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Abstract

Ant robots can repeatedly and robustly cover terrain by always movingaway from the trails that they leave in
the terrain. This coverage strategy can be modeled with graph traversalstrategies similar to real-time search
methods (such as Learning Real-Time A*) and reinforcement learningmethods (such as Real-Time Dynamic
Programming). The resulting worst-case cover times are known to be exponential in the number of vertices
on both directed and undirected graphs in general. The known undirected graphs with large worst-case cover
times have unbounded degree vertices. However, existing ant robots navigate on grids, a special case of
undirected planar graphs with bounded degree vertices. Their experimental cover times appear to scale almost
identically to those of coverage strategies with polynomial worst-case cover times. However, it is an open
problem to prove whether the resulting worst-case cover times on grids are indeed polynomial in the number
of vertices.

Ant robots are robots that either 1) leave trails in the terrain and use them for navigation, similar to learning
graphs by dropping indistinguishable pebbles (Bender et al., 2002), and/or 2) use greedy navigation strategies
that depend only on local observations of the terrain and thus require only limited sensing, processing and
communication capabilities (Wagner & Bruckstein, 2001). Researchers have built actual ant robots that
fit both definitions and cover terrain repeatedly by always moving away from the trails that they leave in
the terrain, see Figure 1. Single ant robots (individually)and groups of ant robots (cooperatively) cover
terrain robustly even if they do not have any memory, do not know the terrain, cannot maintain maps of the
terrain nor plan complete paths. They cover terrain even if some ant robots fail, they are moved without
realizing this (say, by people running into them and pushingthem accidentally to a different location), the
trails are of uneven quality or some trails are destroyed. Their coverage strategy can be modeled with Node
Counting (Koenig et al., 2001; Wagner et al., 1999), a graph traversal strategy similar to real-time search
methods (such as Learning Real-Time A* (Korf, 1990)) and reinforcement learning methods (such as Real-
Time Dynamic Programming (Barto et al., 1995)). Node Counting assigns an integer counteru(s) to every
vertex (= node)s of the graph, that represents the amount of trail in that location. All counters are initially
zero. Every ant robot always increments the counter of a vertex by one when it enters the vertex and then
moves to a successor vertex with the smallest counter (usingan arbitrary tie breaking rule), see Figure 3.
Thus, it moves to a successor vertex that has been visited theleast number of times by ant robots, with
the idea to quickly get to a vertex that has not yet been visited. Note that Step 3 of Node Counting is:
u(s) := 1 + u(s). For simplicity, we consider only a single ant robot in the following since it is easy to
generalize the results to groups of ant robots. Node Counting covers strongly connected graphs repeatedly,
which is why we assume in the following that the graphs are strongly connected. The worst-case cover
times of Node Counting are known to be exponential in the number of vertices on both directed graphs
(trivial proof for the graph topology shown in Figure 4 left)and undirected graphs (longer proof for the graph
topology shown in Figure 4 right) in general (Koenig et al., 2001). The known undirected graphs with large
worst-case cover times are thus (planar) trees with unbounded degree vertices. However, existing ant robots
navigate on grids with blocked and unblocked cells, which are special cases of undirected planar graphs with
bounded degree vertices, see Figure 2. The experimental cover times of Node Counting on grids appear to
scale almost identically to those of known coverage strategies with polynomial worst-case cover times on
all strongly connected graphs. These coverage strategies are similar to Node Counting but more difficult to
implement on actual ant robots (Koenig & Simmons, 1992), including Learning Real-Time A*. Step 3 of
Learning Real-Time A* is:u(s) := 1 + mina∈A(s) u(succ(s, a)). We now list interesting open problems for
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Figure 1: Actual Ant Robot
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Figure 2: Coverage of Four-Neighbor Grid

We use the following notation:S denotes the finite set of vertices of the graph, andsstart ∈ S
denotes the start vertex of an ant robot.A(s) 6= ∅ is the finite, nonempty set of directed edges
that leave vertexs ∈ S . succ(s, a) denotes the successor vertex that results from the traversal
of edgea ∈ A(s) in vertexs ∈ S. We also use two operators with the following semantics:
Given a finite setX, the expression “one-ofX” returns an element ofX according to an arbitrary
rule. A subsequent invocation of “one-ofX” can return the same or a different element. The ex-
pression “argminx∈X f(x)” returns the elementsx ∈ X that minimizef(x), that is, the set
{x ∈ X|f(x) = min

x′∈X
f(x′)}, wheref is a function fromX to the non-negative integers.

Initially, the valuesu(s) are zero for alls ∈ S.

Step 1: s := sstart.
Step 2: a := one-of argmina∈A(s) u(succ(s, a)).
Step 3: u(s) := 1 + u(s).
Step 4: (Traverse edgea.)
Step 5: s := succ(s, a).
Step 6: Go to Step 2.

Figure 3: Node Counting
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Node Counting, the solutions of which would help to lay a solid theoretical foundation for ant robotics and
perhaps other kinds of simple agents (such as mobile code that has to explore computer networks): Prove
whether the cover times of Node Counting are polynomial in the number of vertices a) for undirected graphs
with bounded degree vertices or, if not, b) for grids (a subset of these graphs) if the worst case in both cases
is taken over all graphs with a given number of vertices, start vertices and equally good successor vertices (=
that is, successor vertices with the smallest counter) and thus tie breaking rules. If not, assume that the ant
robot uses the tie breaking rule to select randomly among allequally good successor vertices. Prove whether
the resulting cover times are polynomial if the worst case istaken over all graphs with a given number of
vertices and start vertices but the average case is taken over all equally good successor vertices. Of course,
it is also important to analyze more complex and thus more realistic versions of Node Counting, such as
versions that model the saturation of the terrain with trails or the clean-up of trails by the ant robot to avoid
such a saturation. For example, Step 3 of a version of Node Counting that models the saturation of the
terrain with trails is: with probability(k − u(s))/k executeu(s) := 1 + u(s) for a given positive integerk.
Additional information and related work are presented in (Svennebring & Koenig, 2003), in (Koenig et al.,
2001) and on the ant robotics web pages at idm-lab.org/antrobots.
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