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1 Introduction

Betting is an important problem faced by millions of sports fans each day. Presented with an
upcoming matchup between team A and team B, and given the opportunity to place a 50/50 wager
on either, where should a gambler put her money? This decision is not, of course, made in isolation:
both teams will have played a number of decided matches with other teams throughout the season.
Furthermore, a reasonable assumption to make is that the relation “A tends to beat B” is transitive.
Under transitivity, the best prediction strategy is clearly to sort the teams by their abilities and
predict according to this ranking.

The obvious difficulty is that the best ranking of the teams is not known an advance. But there’s
a more subtle issue: even with knowledge of all match outcomes in advance, i.e. a list of items of
the form (team X < team Y ), it’s NP-hard to determine the best ranking of the teams when the
outcomes are noisy. This is exactly the infamous Minimum Feedback Arc Set problem.

The question we pose is as follows: can we design a non-trivial online prediction strategy in
this setting which achieves vanishing regret relative to the best ranking in hindsight, even when the
latter is computationally infeasible?

It is tempting to believe this is impossible, as competing with the best ranking would appear
tantamount to finding the best ranking. However, this assertion is false: the algorithm need not
learn a ranking explicitly, it must only output a prediction (X < Y ) or (Y < X) when presented
with a pair (X, Y ), and these predictions do not necessarily have to satisfy transitivity. Indeed,
consider the following simple algorithm: treat each team pair (X, Y ) as an independent learning
problem (ignoring all other matchups). In the long run, this will achieve vanishing regret with
respect to the best ranking. So why is this not desirable? The trivial approach unfortunately admits
a bad regret bound: the algorithm must see O(n) matches per team before it can start to make
decent predictions. On the other hand, there is an information-theoretic approach that requires
only O(log n) observations per team—the downside, unfortunately, is that this requires exponential
computation. We would like to achieve this rate with an efficient method.

2 Problem Setup

We have a set of n teams with indices i = 1, 2, . . . , n. A learner is presented with a sequence of
pairs (it, jt) for t = 1, . . . , T and must predict ŷt ∈ [−1, 1], where ŷt = 1 implies that the learner
believes that team it will beat team jt, and vice versa when ŷt = −1. After making her prediction,
the learner observes the outcome yt ∈ {−1, 1} and suffers loss `(ŷt, yt) := (1− ŷtyt)/2.

An online prediction algorithm A is a function that outputs predictions ŷt given input of the data
(i1, j1, y1), . . . , (it−1, jt−1, yt−1) and the current matchup (it, jt). We can compare such a prediction
algorithm to any offline comparator class F , which is any collection of “skew-symmetric” mappings
φ : [n] × [n] → {−1, 1}, namely those that satisfy φ(i, j) = −φ(j, i) for all i, j (required since if i
beats j then j doesn’t beat i). We’ll consider two such classes, the class Fall of all such mappings,
and the class Fperm of permutations, i.e. those mappings φ which satisfy the transitive property,
φ(i, j) = 1 and φ(j, k) = 1 implies φ(i, k) = 1. The regret of any algorithm A with respect to any F
is defined as

RegretF (A) :=
T∑

t=1

`(ŷt, yt)−min
φ∈F

T∑
t=1

`(φ(it, jt), yt)



Lemma 1 For any algorithm A, RegretFperm
(A) ≤ RegretFall

(A).

Proof:[sketch] This follows trivially from the fact that Fperm ⊂ Fall

Lemma 2 There exists an inefficient algorithm A such that RegretFperm
(A) = O(

√
Tn log n).

Proof:[sketch] If we treat each permutation φ ∈ Fperm as an “expert” and run a standard experts
algorithm, then well-known results (see, e.g., Cesa-Bianchi and Lugosi [1]) imply that the regret
will scale as O(

√
T log(no. of experts)). The result follows since there are n! permutations, and

log n! = Θ(n log n).

Lemma 3 There exists an efficient algorithm A such that RegretFall
(A) = O(

√
Tn2).

Proof:[sketch] Let i and j be arbitrary and assume without loss of generality that i < j. If we treat
the problem “does i beat j?” as an independent learning problem, then we can imagine that we
have two experts: “i wins” and “j wins”. So if the matchup (i, j) occurs Ti,j times throughout the
season, then on only these particular events we are guaranteed to achieve O(

√
Ti,j) regret using a

standard experts algorithm. If we do this for every pair i, j independently, then we can achieve

RegretFall
= O

 ∑
(i,j):i<j

√
Ti,j

 .

Using the fact that, for any z1, . . . , zm ≥ 0,

m∑
j=1

√
zj ≤

√
m

√√√√ m∑
j=1

zj

and that
∑

(i,j):i<j Ti,j = T , immediately gives the desired bound.

This final Lemma suggests that sub-linear regret is not difficult for learning rankings. Unfortu-
nately, this bound scales quite poorly in n. This is precisely because this algorithm, when predicting
the outcome of a pair (X, Y ), does not leverage the information from any other matchups. For
example, when the biggest winner plays the biggest loser for the first time, this algorithm would
guess the outcome is a tossup.

Open Problem: Is it possible to find an efficient algorithm that closes the gap between the
O(
√

Tn2) bound and the information-theoretic O(
√

Tn log n) rate? Is it even possible to do any
better than O(

√
Tn2) efficiently?

Prior Work
While not stated as we do here, essentially the same open question was posed by Kleinberg et al [2]
in 2008. Their work also provides a very useful background on learning to rank.
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