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Abstract

We consider a stochastic extension of the loop-free shqrétk problem with adversarial rewards.
In this episodic Markov decision problem an agent travetfseaigh an acyclic graph with random
transitions: at each step of an episode the agent choosedian, aeceives some reward, and
arrives at a random next state, where the reward and thébdisdn of the next state depend on
the actual state and the chosen action. We consider thetlsatodition when only the reward of
the just visited state-action pair is revealed to the agEat.this problem we develop algorithms
that perform asymptotically as well as the best stationaficp in hindsight. Assuming that all
states are reachable with probability> 0 under all policies, we give an algorithm and prove
that its regret isO(L?\/T|A|/«), whereT is the number of episodes, denotes the (finite) set of
actions, and. is the length of the longest path in the graph. Variants oftgerithm are given that
improve the dependence on the transition probabilitiesusdecific conditions. The results are
also extended to variations of the problem, including treeashen the agent competes with time
varying policies.

1 Introduction

Consider the problem of controlling an inventory so as to imize the revenue. This is an optimal control
problem, where the state of the controlled system is thekstbe action is the amount of stock ordered.
The evolution of the stock is also influenced by the demandghwvis assumed to be stochastic. Further,
the revenue depends on the prices at which products are bandtsold. By assumption, the prices are
not available at the time when the decisions are made. Siecprices can depend on many external, often
unobserved events, their evolution is often hard to moddlenT a better approach might be to view this
problem as an instance of robust control, which can be faatedlas follows: Choose a sufficiently large class
of controllers so that no matter how the prices evolve, thextontains some controller whose performance is
acceptable. The problem is to design an algorithm that estagberform almost as well as the best controller
in the chosen class, where the mentioned best controlletdsted based on hindsight.

This problem formulation shares many similarities with Hwecalled expert framework, where the task
is to find an algorithm that can predict (almost) as well ashtbst amongst a fixed set of experts in an ar-
bitrary prediction environment (cf. Chapter 2 of Cesa-Blarand Lugosi, 2006 and the references therein).
However, the control problem is made more complicated bydbethat one must take into account that the
decisions of the controller influence future states and #tss future rewards. This, in fact, has two conse-
guences: Firstly, in order to perform well, the controllarshplan ahead in time. That is, the controller must
address the usual temporal credit assignment problem. i hisually done by resorting to some form of
(approximate) dynamic programming to maintain computeti@fficiency (Bertsekas and Tsitsiklis, 1996;
Sutton and Barto, 1998). Secondly, the controller must atfdress the exploration-exploitation problem
which arises because only the rewards associated withateeattion pairs visited are available for measure-
ment. This is again made difficult by the fact that in orderécable to explore an action in a given state, the
state must first be visited, which requires some planning.

In this paper we consider a special case of this general gmblvhich we calthe online, loop-free
stochastic shortest-path (Online SSP, O-SSP) probleéhis problem is a generalization of two previously
considered problems: it is an online extension of the (Irep-version of the) stochastic shortest-path prob-
lem (Bertsekas and Tsitsiklis, 1996) and a stochastic sidarof the online shortest path problem (Gyoérgy
et al., 2007). The problem is defined as follows: The corgtblynamics is stochastic. It is assumed that



Figure 1: lllustration of the general problem whose
Uncontrolled special case is studied in the paper: The con-
e trolled system has two components. One compo-
i nent, whose state is controlled and observable and
is perfectly known, while the other component is
Reward
function unknown and uncontrolled. The second component
influences the rewards received and the rewards
o represent the only source of information about this
Controller (ontrolled component. When the uncontrolled part has a com-
' plex dynamics and/or a complex state, its identifica-
tion is hopeless and one might be better off with im-
plementing a robust optimal control strategy, such
as the one described in this paper.

the number of states and actions is finite. There is a disshgd initial state and terminal state amongst the
states and the state space has the structure of a layerdd grapction chosen at some state of some layer
of the graph leads to another state in the next layer. Wheteth@nal state is reached, a new episode starts:
the state of the system is reset to the initial state. At tineestime, a new reward function is chosen (since
no state is visited twice, there is no reason to change tharcefunction before the end of an episode). Note
that only the reward of the last state-action pair is maddahle to the algorithm, that is, we consider the
so-calledbandit setting The class of controllers that our algorithm must competé vgi selected to be the
class of state-feedback policies, that is, policies thigicsé@ctions according to the actual state, or the class
of policies which switch between such state-feedback slic

Clearly, the inventory management problem mentioned eéfmd falls into this class provided that we
restrict our attention to its finite horizon variant when #ecks, orders and demand are measured in discrete
units, the size of the inventory is limited to lie between aximaum size and zero (excess demands are lost)
and where the demands are independent, identically digddlrandom variables. The O-SSP setup is also
particularly suited to address the problem of robust adaptuting in virtual networks over some (possibly
wireless) base network with a fixed routing strategy. Oth@mgples include machine maintenance, asset
pricing, or production planning. In general, our framewoalptures operations research problems, where the
control objective involves components which depend on sexogenously developing, hard to model prices.

The main results of this paper are as follows: Assuming tHagtates are reachable with probability
a > 0 under all policies, we give an algorithm and prove that igreeis O(L?/T|A|/«), whereL is
the number of layers] is the number of episodes aodl denotes the (finite) set of actions (Theorem 4).
Although the number of states in a given layer does not shoin tipe bound, the bound shows a scaling
that is at least linear with the number states simee; <;<y, |X)| < 1/a, where|X)| is the number of states
in the [-th layer. We also give a variant of this result that shows ssjiy improved dependence on the
transition probabilities (sinca can be exponentially small in the size of the number of staféRis result
is given in Theorem 5. The results are also extended to canwigh time-varying policies in Theorem 8.

A nice property of the algorithms proposed is that they usalhialgorithms developed for the prediction
(stateless) setting, the only requirement for the bandiordthm being that it should return a probability
distribution over the actions. Hence, our algorithm can enage of specially tailored, improved bandit
algorithms, for example, algorithms with adaptive tunihgttmay achieve better performance (and bounds)
when the best action has very large gains (Auer et al., 2082ddporithms with improved performance when
manyactions have relatively good performance (Exercise 2.6esBBianchi and Lugosi 2006). Specifically,
when theExp3 algorithm of Auer et al. (2002a) is used, the dependencee cem be improved t(j)(l/\/(a)
(Theorem 6). Finally, in this special case, under the legsgent assumption that for every state there is
some policy that reaches the state with positive probghilé give an algorithm whose expected regret per
step vanishes over time (Theorem 7).

How do our results compare to those in earlier works in théneriearning literature? As noted earlier,
our work can be viewed as a stochastic extension of workscitragidered online shortest path problems
in deterministic settings. Here, the closest to our ideasagorithm is the paper by Gyorgy et al. (2007).
One major difference between the algorithms is that ourrétyu is based on direct estimates of ta¢al
reward to go in every state-action pair, whereas the algoritf Gyorgy et al. (2007) estimates the reward
to go via estimating thenmediaterewards. Compared to the bound in Gyorgy et al. (2007), ounds are
slightly larger (and thus weaker). In earlier work, Awerbuand Kleinberg (2004) gave ai(7%/3) regret
bound, while McMahan and Blum (2004) gave@("®/*) bound, building upon the exponentially weighted
average forecaster and, respectively, the follow the pgeetlileader algorithm, both under the assumption



that the only information received is the total reward atehe of the episodes. More recently, Dani et al.
(2008) proposed a generalization¥p3 due to Auer et al. (1995), which can be applied to this settimg)
which gives an expected regret 6| X |>/2T'/?), where|X| is the size of the state space. More recently,
Bartlett et al. (2008) showed that the algorithm can be aldrso that the bound holds with high probability.
We note in passing that Dani et al. (2008) suggest that thggirithm can be implemented efficiently for the
MDP setting. However, this is not clear at all: Although, ceptually, the algorithm can be applied to our
case, when policies are represented through the diswitmithat they induce over the state space, but this
does not seem to lead to an algorithm that can be implemented.

Another thread of work that is closely related to ours coasicalgorithms for learning and acting in
Markovian decision processes (MDPs) with arbitrary rensadquences. In fact, clearly, our framework is a
special case of this more general framework. The first woak tonsidered this setting is due to Even-Dar
et al. (2005, 2009). In this work the restriction on the MDRhiat it must beunichain(i.e., all stationary
policies must generate a unique stationary distributiol)iis assumed that the worst mixing time,over
all policies is uniformly small (the mixing time appears hetbounds). This is similar to our assumption of
the MDP being episodic, with all policies terminating aftesteps (though strictly speaking, their assumption
does not hold true in our setting). However, the major déffexe between our work and that of Even-Dar et al.
(2005, 2009) is that they assume that the reward functiaullisdbservable, whereas we consider the bandit
setting. They propose an algorithm, MDP-E, which is veryilsinto ours in that it uses some (optimized)
expert algorithm in every state which is fed with the acti@es of the policy used in the last round (which,
in our case, corresponds to the total reward to go). Theygamdoound on the expected regret of this algorithm
of the formO(72./T log | A]). The improved dependence on the action set (as compared bmond stated
above) is the result of the assumption that the reward fands available at every step and not only the
reward of the last state-action pair visited, otherwisditnend shows a dependence somewhat similar to ours
in the main quantities. We actually prove a similar boundbiarproblem, just to fix some ideas, in Section 4.

More recently, Yu et al. (2009) proposed algorithms for tuas (full information) problem and proved a
bound on the expected regret of ord®((r + | A| + | X|) 7|.A|?T3/4+2 log T') for arbitrarys € (0,1/3).X The
algorithm proposed (“Lazy FPL”) works with phases of lengtl/3—¢ and changes policies only at the end
of the phases. At the end of a phase the optimal (differgmndilie function corresponding to the sum of past
reward functions is first found. Within the phase, the actmhe followed at some time step is then selected
as the one that maximizes the one-step lookahead actioa valputed with this value function but with
the immediate rewards perturbed randomly in an appropmatener. The advantage of this algorithm to that
of Even-Dar et al. (2009) is that it is computationally legspensive, which, however, comes at the price of
an increased bound on the regret. Yu et al. (2009) introdacether algorithm (“Q-FPL") which is shown
to enjoy a vanishing average regret over time (i.e., therdlguo is Hannan consistent). The major advance,
however, is that, for the first time, Yu et al. (2009) propoardlgorithm (“Exploratory FPL") to address the
problem of learning in the bandit setting. This algorithrtiraates the immediate rewards by appropriately
weighting the rewards received and in a phase either useaaraly exploring policy or that of underlying
their Lazy FPL algorithm. They prove that the average regfrétis algorithm vanishes almost surely.

Yu and Mannor (2009a,b) considered the problem of on-liaeieg in MDPs where the transition prob-
abilities may also change arbitrarily after each transitidhis problem is significantly more difficult than
the case where only the reward function is changed arbytrdn particular, as it is shown in these papers,
Hannan consistency cannot be achieved in this setting. WuMamnor (2009b) also considered the case
when rewards are only observed along the trajectory tradeby the agent. However, this paper seems to
have gaps: If the state space consists of a single staterdabtem becomes identical to the non-stochastic
multi-armed bandit problem. Yet, from Theorem IV.1 of Yu aidnnor (2009b) it follows that the expected

regret of their algorithm i) (y/log |.A|T"), which contradicts the knowf2(/|.A|T) lower bound on the
regret (Auer et al., 20023).

2 Problem definition

Formally, a Markovian Decision Process (MDP)is defined by a state spadg an action se#, a transition
functionP : X x A x X — [0,1], and a reward function : X x A — [0,1]. In time stepk, knowing
the stater;, € X, a decision maker (or agent) acting in the MDP, chooses an actioy, € A(x) where
A(x) C Ais the set of admissible actions at stateAs a result the process moves to stage; € X with
probability P(x+1|2zk, ax ) @and the decision maker receives rewad; , ai) (this implies that forany: € X

1The notion of mixing time in this paper is somewhat, but nseesially different than that of used by Even-Dar et al.
(2005, 2009).

%To show this contradiction note that the conditiBr> N in the bound of Theorem IV.1 of Yu and Mannor (2009b)
can be traded for an extfd(1/7") term in the regret bound. Then the said contradiction carrieed at by lettinge, 6
converge to zero such thgts® — 0.



anda € A(x), P(-|x,a) defines a probability distribution ovér). The goal of the agent is to maximize its
average reward. In an episodic MDP there is a terminal stageX': if this state is reached, the episode is
ended and the whole process starts again with a designartidgtstate. For a more detailed introduction
the reader is referred to, for example, Puterman (1994).

The loop-free stochastic shortest path (SSP) problem iseiapcase of episodic MDPs. Informally,
given an acyclic directed graph an agent has to traversategly over paths between two given vertices of
the graph. At each vertex the agent makes a decision, and badbe decision it follows a random edge of
the graph to the next vertex and receives some reward. Thefgba agent is to maximize its average reward
received over the paths. More formally, we consider MDPsre/ltiee state spack consists of layers, that is,

X = Ufzon, whered] is called thdth layer of the state space aAgin X, = () for all [ # k. The first and
last layers are singleton layers, that1s, = {zo} andX, = {z}. The significance of the layers is given by
the fact that the state of the agent can only move betweerecuatige layers, that is, in each episode the agent
starts at layef, and at time instaritit is at layer! until it reaches the terminal staig,. This assumption is
equivalent to assuming that each path in the graph is of éguogih, and is reflected by the special structure
of the transition function: for any; € &; anda € A(x;), P(z151 |z, a1) = 0if 2141 & A;41.% For any state

x € X we will usel,, to denote the index of the layerbelongs to, thatid,, = [ if x € A].

In this paper we consider the online version of the loop-B&P problem, in which case the reward
function is allowed to change between episodes, that itgansof a single reward functian we are given
a sequence of rewards; } describing the rewards at episodthat is assumed to be an individual sequence
fixed in advancg that is, no statistical assumption is made about the rewalreks. Note that the constraint
thatr, depends only on the current state and action is assumed amdynfiplicity: the results of the paper
can easily be extended to the situation wheris allowed to depend on the next state as well (i.e., when the
reward function is of the formy (x;, a;, z;41).

A stochastic stationary policy (or, in short: a policy) is appingr : A x X — [0, 1], wherern(a|z) =
m(a,x) is the probability of taking action in statez. Theinstantaneous value functicandaction-value
functionwith respect tar at episode are defined, respectively, as

L-1
X] =T

vy (z) =E lz 71 (XK, ak)

k=l

L—1
qf(xl,al) =K [Z rt(xk,ak) X =T, = al] s
k=l,
where the sequende&y, a), (x1,a1), ..., (xr—1,ar—_1) iS generated by the policy and the MDP, and the

expectations are taken with respectrtand the transition functiof?. These values are equivalently defined
by the Bellman equations:

ql (z,a) = r¢(z,a) + Z P2 |z, a)v] (z")

’ @
of (@) = w(alz)gf (w,a),
with v7 (1) = 0. Thecumulative action-valuandcumulative value functiorere defined, respectively, as
t t
Qr=>af and V7= ol
s=1 s=1
Each policy generates a probability distributi@n over each layed’;, [ = 0,1, ..., L, thatis,
wr(xr) = Plx; = 2|x0 = o).
The distributionu,, can be computed recursively as
pr (1) = Z P(xi|zi-1, a1—1)m(ai-1|w1-1) pm (21-1), (2)
Tp—1,a1—-1
forl =1,2,..., L, with u.(z9) = 1. Theexpected returmof a fixed policyr for a time horizorll’ > 0 is
defined ask7. = Zthl vy = V. The return of the best policy in hindsight is given by
T
Ry =sup Y _ o] (x9) = sup V (z).

K t—1 ™

3Note that all loop-free state spaces can be transformedetthan satisfies our assumptions. A simple transformation
algorithm is given in Appendix A of Gyorgy et al. (2007).
“That is, we assume that we are dealing with a so called obkvipponent.



It is known that there exists a stationary and determinjstiticy 7. that achieves the above maximum
(Puterman, 1994, Theorem 4.4.2), and so we camuseinstead okup in the above equation. By a slight
abuse of the notation we will use.(x) to denote the action for whichi.(a|z) # 0. The state distribution
generated by the optimal policy will be denotedgs= i

Our goal is to construct a sequential decision algorlthnena)gthat asymptotically achieves the above
return averaged over the episodes. The decision algoritagnfailow a different policyr; at each episode
t =1,2,...,T. This policy may be random, as it may depend on the previ@aiesthe agent visited and
the previous rewards it received. The random path travdrgdide agent at episodewill be denoted by

w = a2 el )
and the path history up to episotiby
U; = {uj,us,...,u},
forallt = 1,2,...,T with Uy = (). Note thatU, covers all the randomness in the problem (including the

random transitions and the possible randomness in the'agleisions). Thus,
mi(a|lz) =Pla=alx =z, U;_q].

The value function and the action-value function of poligyare given, respectively, by

L—1
Vt(SCl) = E lz Tt(Xk,ak) X] = Il,Utll
k=l
L—1
qt('rlva/l) = E [Zrt(xkaak) X1 _Ilaal_alaUt1‘|
k=l
where the sequendeo, ag), (x1,a1),...,(XrL—1,ar—1) IS generated by the policy, (that is fully deter-

mined byU, ;). We will also useQ; = >'_, q, andV; = 3_!_, v,. The state distribution generated by
m is denoted byu; = iy, Wherep,, (z) = Plz € u|U;_q].
The expected return accumulated by the agent in theffiegtisodes is

T
Rr = EVi(xo)] = E[Vr(0)],

t=1
and its relative loss with respect to the best fixed potigyin hindsight, calledegret is defined as

Ly = Ry — Ry = Vi (o) — E [V (x0)] .

The following lemma will be a key to our main results. Notetthgimilar argumentis used by Even-Dar
et al. (2009) to prove their main result about online leagnmunichain MDPs in the full information case
(cf. Lemma 4.1). The benefit of this lemma is that the probléimoainding the regret is essentially reduced
to the problem of bounding the difference between actidnesof the policy followed by the agent

Lemma 1 For any time horizoril’ > 0, let the state distribution generated by the optimal poliGy be
denoted by}, and define

Vit (2) = E[Qr(z, 75 ()]

Then -
Vii(wo) = E[Vr(wo)] = > > (@) (Vi (1) — E [V (a)]).
=0 ;€4
Proof:

V(o) — E [V (x0)] = Vii(2o) — Vi (20) + Vi (20) — E [V (a0)]
= Q7 (w0, 77 (20)) — E[Qr (w0, 77(20))] + Vi (20) — E [V (20)]
= Y P(zi|zo, m(20)) (Vii(21) — E[Vr(21)] )+ Vi (20) — E [V (xo)]

r1E€X]L

L—1
=303 ) (Vi (@) —E V()

1=0 x2,€X]



3 Sequential prediction with expert advice

A widely studied special case of our setting where the sfaeesconsists of a single state is called sequential
prediction with expert advice (Cesa-Bianchi and LugosQ&)0 In this context, actions are usually referred
to asexperts and several algorithms have been developed that solvedhg wariants of the problem. Such
algorithmsE satisfy a regret bound of the form

Ly < pp(T, A) (3)

wherepg (T, A) is a sublinear function df’, and sdimy_, ﬁT/T — 0. Furthermore, we assume through-
out the paper thatz (T, A) is a nondecreasing function @f and|.A|. As usually the regret scales linearly
with the range of the rewards, it is assumed aboverthat|0, 1]. In the course of solving our O-SSP problem
we are going to use such algorithms as basic building blddkse that depending on the actual form of the
algorithm,E' may be universal in the sense that (3) is satisfied fdF'alvhile several algorithms requifé-
dependent parameter settings. On the other hand, thesedseathn be changed to be universal (sometimes
at the price of slightly deteriorating the bounds) with eithdaptively changing the parameters or simply by
resorting to the doubling trick.

The type of the sequential decision problem is usually diagsbased on the amount of information
available to the decision maker, the set of the referenceréxpnd the way the rewards are generated. In the
basic setup, known as the case ofdidivious opponenthe reward functions,, s, . . . are fixed in advance,
while in the more generalon-oblivioussetup the rewards may depend on any quantity that is detedmin
before round. In the latter case, formally we have= r,(U;_1).

Luckily, the following lemma, which can be obtained as a sglemase of a slight generalization of the
first part of Lemma 4.1 of Cesa-Bianchi and Lugosi (2006)yshthat algorithms that work in the oblivious
case also work in the non-oblivious setting:

Lemma 2 Consider a randomized algorithid such that, forevery = 1,2, ..., T, 7, is fully determined by
the historyU,_; and the reward sequenee, ro, ..., r;_1. Assume that the regret of the algorithm satisfies
(3) in the oblivious case. Thg) also holds in the non-oblivious case.

Note that the regret in the non-oblivious case is still defi@s maxqec.4 Zthl (r¢(a) —ri(ar)), where
ri,ro,...,rr - A — R are the reward functions that are obtained as a result aviollg £ anda, is
the action taken by~ at time step. In particular, this definition does not take into accousat tihe sequence
of reward functions would be different if actianwas followed from the beginning. Although this makes, in
general, questionable the meaningfulness of this regf@titien, in our case this regret definition will still
be just good enough.

In thefull information case the decision maker is informed about the rewards ottdires at the end of
each episode; while in tHeandit settingonly the reward of the chosen action is revealed.ofstimized best

expert algorithrrin the full information case is an algorithm that attains gpected regret o (/T log | A|),

and similarly, aroptimized.4|-armed bandit algorithnis one that attains an expected regre®gh/T'|Al).
Optimized best expert algorithms include txeponentially weighted average forecastEMWA) (a variant

of Littlestone and Warmuth’s (1994) weighted majority aitfum, and Vovk’s (1990) aggregating strategies,
also known as Hedge (Freund and Schapire, 1997)) anétbtosv the perturbed leadef(FPL) algorithm
(Kalai and Vempala, 2003). There exist a number of algorittior the bandit case that attain regrets of
O(/T|A|log|Al), such aExp3 by Auer et al. (2002a) anGreen by Allenberg et al. (2006), while the

algorithm presented by Audibert and Bubeck (2009) achigwvesptimal rate) (/T |Al).
4 Full information O-SSP

In this section we give an algorithm and a very short proof timunds the algorithm’s regret in the full
information case. The purpose is mainly to fix some ideasiibbe useful later on.

In the full information case the reward functionis completely revealed after each epised&Ve will
use the value functions of the agent’s policy at each episdadeonstruct the policy in the next round. Note
that as we can exactly compute these value functions, theegegq of the agent’s policies does not depend
on previous decisions, that is, the policies and the valuetfans are fully determined by the algorithm.
Algorithm 1 uses an arbitrary (optimized) best expert dthar £ in each stater to predict the actions to
be taken at that state based on previous valueg(of -). (Thus, the algorithm is essentially the same as the
MDP-E algorithm of Even-Dar et al. 2009.)

In order to understand how the algorithm works, considerestixed stater. By definition, 71 (-|x) is
the distribution computed by the expert algoritfifz) when used on a discrete prediction problem with the
“reward sequence]; (z, -), g2(z, -), . .. and action se#l(z). Sinceg;(z, -) depends om,, which depends on
the past rewards, the prediction problem is modeled as otiengin-oblivious opponents. The cumulative



Algorithm 1 Algorithm for the full information O-SSP.

1. Initialize an expert algorithri’(x), an instance of algorithr, for all statesc € X.
2. Fort=1,2,...,T, repeat

(a) Forallz € X and alla € A, letn:(a|z) be the probability that algorithr®(z) chooses action.
(b) Traverse a path, following the policyr;.

(c) Observe the reward functiof.

(d) Computey; using the Bellman equations (1) fey andr;.

(e) For all states € X, feed the algorithnk (z) with ¢ (z, -).

expectedeward of the algorithm up to episod&s V- (z) and the reward of a constant actiofs Qr(x, a).
Let E be a best expert algorithm with regret bounglT', A). By Lemma 2, for any action at stater, we
get

Qr(z,a) — Vr(z) < (L — l)ps(T, A),

where we used tha@t < ¢ (z,a) < L — I,.. Since in this cas€ is non-randomV,! (z) = Qr(z, 74 (x))
and thus

Based on this bound and Lemma 1, we immediately obtain a pegioce bound on this algorithm for our
original problem:

Proposition 3 Let E be an expert algorithm with regret boupd (T, A). Then the regret of Algorithm 1 can
be bounded as
L(L+1)

Ly < 5

PE (Tv A)
Remark: Applying EWA with (time-horizon dependent) optimized paeters as the expert algorithA
the above bound becontes

L(L+1) [Tlog|A|

Ly < .
T'=""79 2

Proof: By Lemma 1, we have

L= 33 wiran) (Vi (@) — BV (@)

1=0 ;€A

Using (4) to bound the terms on the right hand side yields &sireld bound. |

5 Bandit O-SSP

In the bandit case, the rewards are only observed on the ffaththe agent traverses at each episode
this section we give an algorithm and analyze its performadocthis case.
First, we define conditionally unbiased estimategoéndv,; givenU,_; as follows:

Sicr(40a) ® 0.
a (e, a) = @y (@) = (Xl & ) (5)
0 otherwise.
Ve(z) = Zm(a|xl)qt(xl,a). (6)

Indeed, it is easy to check th&{q;(z,a)|U;—1] = q:(x,a) andE[V+(2)|U;—1] = v¢(x). Note that the
estimatesy, andv; can only be computed after the end of epised&Ve will also use the following key
property of this estimate:

qi(z,a) — vi(x) ' %

EA -V ]Iz utaU* :HI uq
[Ge(z,a) — Vi(z)|lee —1) IS 12:(7)

See Theorem 2.2 in Cesa-Bianchi and Lugosi (20086).



Similarly to the full information case, Algorithm 2 given loev employs an.A(z)|-armed bandit algo-
rithm B in each state: to choose actions using the observations from the previatisghat include. The
only assumption that we make abdgits that it works with unbiased estimates of the rewards ofdhma (5),
and its regret scales linearly with the range of the rewalige that algorithms lik&xp3 can be redefined
to receive unbiased estimates of this form instead of theahotwards. In the following, we use all bandit
algorithms with these updates.

Algorithm 2 Algorithm for the bandit O-SSP.

1. Initialize an|.A(z)|-armed bandit algorithn®(x), an instance oB, for all statesc € X.

2. Fort=1,2,...,T, repeat

(@) Forallz € X and alla € A, letw,(a|z) be the probability that algorithr®(x) chooses action.
(b) Computeu,(x) for all z € X using (2) recursively.
(c) Traverse a path, following the policyr;.

(d) Observe rewards (u;) = {rt (xét),aét)) e Tt (x%ll,ag’_l)}-

(e) Construct estimateg using equation (5).
(f) For all statese € X, feed the algorithnB(z) with q;(z, -)

Theorem 4 Let B be an multi-armed bandit algorithm with regret boumd(T', .A). Assume that there exists
somea > 0 for which . (z) > « holds for allz € X and all stationary policiesr. Then the regret of
Algorithm 2 can be bounded as

L(L+1)

Lt <
= 2

PB (T7 -A)

Remark: For example, using the algorithm of Audibert and Bubeck @@@ith appropriate parameters as
the base bandit algorithf yields

5 15L(L+1
b s BULED g
Also note that the conditions of the proposition are satisfifor example,

min P(z'|z,a) > 0.
IEXL,GG.A,I,EXL+1,I€1:L71

In fact, our assumption ef being positive is closely related to the uniform mixing aaption used generally
in the literature considering online learning in MDPs.

Proof: The set of episodes when states visited will be denoted byfT', = {1 <¢<T|z € uw;}. By
Lemma 1, we have

L—1
Ly = Z Z () [V;(IZ) —E[Vr(z)]] . (8)

=0 x,€X]

On the other hand, we have, for any fixed

Vif(2) ~E[Vr(z)] = E ZE[qx:c,w;(:c))—vt(x)]Ut1}]
. t=1
= > Ela(w, w5 () — v1(2)]. 9)



Therefore, by (7) we obtain

T
Vi (@) —E[Vr(z)] = E Zflt(xaﬂ}(w))—f%(w)]

e ZE (e i (@) — ) HmewUf-lﬂ

| (z, 75 (x)) — vi(z)
- E Z]IwEut Nt( ) 1

- E Z q(z, 77 (7)) —vt(:v)]. (10)

= ()

As for everyx we are using an independewt(x)|-armed bandit algorithm® with regret boung 5 (T, ( )
that is fed with valuesy; («, -) which are conditionally unbiased estimates of values te#iry to[0, (L
l.)/a], by Lemma 2 we have the following for any fixed

(L = l2)p(T, A).

1
«

ey th—> < (L L)pp(T, Alx) <

teT,
Combining this bound with (8)-(10) finishes the proof. ]

A problem with the above theorem is that the bound scales With but in certain cases can be
exponentially small. On the other hand, if the minimal praibity of visiting a state is exponentially small
then the maximal probability of visiting the same state mfigrobe also exponentially small (clearly this is
the case in the grid-world example considered in the sinmratin Section 6, see Figure 2). The following
theorem can be very useful in these situations.

Theorem 5 Let B be a multi-armed bandit algorithm with regret boupgd (7', .A), and define
alz) =minu.(z) and B(z) = max p,(z).
Assume that = max,ecx Bg g < 0. Then the regret of Algorithm 2 can be bounded as
LT < I€L|X|pB(T, A)

Proof: Following the proof of Theorem 4 we obtain, for ahy

S ) (Vi ) - E V) = Y (e | Y o) Zvedo)

T EX) T EX) tGT:L Ht(xl)
1
< L1 T,A
< 3 e (- Dpn(T

A
=
=
~
RS
=
=
S

Summing up for all finishes the proof. |

In particular, if we useExp3 (as described in Section 6.8 of Cesa-Bianchi and Lugosi R@6ahe
bandit algorithmB, we can prove regret bounds that have slightly better deppaedony. The proof of the
results, given in the following theorem, follows closelgttherivation of the original regret bound of thgp3
algorithm (Auer et al., 2002a) and will be given in detailamextended version of this paper.

Theorem 6 Assume that the conditions of Theorem 4 hold and the bargiitithm B is theExp3 algorithm
with parameterd) < v < 1 and0 < n < W Then, if Algorithm 2 is used, for each statec X we
have
In | A]
E[Qr(z,a) = Vr(z)] < [ v+ (e —2)n (L —1.)T + -
An optimal choice ofy andy yields the following bound on the regret:

i< L(L2+ 1) \/T|A| In|Al(e —2)

«



Furthermore, lets’ = max,cx 22 < oo wherea(x) and5(z) are defined in Theorem 5. Then

v oa(x)
L < &' L|X|\/T) Al In |Al(e — 2).

In the above results we used the assumption that any statipnéicy induces a distribution that visits each
state with positive probability. However, this assumptioay be too restrictive in many situations. If we only
require that each state is reachable with positive prolyafl an adequately chosen policy, then usibgp3

in our algorithm with differenty at each layer yields a consistent strategy with sublinegetealthough the
convergence rate becomes very slow.

Theorem 7 Let

. !
Pmin = min P(a'|z,a)
z€X,a€A,x'€X)41,1<ISL—-1,P(z’|z,a)>0

and assume that for each statehere is a policyr such thafu, (x) > 0. If Algorithm 2 is run with theexp3

Y T2 ] (Pmini /Al
[A[(L-1)

AL A e
L

Prin

algorithm with parameters; = 72" andn; = ) for each stater; € A}, then

Ly/T < (e—1)

Proof: For any! our assumptions implys;(z;) > Hé;(lj(pmin'Yi/LAD. Therefore, similarly to the first
statement of Theorem 6, for allanda we have

-2 L—-1,)]A In|A
E[Qr(z,a) — Vr(z)] < (%I + (e lf)lm‘”( ) |> (L —1,)T + In| Al
Hi:() (Pmin%‘/|v4|) M,
(L —1,)| A=+ 1n |,4|> izt
pf;in
by straightforward calculations. Summing up the above fdenfori, = 0, ..., L — 1 proves the proposition
by Lemma 1. |

((L - lm)(e - 1) +

So far the regret of our algorithm was measured relative édotkst fixed policy. On the other hand, in
our motivating examples it may be the case that the bestypolianges over time, and hence it is natural
to compare our performance to the best time varying poli®ty. = (w1, mo,...,7r) be a sequence of
policies, and letRr(m1.7) denote the expected return, affeepisodes, of the algorithm that applies policy
m; at episodé. Our goal is to minimize the expected laBg (71.7) — Ry relative tom ..

Clearly, it is not possible to provide a uniform bound on tliss, as, in general, it is harder to achieve
the performance of an algorithm that changes the employkd/poore often (the extreme situation is when
the policy changes in each time instant). In the followingwi# give an algorithm that bounds the tracking
regret with the help of the complexity af . that can be defined as

Clrir) =14+ {t :m # w41, 1 <t < T —1}].

That isC(m.7) is the number of times the employed policy changes betweesetmitive episodes.

While this problem seems much harder than the ones condittefere, the tracking algorithms for the
prediction framework help us in solving it. Several algomits are known for the full information case with
vanishing tracking regret under various conditions and wlifferent rewards, see, for example, Willems
(1996); Helmbold and Warmuth (1998); Shamir and Merhav 8)9%ovk (1999); Gyodrgy et al. (2008).
These methods can be extended to the bandit case as welgrseeample, Auer et al. (2002a). Assume that
we have an algorithnB7" for the bandit sequential prediction problem (that is, wiiere is only one state)
that satisfies, for every policy sequencer,

Rr(mi.r) — Rr < ppr(T, A, C(m1.7)) (11)

with some functiorpsr (T, A, C(71.7)) that is a nondecreasing functiondf A, andC(m1.7). Then using
such an algorithm as the expert algorittinin Algorithm 2 solves the tracking problem in the following
sense.

Theorem 8 Assume thaBT is a multi-armed bandit algorithm that satisfies the regretibd (11). If «,
defined in Theorem 5, is finite and Algorithm 2 is used with #redit algorithmBT, then the regret relative
to any fixed sequence of policies can be bounded as

Ry(mir) — Ry < KL|X|ppr(T, A, C(71.7)).



Remark: In particular, if theExp3.Salgorithm of Auer et al. (2002a) is used, thefTifs known in advance
and is used optimally in setting the parameters of the algoriwe obtain

R A|T
Ry(my.7) — Ry < KL|X)| < m1.0)V/ AT In(JA|T) + 2e | |V4|1|T)>

Furthermore, if a bound' on the complexity ofr;.7 is known in advance (this is useful, if the complexity of
the optimalr;.7 is bounded), then using this value in setting the paramefdfgp3.S we obtain
Rr(mi.r) — Ry < kL|X|Ve — 1\/|AT(CIn(JA|T) + e).

Proof: A simple generalization of Lemma 1 yields

Ry(mir) — Ry = Vit (zo) — E[Vr(z0)] th (z0) = E[V7(20)]
- Z >, Zut 2B [qe (20, m(21)) = ve(a1)]
1=0 z,€X, t=1

Now we have, for any, similarly to (9),

Elai(z, m(2)) — ve(@)] = E @ (z, me(x)) — Ve (2)] .
Therefore, similarly to (10), we obtain

T
) = F | 9t (@) = vi(z)
Zut e M e
" Qi (@, ™ (7)) = vi(x)
< P LGZTI () ]

Finally, (11) and Lemma 2 yields, as at the end of the prooftedrem 4,

E|>. il )_ Vt(z)] < aic)PBT(T, A, C(m.r))

teT,

sinceppr (T, A, C) is an increasing function af' by assumption. Combining the above results finishes the
proof. |

6 Simulations

We have run our experiments on a grid world of sipex 10, where in each episode the agent has to find
the shortest path from the lower left corner to the uppertriginer. The agent has two actions: Both make
the agent move right or up, the “right” (“up”) action makeg thgent move right (respectively, “up”) with
probability 0.7, while it makes it move “up” (respectively, “right”) with pbability 0.3. That is, we have

L = 20, |X| = 100, a = 0.319 x = (0.7/0.3)1Y (the values ofx and x correspond to the top-left and
bottom-right corners). The experiment is run with= 100, 000, rewards are set randomly 20 times at
episodes = 1, 5000, 10000, ... for all z, a, and change linearly in between. We have simulated theipslic
generated by EWA for the full information case, and the pedigenerated blxp3 for the bandit case. An
example of the grid-world (of smaller size) and the resufli@ typical simulation are shown in Figure 2.

7 Conclusions and future work

In this paper we considered the problem of online learnintpap-free stochastic-shortest path problems
in a bandit setting when only the reward of the current titaoss is available for measurement. The per
episode complexity of our algorithm ©(].4| |X|?) and the algorithm is easy to implement. According to
our knowledge, ours is the first algorithm that can be impletee efficiently and which is known to achieve
anO(4/T|.AJ) regret in the bandit setting, under the assumption thatygwelicy reaches every state with
positive probability. Unfortunately, the regret boundlssawith the inverse of the minimal such probability,
which is clearly undesirable in many situations. To allexthis problem, variants of the original bound have
been developed that may be preferred in certain specificcés® the case when this latter condition does
not hold, we proposed an algorithm whose expected averggetad regret vanishes over time. We view our
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Figure 2: (a) An example of a grid-world. (b) The average eear an episode of the proposed algorithms as
the function of the number of episodes in a simple MDP.
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results as a step towards algorithms that work efficienttiyvanich can be implemented efficiently. However,
much work remains to be done.

As for immediate future work, obvious directions includeemnding our results to the case of unichain
MDPs setting, or, less ambitiously, to the case when thehassitc shortest-path problem may have loops.
Although one can construct an unbiased estimate of theraedilnes by plugging in an unbiased estimate of
the rewards, these estimates are not of the form (5), thuaralysis does not apply. It is nontrivial whether
a proper estimate of the action values can be found; evenanithsitive answer there are further obstacles
to eliminate (e.g., the change rate of the distributionsegated by the applied bandit algorithm has to be
controlled in order to be able to apply the analysis of Evemn-& al., 2009). Alternate directions to extend
our results include the case of unknown transition prolitads| partial monitoring, high probability bounds,
or when the state and action space are too large to keep afealaach of them, in which case one must
resort to some form of function approximation, just to menth few.
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