
On-line variance minimization in O(n2) per trial?

Elad Hazan
IBM Almaden

650 Harry Road
San Jose, CA 95120

ehazan@cs.princeton.edu

Satyen Kale
Yahoo! Research

4301 Great America Parkway
Santa Clara, CA 95054

skale@yahoo-inc.com

Manfred K. Warmuth∗
Department of Computer Science

UC Santa Cruz
manfred@cse.ucsc.edu

Consider the following canonical online learning problem with matrices [WK06]: In each trial t the
algorithm chooses a density matrix Wt ∈ Rn×n (i.e., a positive semi-definite matrix with trace one). Then
nature chooses a symmetric loss matrix Lt ∈ Rn×n whose eigenvalues lie in the interval [0, 1] and the
algorithms incurs loss tr(WtLt). The goal is to find algorithms that for any sequence of trials have small
regret against the best dyad chosen in hindsight. Here a dyad is an outer product uu> of a unit vector u in
Rn. More precisely the regret after T trials is defined as follows:

T∑
t=1

tr(WtLt)− L∗, where L∗ = inf
u:‖u‖=1

tr
(
uu>L≤T

)
with L≤T =

T∑
t=1

Lt.

Instead of choosing a density matrix Wt, the algorithm may eigendecompose Wt as
∑

i σiuiu
>
i and choose

the eigendyad1 uiu
>
i with probability σi. If the loss matrix Lt is a covariance matrix of a random variable,

then u>i Ltui is the variance in direction ui and tr(WtLt) the expected variance / loss with respect to Wt.
Good regret bounds are achieved by a matrix version of the Hedge algorithm [FS97] predicting with:

Wt = exp(−ηL<t) / tr(exp(−ηL<t)),

where exp() is the matrix exponential and η a nonnegative learning rate. When η is chosen as
√

2 lnn

L̂
, where

L̂ ≥ L∗, then the Matrix Hedge algorithm achieves a regret bound of
√
2
√
L̂ lnn + lnn and

√
2 is the best

known constant before the leading
√
L̂ lnn term.

Note that when the initial matrix W1 is the identity matrix and the loss matrices are all diagonal, then
Matrix Hedge maintains a distribution over the n unit dyads eie

>
i (often called “experts” in this case) and

becomes the original Hedge algorithm [FS97] written with diagonal matrices instead of probability and loss
vectors. The problem with Matrix Hedge is that it takes O(n3) time per trial, because the matrix exponential
is typically computed by decomposing the matrices and exponentiating the eigenvalues.

Open problem: Is there an O(n2) per trial algorithm with a regret bound of O(
√
L̂ lnn)?

Why is this a natural problem? Note that for the standard expert setting, the running time of the essentially
optimal Hedge algorithm is linear in the number of experts n. For the matrix version, the size of all matrices
involved is n2 and we want an O(n2) per trial algorithm.

An approach based on Follow the Perturbed Leader algorithm. For the original expert setting there is
an alternative algorithm to Hedge: Add a vector r ∈ Rn of perturbations to the current total loss `<t ∈
Rn
≥0 of all n experts and predicts at trial t with the expert argmini `<t,i + ri of minimum perturbed loss.

When ri is the log of a suitably chosen exponential random variable, then this Follow the Perturbed Leader
(FPL) algorithm simulates the Hedge algorithm for experts and thus obtains essentially the optimal regret
bound [KW05, Kal05].

It is natural to consider matrix versions of FPL for our matrix problem. Now the perturbation is an n× n
matrix Rt that is added to the loss matrix L<t. Computing a best expert corresponds to finding the minimum
eigendyad (i.e. the one corresponding to the minimum eigenvalue) of the perturbed matrix L<t + Rt, which
can be approximately done in O(n2) time. Thus Matrix FPL essentially takes O(n2) time provided that the
perturbation matrix at trial t can be sampled in O(n2) time. This speedup would be very important because it
would open the path for implementing the Matrix Exponentiated Gradient algorithm [TRW05] inO(n2) time,
∗Supported by NSF grant IIS-0917397
1A dyad uu>, where u is a unit eigenvector.

bypassing the use of decompositions, and hence have other applications, such as the ones given in [AK07]
for efficiently approximating combinatorial problems.

If Rt is always set to a pre-selected random perturbation matrix R, and hence does not depend on the
current loss matrix L<t, and the adversary is non-adaptive, i.e. the sequence of loss matrices is fixed in
advance, then we can allow O(n3) time or greater for computing R, because this is only a preprocessing
step. In each round a minimum eigendyad can then be approximated in O(n2) time.

However if L<t and Rt do not have a similar eigensystem, then Rt may not perturb the top eigenvalues
of L<t very much. So for achieving good regret bounds it seems necessary that the perturbation matrix Rt

adapts to L<t. If we allow the algorithm ample O(n3) time for choosing its perturbation matrix Rt, then it
is trivial to simulate Matrix Hedge with FPL: Simply decompose L<t in O(n3) time per trial and then add
log exponential perturbations to the eigenvalues as done in [KW05, Kal05] (This corresponds to choosing Rt

to have the same eigenbasis as L<t with eigenvalues chosen from the log exponential distribution); finally,
predict with minimum eigendyad of the perturbed loss matrix. However, this O(n3) per trial implementation
of Matrix FPL is not interesting, because you might as well just use the original Matrix Hedge algorithm that
requires the same time.

If we ignore the optimum dependence on the dimension, then by choosing a fixed perturbation with an
exponential spectral perturbation and a randomly chosen eigenbasis, we can get an O(n2) per trial algorithm
and O(n3) preprocessing time. The following theorem can be proved along the same lines as in [HKW10]:

Theorem 1 For appropriately chosen ε, the expected regret of the algorithm given below is bounded by

O(

√
L̂r log n), where r is an upper bound on the rank of the loss matrices.

1: Sample n real numbers σ1, σ2, . . . , σn independently from the Laplace distribution with mean 0 and
scale 1/ε, i.e. the two-sided exponential probability density function f(x) = ε

2 exp(−ε|x|).
2: Sample a random orthogonal matrix U uniformly from the Haar measure.
3: Define R = UΣU>, where Σ = diag(σ1, σ2, . . . , σn).
4: for t = 1 to T do
5: Let Wt = utu

>
t , the minimum eigendyad of the matrix L<t + R.

6: Predict Wt and observe the actual loss matrix Lt. Incur loss tr(utu
>
t Lt).

7: end for

Notice that this already resolves the open problem for loss matrices of rank one (or constant rank). This
suggests the following direction: The so-called “unit rule” in the usual expert setting says that the worst
possible sequence of losses for the experts in a Hedge-type algorithm are the ones where only a single expert
incurs loss in each trial. If the analogous statement were true for the FPL-type algorithms suggested above, in
the sense that the worst sequence of loss matrices were all rank one, then our open problem would be solved.

Unfortunately, however, it is easy to concoct examples of matrices where for a fixed perturbation matrix,
the loss on a rank 2 loss matrix is more than the loss on a sequence of two rank 1 loss matrices. The unit-rule
might still be true in an expected sense, but we have been unable to prove such a statement.

References
[AK07] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite programs.

In STOC, pages 227–236, 2007.

[FS97] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55:119–139, 1997.

[HKW10] E. Hazan, S. Kale, and M. K. Warmuth. Learning rotations with little regret. In COLT, 2010.

[Kal05] A. Kalai. A perturbation that makes Follow the Leader equivalent to Randomized Weighted
Majority. Private communication, December 2005.

[KW05] D. Kuzmin and M. K. Warmuth. Optimum Follow the Leader Algorithm, volume 3559, pages
684–686. Springer Verlag, 2005.

[TRW05] K. Tsuda, G. Rätsch, and M. K. Warmuth. Matrix exponentiated gradient updates for on-line
learning and Bregman projections. Journal of Machine Learning Research, 6:995–1018, June
2005.

[WK06] M. K. Warmuth and D. Kuzmin. Online variance minimization. In Proceedings of the 19th Annual
Conference on Learning Theory (COLT ’06), Pittsburg, June 2006. Springer-Verlag.

