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1 The Problem
The problem is finding a general, robust, and efficient mechanism for estimating a conditional probability
P (y|x) where robustness and efficiency are measured using techniques from learning reductions.

In particular, suppose we have access to a binary regression oracle B which has two interfaces—one
for specifying training information and one for testing. Training information is specified as B(x′, y′) where
x′ is an unspecified feature vector and y′ ∈ [0, 1] is a bounded range scalar with no value returned. This
operation is stateful, possibly altering the return value of the testing interface in arbitrary ways. Testing is
done according to B(x′) with a value in [0, 1] returned. The testing operation operation is stateless.

A learning reduction consists of two algorithms R and R−1.
The algorithm R takes as input a single example (x, y) where x is a feature vector and y ∈ {1, ..., k} is

a discrete variable. R then specifies a training example (x′, y′) for the oracle B. R can then create another
training example for B based on all available information. This process repeats some finite number of times
before halting without returning information.

A basic observation is that for any oracle algorithm, a distribution D(x, y) over multiclass examples and
a reduction R induces a distribution over a sequence (x′, y′)∗ of oracle examples. We collapse this into a
distribution D′(x′, y′) over oracle examples by drawing uniformly from the sequence.

The algorithm R−1 takes as input a single example (x, y) and returns a value v ∈ [0, 1] after using (only)
the testing interface of B zero or more times.

We measure the power of an oracle and a reduction according to squared-loss regret according to:

reg(D,R−1) = E(x,y)∼D[(R−1(x, y)−D(y|x))2]
and similarly letting µx′ = E(x′,y′)∼D′ [y′].

reg(D′, B) = E(x′,y′)∼D′(B(x′)− µx′)2

The open problem is to specify R and R−1satisfying the following theorem:

Theorem 1 For all multiclass distributionsD(x, y), for all binary oraclesB: The computational complexity
of R and R−1 are O(log k) and

reg(D,R−1) ≤ Creg(D′, B)
where C is a universal constant.

Alternatively, this open problem is satisfied by proving there exists no deterministic algorithms R,R−1 sat-
isfying the above theorem statement.

2 Motivation
The problem of conditional probability estimation is endemic to machine learning applications. In fact, in
some branches of machine learning, this is simply considered “the problem”. Typically conditional probabil-
ity estimation is done in situations where the conditional probability of only one bit is required, however there
are a growing number of applications where a well-estimated conditional probability over a more complex
object is required. For example, all known methods for solving contextual bandit algorithms over an arbitrary
policy class require knowledge of or good estimation of P (a | x) where a is an action.

There is a second intrinsic motivation which is matching the lower bound. No method faster thanO(log k)
can be imagined because the label y requires log2 k bits to specify and hence read. Similarly it’s easy to prove
no learning reduction can provide a regret ratio with C < 1.



The motivation for using the learning reduction framework to specify this problem is a combination of
generality and the empirical effectiveness in application of learning reductions. Any solution to this will be
general because any oracleB can be plugged in, even ones which use many strange kinds of prior information,
features, and active multitask hierachical (insert your favorite adjective here) structure.

3 Related Results
The state of the art is summarized by [1] which shows it’s possible to have a learning reduction satisfying the
above theorem with either:

1. C replaced by log2
2 k (using a binary tree structure)

2. or the computational time increased to O(k) (using an error correcting code structure).

Hence, answering this open problem in the negative shows that there is an inherent computation vs. robustness
tradeoff.

There are two other closely related problems, where similar analysis can be done.

1. For multiclass classification, where the goal is predicting the most likely class, a result analogous to the
open problem is provable using error correcting tournaments [2].

2. For multiclass classification in a partial label setting, no learning reduction can provide a constant regret
guarantee [3].

4 Silly tricks that don’t work
Because Learning reductions are not familiar to everyone, we note certain tricks which do not work here to
prevent false leads and provide some intuition.

4.1 Ignore B’s predictions and use your favorite learning algorithm instead.
This doesn’t work, because the quantification is for allD. Any specified learning algorithm will have someD
on which it has nonzero regret. On the other hand, because R calls the oracle at least once, there is a defined
induced distribution D′. Since the theorem must hold for all D and B, it must hold for a D your specified
learning algorithm fails on and for a B for which reg(D′, B) = 0 implying the theorem is not satisfied.

4.2 Feed random examples into B and vacuously satisfy the theorem by making sure that the right
hand side is larger than a constant.

This doesn’t work because the theorem is stated in terms of squared loss regret rather than squared loss.
In particular, if the oracle is given examples of the form (x′, y′) where y′ ∈ {0, 1} is drawn uniformly at
random, any oracle specifying B(x′) = 0.5 has zero regret.

4.3 Feed pseudorandom examples into B and vacuously satisfy the theorem by making sure that the
right hand side is larger than a constant.

This doesn’t work, because the quantification is “for all binary oracles B”, and there exists one which,
knowing the pseudorandom seed, can achieve zero loss (and hence zero regret).

4.4 Just use Boosting to drive the LHS to zero.
Boosting theorems require a stronger oracle—one which provides an edge over some constant baseline for
each invocation. The oracle here is not limited in this fashion since it could completely err for a small fraction
of invocations.

4.5 Take an existing structure, parameterize it, randomize over the parameterization, and then
average over the random elements.

Employing this approach is not straightforward, because the average in D′ is over an increased number of
oracle examples. Hence, at a fixed expected (over oracle examples) regret, the number of examples allowed
to have a large regret is increased.
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