such cases. (2) As ` increases, more and more long paths need to be observed before
the corresponding bound on dij becomes comparable or better than bounds obtained via shorter paths. (3)
Even the existence of a short path can improve upper bounds obtained by all longer paths. In addition, lower
bounds on dij can also be obtained. (4) The number of paths is important to the bound. Link prediction
using the length of the shortest path ignores this information, and hence should perform relatively poorly, as
observed by (Liben-Nowell & Kleinberg, 2003; Brand, 2005) and (Sarkar & Moore, 2007).

6 The Non-deterministic Case

All of the previous sections have assumed that, given the positions of points, the corresponding graph could
be inferred exactly. In terms of the RHH model introduced in section 2, this corresponds to setting α → ∞.
In this section, we investigate the effects of finite α. Our analysis shows that while bounds become looser,
the results are still qualitatively similar.

The core idea underlying almost all of our previous results has been the computation of the probability
of two nodes i and j having a common neighbor. For the deterministic case, this is simply the area of
intersection of two hyperspheres, A(r, r, dij), for the case when all nodes have the same radius r. However,
in the non-deterministic case, this probability is hard to compute exactly. Instead, we can give the following
simple bounds on Pr2(i, j), which is the probability of observing a common neighbor between two nodes i
and j that are distance dij apart and have identical radius r.

Theorem 6.1

Pr2(i, j) >
1

4

(
A(r, r, dij) + 2e−αdij · (V (r)−A(r, r, dij))

)

Pr2(i, j) <


A(r, r, dij) + 2V (r) ·

[
1−

(
D
αr

)D]
αr
D − 1

(for αr > D)

A(r, r, dij) + 2D · V (r) (for αr = D)

A(r, r, dij) + 2V (D/α) ·

[
1−

(
αr
D

)D]
1− αr

D

(for αr < D)

Observations and Extensions. The importance of theorem 6.1 is that the probability of observing a common
neighbor is still mostly dependent on the area of intersection of two hyperspheres, i.e. A(r, r, dij). However,
there is a gap of a factor of 4 between the lower and upper bounds. This can still be used to obtain reasonable
bounds on dij when enough common neighbors are observed. However, when we consider longer paths, the
gap increases and we might no longer be able to get strong bounds.

The reason for this is that theorem 6.1 only uses the fact that probability of linking i and j is at least 1/2
when dij is less than r. This statement is applicable to all α. However, we typically want to perform link
prediction only when α is large, as small values of α yield graphs that are close to random and where no link
prediction methods would work. For the case of large α, we can get much stronger lower bounds and close
the factor-of-4 gap, as follows.

In order to compute the probability Pr2(i, j), we need to integrate the product of the link probabilities
over the intersection of the two hyperspheres of radius r around nodes i and j. Let this region be denoted
by S(i, j).Suppose that, instead of integrating over S(i, j), we integrate over a smaller subset S′(i, j). While
the volume of S′(i, j) would be smaller, the minimum probabilities inside that subset could be much higher,
leading to a better overall lower-bound. We consider S′(i, j) = {xk|dik < r′, djk < r′} to be the intersection



of two hyperspheres of radius r′ < r, centered on i and j. Then, using eq. 4
Pr2(i, j, xk ∈ S′(i, j))
≥
(

1
1+eα(r′−r)

)2
· vol(S′(i, j))

≥
(

1
1+eα(r′−r)

)2
V (r′)

cos−1
(
dij
2r

)∫
0

sinD(t)dt

Ideally, we would like to pick r′ to maximize this, but vol(S′(i, j)) depends on dij as well. Noting that and
the effect of dij is restricted to the last term only, we propose the following formulation:

Pick r′ to maximize
(

1

1 + eα(r′−r)

)2

· V (r′) (11)

Lemma 6.2 If α > D/r, then r′ < r.

Thus, for large enough α, we can find a good r′ which can improve the gap between upper and lower bounds
of Pr2(i, j). The optimal r′ gets closer to r as α increases, but its exact value has to be obtained numerically.

7 Summary and Discussion
The paper presents, to our knowledge, the first theoretical study of link prediction and the heuristics com-
monly used for that purpose. We formalize the link prediction problem as one of estimating distances between
nodes in a latent space, where the observed graph structure provides evidence regarding the unobserved po-
sitions of nodes in this space. We present theoretical justifications of two common empirical observations:
(1) the simple heuristic of counting common neighbors often outperforms more complicated heuristics, (2)
a variant that weights common neighbors by the inverse of the logarithm of their degrees (Adamic & Adar,
2003) often performs better. We show that considering longer paths is useful only if shorter paths (especially,
common neighbors) are not numerous enough for the bounds obtained from them to be tight enough. How-
ever, the bounds obtained from longer paths can be made significantly tighter if even a single short path is
known to exist.
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