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Abstract

This paper addresses the general problem of domain adaptation which arises in a variety of appli-
cations where the distribution of the labeled sample available somewhat differs from that of the
test data. Building on previous work by Ben-David et al. (2007), we introduce a novel distance
between distributions,discrepancy distance, that is tailored to adaptation problems with arbitrary
loss functions. We give Rademacher complexity bounds for estimating the discrepancy distance
from finite samples for different loss functions. Using thisdistance, we derive new generalization
bounds for domain adaptation for a wide family of loss functions. We also present a series of novel
adaptation bounds for large classes of regularization-based algorithms, including support vector
machines and kernel ridge regression based on the empiricaldiscrepancy. This motivates our anal-
ysis of the problem of minimizing the empirical discrepancyfor various loss functions for which
we also give several algorithms. We report the results of preliminary experiments that demonstrate
the benefits of our discrepancy minimization algorithms fordomain adaptation.

1 Introduction

In the standard PAC model (Valiant, 1984) and other theoretical models of learning, training and test instances
are assumed to be drawn from the same distribution. This is a natural assumption since, when the training
and test distributions substantially differ, there can be no hope for generalization. However, in practice, there
are several crucial scenarios where the two distributions are more similar and learning can be more effective.
One such scenario is that ofdomain adaptation, the main topic of our analysis.

The problem of domain adaptation arises in a variety of applications in natural language processing
(Dredze et al., 2007; Blitzer et al., 2007; Jiang & Zhai, 2007; Chelba & Acero, 2006; Daumé III & Marcu,
2006), speech processing (Legetter & Woodland, 1995; Gauvain & Chin-Hui, 1994; Pietra et al., 1992;
Rosenfeld, 1996; Jelinek, 1998; Roark & Bacchiani, 2003), computer vision (Martı́nez, 2002), and many
other areas. Quite often, little or no labeled data is available from thetarget domain, but labeled data from
a source domainsomewhat similar to the target as well as large amounts of unlabeled data from the target
domain are at one’s disposal. The domain adaptation problemthen consists of leveraging the source labeled
and target unlabeled data to derive a hypothesis performingwell on the target domain.

A number of different adaptation techniques have been introduced in the past by the publications just
mentioned and other similar work in the context of specific applications. For example, a standard technique
used in statistical language modeling and other generativemodels for part-of-speech tagging or parsing is
based on the maximum a posteriori adaptation which uses the source data as prior knowledge to estimate the
model parameters (Roark & Bacchiani, 2003). Similar techniques and other more refined ones have been
used for training maximum entropy models for language modeling or conditional models (Pietra et al., 1992;
Jelinek, 1998; Chelba & Acero, 2006; Daumé III & Marcu, 2006).

The first theoretical analysis of the domain adaptation problem was presented by Ben-David et al. (2007),
who gave VC-dimension-based generalization bounds for adaptation in classification tasks. Perhaps, the most
significant contribution of this work was the definition and application of a distance between distributions,
the dA distance, which is particularly relevant to the problem of domain adaptation and can be estimated
from finite samples for a finite VC dimension, as previously shown by Kifer et al. (2004). This work was
later extended by Blitzer et al. (2008) who also gave a bound on the error rate of a hypothesis derived
from a weighted combination of the source data sets for the specific case of empirical risk minimization. A
theoretical study of domain adaptation was also presented by Mansour et al. (2009), where the analysis deals



with the related but distinct case of adaptation with multiple sources, and where the target is a mixture of the
source distributions.

This paper presents a new theoretical and algorithmic analysis of the problem of domain adaptation. It
builds on the work of Ben-David et al. (2007) and extends it inseveral ways. We introduce a novel distance,
the discrepancy distance, that is tailored to comparing distributions in adaptation. This distance coincides
with thedA distance for 0-1 classification, but it can be used to comparedistributions for more general tasks,
including regression, and with other loss functions. As already pointed out, a crucial advantage of thedA

distance is that it can be estimated from finite samples when the set of regions used has finite VC-dimension.
We prove that the same holds for the discrepancy distance andin fact give data-dependent versions of that
statement with sharper bounds based on the Rademacher complexity.

We give new generalization bounds for domain adaptation andpoint out some of their benefits by com-
paring them with previous bounds. We further combine these with the properties of the discrepancy distance
to derive data-dependent Rademacher complexity learning bounds. We also present a series of novel results
for large classes of regularization-based algorithms, including support vector machines (SVMs) (Cortes &
Vapnik, 1995) and kernel ridge regression (KRR) (Saunders et al., 1998). We compare the pointwise loss of
the hypothesis returned by these algorithms when trained ona sample drawn from the target domain distri-
bution, versus that of a hypothesis selected by these algorithms when training on a sample drawn from the
source distribution. We show that the difference of these pointwise losses can be bounded by a term that
depends directly on the empirical discrepancy distance of the source and target distributions.

These learning bounds motivate the idea of replacing the empirical source distribution with another dis-
tribution with the same support but with the smallest discrepancy with respect to the target empirical dis-
tribution, which can be viewed as reweighting the loss on each labeled point. We analyze the problem of
determining the distribution minimizing the discrepancy in both 0-1 classification and square loss regression.
We show how the problem can be cast as a linear program (LP) forthe 0-1 loss and derive a specific efficient
combinatorial algorithm to solve it in dimension one. We also give a polynomial-time algorithm for solving
this problem in the case of the square loss by proving that it can be cast as a semi-definite program (SDP).
Finally, we report the results of preliminary experiments showing the benefits of our analysis and discrepancy
minimization algorithms.

In section 2, we describe the learning set-up for domain adaptation and introduce the notation and
Rademacher complexity concepts needed for the presentation of our results. Section 3 introduces the dis-
crepancy distance and analyzes its properties. Section 4 presents our generalization bounds and our the-
oretical guarantees for regularization-based algorithms. Section 5 describes and analyzes our discrepancy
minimization algorithms. Section 6 reports the results of our preliminary experiments.

2 Preliminaries

2.1 Learning Set-Up

We consider the familiar supervised learning setting wherethe learning algorithm receives a sample ofm
labeled pointsS = (z1, . . . , zm) = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y )m, whereX is the input space and
Y the label set, which is{0, 1} in classification and some measurable subset ofR in regression.

In thedomain adaptation problem, the training sampleS is drawn according to asource distributionQ,
while test points are drawn according to atarget distributionP that may somewhat differ fromQ. We denote
by f : X → Y the target labeling function. We shall also discuss cases where the source labeling function
fQ differs from the target domain labeling functionfP . Clearly, this dissimilarity will need to be small for
adaptation to be possible.

We will assume that the learner is provided with an unlabeledsampleT drawn i.i.d. according to the
target distributionP . We denote byL : Y × Y → R a loss function defined over pairs of labels and by
LQ(f, g) the expected loss for any two functionsf, g : X → Y and any distributionQ overX : LQ(f, g) =
Ex∼Q[L(f(x), g(x))].

The domain adaptation problem consists of selecting a hypothesish out of a hypothesis setH with a
small expected loss according to the target distributionP , LP (h, f).

2.2 Rademacher Complexity

Our generalization bounds will be based on the following data-dependent measure of the complexity of a
class of functions.

Definition 1 (Rademacher Complexity) LetH be a set of real-valued functions defined over a setX . Given
a sampleS∈Xm, the empirical Rademacher complexity ofH is defined as follows:

R̂S(H) =
2

m
E
σ

[
sup
h∈H

∣∣
m∑

i=1

σih(xi)
∣∣
∣∣∣S = (x1, . . . , xm)

]
. (1)



The expectation is taken overσ = (σ1, . . . , σn) whereσis are independent uniform random variables taking
values in{−1, +1}. The Rademacher complexity of a hypothesis setH is defined as the expectation of
R̂S(H) over all samples of sizem:

Rm(H) = E
S

[
R̂S(H)

∣∣|S| = m
]
. (2)

The Rademacher complexity measures the ability of a class offunctions to fit noise. The empirical Rademacher
complexity has the added advantage that it is data-dependent and can be measured from finite samples. It
can lead to tighter bounds than those based on other measuresof complexity such as the VC-dimension
(Koltchinskii & Panchenko, 2000).

We will denote byR̂S(h) the empirical average of a hypothesish : X → R and byR(h) its expec-
tation over a sampleS drawn according to the distribution considered. The following is a version of the
Rademacher complexity bounds by Koltchinskii and Panchenko (2000) and Bartlett and Mendelson (2002).
For completeness, the full proof is given in the Appendix.

Theorem 2 (Rademacher Bound)Let H be a class of functions mappingZ = X × Y to [0, 1] andS =
(z1, . . . , zm) a finite sample drawn i.i.d. according to a distributionQ. Then, for anyδ > 0, with probability
at least1 − δ over samplesS of sizem, the following inequality holds for allh ∈ H :

R(h) ≤ R̂(h) + R̂S(H) + 3

√
log 2

δ

2m
. (3)

3 Distances between Distributions
Clearly, for generalization to be possible, the distribution Q andP must not be too dissimilar, thus some
measure of the similarity of these distributions will be critical in the derivation of our generalization bounds
or the design of our algorithms. This section discusses thisquestion and introduces adiscrepancydistance
relevant to the context of adaptation.

Thel1 distance yields a straightforward bound on the difference of the error of a hypothesish with respect
to Q versus its error with respect toP .

Proposition 1 Assume that the lossL is bounded,L ≤ M for someM > 0. Then, for any hypothesish ∈ H ,

|LQ(h, f) − LP (h, f)| ≤ M l1(Q, P ). (4)

This provides us with a first adaptation bound suggesting that for small values of thel1 distance between
the source and target distributions, the average loss of hypothesish tested on the target domain is close to its
average loss on the source domain. However, in general, thisbound is not informative since thel1 distance
can be large even in favorable adaptation situations. Instead, one can use a distance between distributions
better suited to the learning task.

Consider for example the case of classification with the 0-1 loss. Fixh ∈ H , and leta denote the support
of |h − f |. Observe that|LQ(h, f) − LP (h, f)| = |Q(a) − P (a)|. A natural distance between distributions
in this context is thus one based on the supremum of the right-hand side over all regionsa. Since the target
hypothesisf is not known, the regiona should be taken as the support of|h − h′| for any twoh, h′ ∈ H .

This leads us to the following definition of a distance originally introduced by Devroye et al. (1996) [pp.
271-272] under the name ofgeneralized Kolmogorov-Smirnov distance, later by Kifer et al. (2004) asthedA

distance, and introduced and applied to the analysis of adaptation inclassification by Ben-David et al. (2007)
and Blitzer et al. (2008).

Definition 3 (dA-Distance) Let A ⊆ 2|X| be a set of subsets ofX . Then, thedA-distancebetween two
distributionsQ1 andQ2 overX , is defined as

dA(Q1, Q2) = sup
a∈A

|Q1(a) − Q2(a)|. (5)

As just discussed, in 0-1 classification, a natural choice for A is A = H∆H = {|h′−h| : h, h′ ∈ H}. We
introduce a distance between distributions,discrepancy distance, that can be used to compare distributions
for more general tasks, e.g., regression. Our choice of the terminology is partly motivated by the relationship
of this notion with the discrepancy problems arising in combinatorial contexts (Chazelle, 2000).

Definition 4 (Discrepancy Distance)LetH be a set of functions mappingX to Y and letL : Y ×Y → R+

define a loss function overY . The discrepancy distancediscL between two distributionsQ1 andQ2 overX
is defined by

discL(Q1, Q2) = max
h,h′∈H

∣∣∣LQ1
(h′, h) − LQ2

(h′, h)
∣∣∣.



The discrepancy distance is clearly symmetric and it is not hard to verify that it verifies the triangle in-
equality, regardless of the loss function used. In general,however, it does not define adistance: we may
havediscL(Q1, Q2) = 0 for Q1 6= Q2, even for non-trivial hypothesis sets such as that of bounded linear
functions and standard continuous loss functions.

Note that for the 0-1 classification loss, the discrepancy distance coincides with thedA distance with
A = H∆H . But the discrepancy distance helps us compare distributions for other losses such asLq(y, y′) =
|y − y′|q for someq and is more general.

As shown by Kifer et al. (2004), an important advantage of thedA distance is that it can be estimated
from finite samples whenA has finite VC-dimension. We prove that the same holds for thediscL distance
and in fact give data-dependent versions of that statement with sharper bounds based on the Rademacher
complexity.

The following theorem shows that for a bounded loss functionL, the discrepancy distancediscL between
a distribution and its empirical distribution can be bounded in terms of the empirical Rademacher complexity
of the class of functionsLH = {x 7→ L(h′(x), h(x)) : h, h′ ∈ H}. In particular, whenLH has finite
pseudo-dimension, this implies that the discrepancy distance converges to zero asO(

√
log m/m).

Proposition 2 Assume that the loss functionL is bounded byM > 0. LetQ be a distribution overX and
let Q̂ denote the corresponding empirical distribution for a sample S = (x1, . . . , xm). Then, for anyδ > 0,
with probability at least1 − δ over samplesS of sizem drawn according toQ:

discL(Q, Q̂) ≤ R̂S(LH) + 3M

√
log 2

δ

2m
. (6)

Proof: We scale the lossL to [0, 1] by dividing byM , and denote the new class byLH/M . By Theorem 2
applied toLH/M , for any δ > 0, with probability at least1 − δ, the following inequality holds for all
h, h′ ∈ H :

LQ(h′, h)

M
≤

L bQ(h′, h)

M
+ R̂S(LH/M) + 3

√
log 2

δ

2m
.

The empirical Rademacher complexity has the property thatR̂(αH) = αR̂(H) for any hypothesis classH
and positive real numberα (Bartlett & Mendelson, 2002). Thus,RS(LH/M) = 1

M RS(LH), which proves
the proposition.

For the specific case ofLq regression losses, the bound can be made more explicit.

Corollary 5 Let H be a hypothesis set bounded by someM > 0 for the loss functionLq: Lq(h, h′) ≤ M ,
for all h, h′ ∈ H . LetQ be a distribution overX and letQ̂ denote the corresponding empirical distribution
for a sampleS = (x1, . . . , xm). Then, for anyδ > 0, with probability at least1 − δ over samplesS of size
m drawn according toQ:

discLq
(Q, Q̂) ≤ 4qR̂S(H) + 3M

√
log 2

δ

2m
. (7)

Proof: The functionf : x 7→ xq is q-Lipschitz forx ∈ [0, 1]:

|f(x′) − f(x)| ≤ q|x′ − x|, (8)

andf(0) = 0. For L = Lq, LH = {x 7→ |h′(x) − h(x)|q : h, h′ ∈ H}. Thus, by Talagrand’s con-
traction lemma (Ledoux & Talagrand, 1991),R̂(LH) is bounded by2qR̂(H ′) with H ′ = {x 7→ (h′(x) −
h(x)) : h, h′ ∈ H}. Then,R̂S(H ′) can be written and bounded as follows

R̂S(H ′) = E
σ

[
sup
h,h′

1

m
|

m∑

i=1

σi(h(xi) − h′(xi))|
]
≤ E

σ
[sup

h

1

m
|

m∑

i=1

σih(xi)|] + E
σ
[sup

h′

1

m
|

m∑

i=1

σih
′(xi)|] (9)

= 2R̂S(H), (10)

using the definition of the Rademacher variables and the sub-additivity of the supremum function. This
proves the inequalitŷR(LH) ≤ 4qR̂(H) and the corollary.

A very similar proof gives the following result for classification.



Corollary 6 Let H be a set of classifiers mappingX to {0, 1} and letL01 denote the 0-1 loss. Then, with
the notation of Corollary 5, for anyδ > 0, with probability at least1 − δ over samplesS of sizem drawn
according toQ:

discL01
(Q, Q̂) ≤ 4R̂S(H) + 3

√
log 2

δ

2m
. (11)

The factor of4 can in fact be reduced to2 in these corollaries when using a more favorable constant in
the contraction lemma. The following corollary shows that the discrepancy distance can be estimated from
finite samples.

Corollary 7 LetH be a hypothesis set bounded by someM >0 for the loss functionLq: Lq(h, h′)≤M , for
all h, h′∈H . LetQ be a distribution overX andQ̂ the corresponding empirical distribution for a sampleS,
and letP be a distribution overX andP̂ the corresponding empirical distribution for a sampleT . Then, for
anyδ > 0, with probability at least1 − δ over samplesS of sizem drawn according toQ and samplesT of
sizen drawn according toP :

discLq
(P, Q) ≤ discLq

(P̂ , Q̂) + 4q
(
R̂S(H) + R̂T (H)

)
+ 3M

(√
log 4

δ

2m
+

√
log 4

δ

2n

)
. (12)

Proof: By the triangle inequality, we can write

discLq
(P, Q) ≤ discLq

(P, P̂ ) + discLq
(P̂ , Q̂) + discLq

(Q, Q̂). (13)

The result then follows by the application of Corollary 5 todiscLq
(P, P̂ ) anddiscLq

(Q, Q̂).

As with Corollary 6, a similar result holds for the 0-1 loss inclassification.

4 Domain Adaptation: Generalization Bounds

This section presents generalization bounds for domain adaptation given in terms of the discrepancy distance
just defined. In the context of adaptation, two types of questions arise:

(1) we may ask, as for standard generalization, how the average loss of a hypothesis on the target distribu-
tion,LP (h, f), differs fromL bQ(h, f), its empirical error based on the empirical distributionQ̂;

(2) another natural question is, given a specific learning algorithm, by how much doesLP (hQ, f) deviate
fromLP (hP , f) wherehQ is the hypothesis returned by the algorithm when trained on asample drawn
from Q andhP the one it would have returned by training on a sample drawn from the true target
distributionP .

We will present theoretical guarantees addressing both questions.

4.1 Generalization bounds

Let h∗
Q ∈ argminh∈H LQ(h, fQ) and similarly leth∗

P be a minimizer ofLP (h, fP ). Note that these mini-
mizers may not be unique. For adaptation to succeed, it is natural to assume that the average lossLQ(h∗

Q, h∗
P )

between the best-in-class hypotheses is small. Under that assumption and for a small discrepancy distance,
the following theorem provides a useful bound on the error ofa hypothesis with respect to the target domain.

Theorem 8 Assume that the loss functionL is symmetric and obeys the triangle inequality. Then, for any
hypothesish ∈ H , the following holds

LP (h, fP ) ≤ LP (h∗
P , fP ) + LQ(h, h∗

Q) + disc(P, Q) + LQ(h∗
Q, h∗

P ). (14)

Proof: Fix h ∈ H . By the triangle inequality property ofL and the definition of the discrepancydiscL(P, Q),
the following holds

LP (h, fP ) ≤ LP (h, h∗
Q) + LP (h∗

Q, h∗
P ) + LP (h∗

P , fP )

≤ LQ(h, h∗
Q) + discL(P, Q) + LP (h∗

Q, h∗
P ) + LP (h∗

P , fP ).

We compare (14) with the main adaptation bound given by Ben-David et al. (2007) and Blitzer et al. (2008):

LP (h, fP ) ≤ LQ(h, fQ) + discL(P, Q) + min
h∈H

(
LQ(h, fQ) + LP (h, fP )

)
. (15)



It is very instructive to compare the two bounds. Intuitively, the bound of Theorem 8 has only one error
term that involves the target function, while the bound of (15) has three terms involving the target function.
One extreme case is when there is a single hypothesish in H and a single target functionf . In this case,
Theorem 8 gives a bound ofLP (h, f) + disc(P, Q), while the bound supplied by (15) is2LQ(h, f) +
LP (h, f) + disc(P, Q), which is larger than3LP (h, f) + disc(P, Q) whenLQ(h, f) ≤ LP (h, f). One can
even see that the bound of (15) might become vacuous for moderate values ofLQ(h, f) andLP (h, f). While
this is clearly an extreme case, an error with a factor of 3 canarise in more realistic situations, especially
when the distance between the target function and the hypothesis class is significant.

While in general the two bounds are incomparable, it is worthwhile to compare them using some relatively
plausible assumptions. Assume that the discrepancy distance betweenP andQ is small and so is the average
loss betweenh∗

Q andh∗
P . These are natural assumptions for adaptation to be possible. Then, Theorem 8

indicates that the regretLP (h, fP ) − LP (h∗
P , fP ) is essentially bounded byLQ(h, h∗

Q), the average loss
with respect toh∗

Q onQ. We now consider several special cases of interest.

(i) Whenh∗
Q = h∗

P thenh∗ = h∗
Q = h∗

P and the bound of Theorem 8 becomes

LP (h, fP ) ≤ LP (h∗, fP ) + LQ(h, h∗) + disc(P, Q). (16)

The bound of (15) becomes

LP (h, fP ) ≤ LP (h∗, fP ) + LQ(h, fQ) + LQ(h∗, fQ) + disc(P, Q), (17)

where the right-hand side essentially includes the sum of3 errors and is always larger than the right-hand
side of (16) since by the triangle inequalityLQ(h, h∗) ≤ LQ(h, fQ) +LQ(h∗, fQ).

(ii) Whenh∗
Q = h∗

P = h∗ ∧ disc(P, Q) = 0, the bound of Theorem 8 becomes

LP (h, fP ) ≤ LP (h∗, fP ) + LQ(h, h∗),

which coincides with the standard generalization bound. The bound of (15) does not coincide with the
standard bound and leads to:

LP (h, fP ) ≤ LP (h∗, fP ) + LQ(h, fQ) + LQ(h∗, fQ).

(iii) When fP ∈H (consistent case), the bound of (15) simplifies to,

|LP (h, fP ) − LQ(h, fP )| ≤ discL(Q, P ),

and it can also be derived using the proof of Theorem 8.

Finally, clearly Theorem 8 leads to bounds based on the empirical error ofh on a sample drawn according
to Q. We give the bound related to the 0-1 loss, others can be derived in a similar way from Corollaries 5-
7 and other similar corollaries. The result follows Theorem8 combined with Corollary 7, and a standard
Rademacher classification bound (Bartlett & Mendelson, 2002).

Theorem 9 Let H be a family of functions mappingX to {0, 1} and let the rest of the assumptions be as
in Corollary 7. Then, for any hypothesish ∈ H , with probability at least1 − δ, the following adaptation
generalization bound holds for the 0-1 loss:

LP (h, fP ) − LP (h∗
P , fP ) ≤ L bQ(h, h∗

Q) + discL01
(P̂ , Q̂) + (4q +

1

2
)R̂S(H) + 4qR̂T (H)+

4

√
log 8

δ

2m
+ 3

√
log 8

δ

2n
+ LQ(h∗

Q, h∗
P ). (18)

4.2 Guarantees for regularization-based algorithms

In this section, we first assume that the hypothesis setH includes the target functionfP . Note that this does
not imply thatfQ is in H . Even whenfP andfQ are restrictions tosupp(P ) and supp(Q) of the same
labeling functionf , we may havefP ∈ H andfQ 6∈ H and the source problem could be non-realizable.

For a fixed loss functionL, we denote bŷR bQ(h) the empirical error of a hypothesish with respect to an

empirical distributionQ̂: R bQ(h) = L bQ(h, f). Let N : H → R+ be a function defined over the hypothesis
setH . We will assume thatH is a convex subset of a vector space and that the loss functionL is convex with
respect to each of its arguments. Regularization-based algorithms minimize an objective of the form

F bQ(h) = R̂ bQ(h) + λN(h), (19)



whereλ ≥ 0 is a trade-off parameter. This family of algorithms includes support vector machines (SVM)
(Cortes & Vapnik, 1995), support vector regression (SVR) (Vapnik, 1998), kernel ridge regression (Saunders
et al., 1998), and other algorithms such as those based on therelative entropy regularization (Bousquet &
Elisseeff, 2002).

We denote byBF the Bregman divergence associated to a convex functionF ,

BF (f‖g) = F (f) − F (g) − 〈f − g,∇F (g)〉 (20)

and define∆h as∆h = h′ − h.

Lemma 10 Let the hypothesis setH be a vector space. Assume thatN is a proper closed convex function
and thatN andL are differentiable. Assume thatF bQ admits a minimizerh∈H andF bP a minimizerh′∈H

and thatfP andfQ coincide on the support of̂Q. Then, the following bound holds,

BN (h′‖h) + BN (h‖h′) ≤ 2discL(P̂ , Q̂)

λ
. (21)

Proof: SinceBF bQ
=B bR bQ

+ λBN andBF bP
=B bR bP

+ λBN , and a Bregman divergence is non-negative, the

following inequality holds:

λ
(
BN (h′‖h) + BN (h‖h′)

)
≤ BF bQ

(h′‖h) + BF bP
(h‖h′).

By the definition ofh andh′ as the minimizers ofF bQ andF bP , ∇ bQF (h)=∇ bP F (h′)=0 and

BF bQ
(h′‖h) + BF bP

(h‖h′) = R̂ bQ(h′) − R̂ bQ(h) + R̂ bP (h) − R̂ bP (h′) (22)

=
(
L bP (h, fP ) − L bQ(h, fP )

)
−
(
L bP (h′, fP ) − L bQ(h′, fP )

)
≤ 2discL(P̂ , Q̂).

(23)

This last inequality holds since by assumptionfP is in H .

We shall consider loss functionsL for which there existsσ ∈ R+ such thatL(·, y) is σ-Lipschitz for all
y ∈ Y . This assumption holds for the hinge loss withσ=1 and for theLq loss withσ=q(2M)q−1 when the
hypothesis set and the set of output labels are bounded by some M ∈ R+: ∀h ∈ H, ∀x ∈ X, |h(x)| ≤ M
and∀y ∈ Y, |y| ≤ M .

Theorem 11 LetK: X × X→R be a positive-definite symmetric kernel such thatK(x, x)≤κ2 <∞ for all
x∈X , and letH be the reproducing kernel Hilbert space associated toK. Assume thatL(·, y) is σ-Lipschitz
for all y ∈ Y . Leth′ be the hypothesis returned by the regularization algorithmbased onN(·)=‖·‖2

K for the
empirical distributionP̂ , andh the one returned for the empirical distribution̂Q, and assume thatfP and
fQ coincide onsupp(Q̂). Then, for allx ∈ X , y ∈ Y ,

∣∣L(h′(x), y) − L(h(x), y)
∣∣ ≤ κσ

√
discL(P̂ , Q̂)

λ
. (24)

Proof: ForN(·) = ‖·‖2
K , N is a proper closed convex function and is differentiable. WehaveBN (h′‖h) =

‖h′ − h‖2
K , thusBN (h′‖h) + BN (h‖h′) = 2‖∆h‖2

K . WhenL is differentiable, by Lemma 10,

2‖∆h‖2
K ≤ 2discL(P̂ , Q̂)

λ
. (25)

This result can also be shown directly without assuming thatL is differentiable by using the convexity ofN
and the minimizing properties ofh andh′ with a proof that is longer than that of Lemma 10.

Now, by the reproducing property ofH , for all x ∈ H , ∆h(x) = 〈∆h, K(x, ·)〉 and by the Cauchy-
Schwarz inequality,|∆h(x)|≤‖∆h‖K(K(x, x))1/2 ≤κ‖∆h‖K . Since for ally ∈ Y L(·, y) is σ-Lipschitz,
for all x ∈ X , y ∈ Y ,

|L(h′(x), y) − L(h(x), y)| ≤ σ|∆h(x)| ≤ κσ‖∆h‖K ,

which, combined with (25), proves the statement of the theorem.

Theorem 11 provides a strong guarantee on the pointwise difference of the loss forh′ andh with proba-
bility one. The result, as well as the proof, also suggests that the discrepancy distance is the “right” measure
of difference of distributions for this context. The theorem applies to a variety of algorithms, in particular
SVMs combined with arbitrary PDS kernels and kernel ridge regression.



A similar result can be derived for the difference between expected losses by bounding the expectation of
∆h(x) in the proof, instead of its maximum. But, the resulting upper bound only differs from that of theorem
by EP [K(x, x)1/2] versusmaxx K(x, x)1/2, which, for a fixed kernel, are both constant terms and cannotbe
minimized.

In general, the functionsfP andfQ may not coincide onsupp(Q̂). For adaptation to be possible, it is
reasonable to assume however that

L bQ(fQ(x), fP (x)) ≪ 1 and L bP (fQ(x), fP (x)) ≪ 1.

This can be viewed as a condition on the proximity of the labeling functions (theY s), while the discrepancy
distance relates to the distributions on the input space (theXs). The following result generalizes Theorem 11
to this setting in the case of the square loss.

Theorem 12 Under the assumptions of Theorem 11, but withfQ andfP potentially different onsupp(Q̂),
whenL is the square lossL2 andδ2 = L bQ(fQ(x), fP (x)) ≪ 1, then, for allx ∈ X , y ∈ Y ,

∣∣L(h′(x), y) − L(h(x), y)
∣∣ ≤ 2κM

λ

(
κδ +

√
κ2δ2 + 4λdiscL(P̂ , Q̂)

)
. (26)

Proof: Proceeding as in the proof of Lemma 10 and using the definitionof the square loss and the Cauchy-
Schwarz inequality give

BF bQ
(h′‖h) + BF bP

(h‖h′) = R̂ bQ(h′) − R̂ bQ(h) + R̂ bP (h) − R̂ bP (h′)

=
(
L bP (h, fP ) − L bQ(h, fP )

)
−
(
L bP (h′, fP ) − L bQ(h′, fP )

)

+ 2 E
bQ
[(h′(x) − h(x))(fP (x) − fQ(x)]

≤ 2discL(P̂ , Q̂) + 2
√

E
bQ
[∆h(x)2] E

bQ
[L(fP (x), fQ(x))]

≤ 2discL(P̂ , Q̂) + 2κ‖∆h‖Kδ.

SinceN(·) = ‖·‖2
K , the inequality can be rewritten as

λ‖∆h‖2
K ≤ discL(P̂ , Q̂) + κδ‖∆h‖K . (27)

Solving the second-degree polynomial in‖∆h‖K leads to the equivalent constraint

‖∆h‖K ≤ 1

2λ

(
κδ +

√
κ2δ2 + 4λdiscL(P̂ , Q̂)

)
. (28)

The result then follows by theσ-Lipschitzness ofL(·, y) as in the proof of Theorem 11, withσ = 4M .

Using the same proof schema, similar bounds can be derived for other loss functions.
When the assumptionfP ∈ H is relaxed, the following theorem holds.

Theorem 13 Under the assumptions of Theorem 11, but withfP not necessarily inH andfQ andfP poten-
tially different onsupp(Q̂), whenL is the square lossL2 andδ′ = L bQ(h∗

P (x), fQ(x))1/2+L bP (h∗
P (x), fP (x))1/2 ≪

1, then, for allx ∈ X , y ∈ Y ,
∣∣L(h′(x), y) − L(h(x), y)

∣∣ ≤ 2κM

λ

(
κδ′ +

√
κ2δ′2 + 4λdiscL(P̂ , Q̂)

)
. (29)

Proof: Proceeding as in the proof of Theorem 12 and using the definition of the square loss and the Cauchy-
Schwarz inequality give

BF bQ
(h′‖h) + BF bP

(h‖h′) =
(
L bP (h, h∗

P ) − L bQ(h, h∗
P )
)
−
(
L bP (h′, h∗

P ) − L bQ(h′, h∗
P )
)

− 2 E
bP
[(h′(x) − h(x))(h∗

P (x) − fP (x)] + 2 E
bQ
[(h′(x) − h(x))(h∗

P (x) − fQ(x)]

≤ 2discL(P̂ , Q̂) + 2
√

E
bP
[∆h(x)2] E

bP
[L(h∗

P (x), fP (x))]

+ 2
√

E
bQ
[∆h(x)2] E

bQ
[L(h∗

P (x), fQ(x))]

≤ 2discL(P̂ , Q̂) + 2κ‖∆h‖Kδ′.

The rest of the proof is identical to that of Theorem 12.



5 Discrepancy Minimization Algorithms

The discrepancy distancediscL(P̂ , Q̂) appeared as a critical term in several of the bounds in the last section.
In particular, Theorems 11 and 12 suggest that if we could select, instead of̂Q, some other empirical distri-
butionQ̂′ with a smaller empirical discrepancydiscL(P̂ , Q̂′) and use that for training a regularization-based
algorithm, a better guarantee would be obtained on the difference of pointwise loss betweenh′ andh. Since
h′ is fixed, a sufficiently smaller discrepancy would actually lead to a hypothesish with pointwise loss closer
to that ofh′.

The training sample is given and we do not have any control over the support ofQ̂. But, we can search
for the distributionQ̂′ with the minimal empirical discrepancy distance:

Q̂′ = argmin
bQ′∈Q

discL(P̂ , Q̂′), (30)

whereQ denotes the set of distributions with supportsupp(Q̂). This leads to an optimization problem that
we shall study in detail in the case of several loss functions.

Note that usingQ̂′ instead ofQ̂ for training can be viewed asreweightingthe cost of an error on each
training point. The distribution̂Q′ can be used to emphasize some points or de-emphasize others to reduce
the empirical discrepancy distance. This bears some similarity with the reweighting orimportance weighting
ideas used in statistics and machine learning for sample bias correction techniques (Elkan, 2001; Cortes
et al., 2008) and other purposes. Of course, the objective optimized here based on the discrepancy distance is
distinct from that of previous reweighting techniques.

We will denote bySQ the support of̂Q, bySP the support of̂P , and byS their unionsupp(Q̂)∪supp(P̂ ),
with |SQ| = m0 ≤ m and|SP | = n0 ≤ n.

In view of the definition of the discrepancy distance, problem (30) can be written as a min-max problem:

Q̂′ = argmin
bQ′∈Q

max
h,h′∈H

|L bP (h′, h) − L bQ′
(h′, h)|. (31)

As with all min-max problems, the problem has a natural game theoretical interpretation. However, here, in
general, we cannot permute themin andmax operators since the convexity-type assumptions of the minimax
theorems do not hold. Nevertheless, since the max-min valueis always a lower bound for the min-max, it
provides us with a lower bound on the value of the game, that isthe minimal discrepancy:

max
h,h′∈H

min
bQ′∈Q

|L bP (h′, h) − L bQ′
(h′, h)| ≤ min

bQ′∈Q
max

h,h′∈H
|L bP (h′, h) − L bQ′

(h′, h)|. (32)

We will later make use of this inequality. Let us now examine the minimization problem (30) and its algo-
rithmic solutions in the case of classification with the 0-1 loss and regression with theL2 loss.

5.1 Classification, 0-1 Loss

For the 0-1 loss, the problem of finding the best distributionQ̂′ can be reformulated as the following min-max
program:

min
Q′

max
a∈H∆H

∣∣Q̂′(a) − P̂ (a)
∣∣ (33)

subject to ∀x ∈ SQ, Q̂′(x) ≥ 0 ∧
∑

x∈SQ

Q̂′(x) = 1, (34)

where we have identifiedH∆H = {|h′ − h| : h, h′ ∈ H} with the set of regionsa ⊆ X that are the support
of an element ofH∆H . This problem is similar to the min-max resource allocationproblem that arises in
task optimization (Karabati et al., 2001). It can be rewritten as the following linear program (LP):

min
Q′

δ (35)

subject to ∀a ∈ H∆H, Q̂′(a) − P̂ (a) ≤ δ (36)

∀a ∈ H∆H, P̂ (a) − Q̂′(a) ≤ δ (37)

∀x ∈ SQ, Q̂′(x) ≥ 0 ∧
∑

x∈SQ

Q̂′(x) = 1. (38)

The number of constraints is proportional to|H∆H | but it can be reduced to a finite number by observing
that two subsetsa, a′∈H∆H containing the same elements ofS lead to redundant constraints, since

∣∣Q̂′(a) − P̂ (a)
∣∣ =

∣∣Q̂′(a′) − P̂ (a′)
∣∣. (39)



Thus, it suffices to keep one canonical membera for each such equivalence class. The necessary number of
constraints to be considered is proportional toΠH∆H(m0 +n0), the shattering coefficient of order(m0 +n0)
of the hypothesis classH∆H . By the Sauer’s lemma, this is bounded in terms of the VC-dimension of the
classH∆H , ΠH∆H(m0 +n0) ≤ O((m0 +n0)

V C(H∆H)), which can be bounded byO((m0 +n0)
2V C(H))

since it is not hard to see thatV C(H∆H) ≤ 2V C(H).
In cases where we can test efficiently whether there exists a consistent hypothesis inH , e.g., for half-

spaces inRd, we can generate in timeO((m0 + n0)
2d) all consistent labeling of the sample points byH .

(We remark that computing the discrepancy with the 0-1 loss is closely related to agnostic learning. The
implications of this fact will be described in a longer version of this paper.)

5.2 Computing the Discrepancy in 1D

We consider the case whereX = [0, 1] and derive a simple algorithm for minimizing the discrepancy for 0-1
loss. LetH be the class of all prefixes (i.e.,[0, z]) and suffixes (i.e.,[z, 1]). Our class ofH∆H includes all
the intervals (i.e.,(z1, z2]) and their complements (i.e.,[0, z1]∪ (z2, 1]). We start with a general lower bound
on the discrepancy.

LetU denote the set ofunlabeled regions, that is the set of regionsa such thata∩SQ = ∅ anda∩SP 6= ∅.
If a is an unlabeled region, then|Q̂′(a) − P̂ (a)| = P̂ (a) for anyQ̂′. Thus, by the max-min inequality (32),
the following lower bound holds for the minimum discrepancy:

max
a∈U

P̂ (a) ≤ min
bQ′∈Q

max
h,h′∈H

|L bP (h′, h) − L bQ′(h
′, h)|. (40)

In particular, if there is a large unlabeled regiona, we cannot hope to achieve a small empirical discrepancy.
In the one-dimensional case, we give a simple linear-time algorithm that does not require an LP and show

that the lower bound (40) is reached. Thus, in that case, themin andmax operators commute and the minimal
discrepancy distance is preciselymina∈U P̂ (a).

Given our definition ofH , the unlabeled regions are open intervals, or complements of these sets, con-
taining only points fromSP with endpoints defined by elements ofSQ.

Let us denote bys1, . . . , sm0
the elements ofSQ, byni, i ∈ [1, m0], the number of consecutive unlabeled

points to the right ofsi andn =
∑

ni. We will make an additional technical assumption that thereare no
unlabeled points to the left ofs1. Our algorithm consists of defining the weightQ̂′(si) as follows:

Q̂′(si) = ni/n. (41)

This requires first sortingSQ ∪ SP and then computingni for eachsi. The figure illustrates the algorithm.

Proposition 3 Assume thatX consists of the set of points on the real line andH the set of half-spaces onX .
Then, for anyQ̂ and P̂ , Q̂′(si) = ni/n minimizes the empirical discrepancy and can be computed in time
O((m + n) log(m + n)).

The proof is given in the Appendix.

5.3 Regression,L2 loss

For the square loss, the problem of finding the best distribution can be written as

min
bQ′∈Q

max
h,h′∈H

∣∣∣E
bP
[(h′(x) − h(x))2] − E

bQ′

[(h′(x) − h(x))2]
∣∣∣.

If X is a subset ofRN , N > 1, and the hypothesis setH is a set of bounded linear functionsH = {x 7→
w

⊤
x : ‖w‖≤1}, then, the problem can be rewritten as

min
bQ′∈Q

max
‖w‖≤1
‖w′‖≤1

∣∣∣E
bP
[((w′ − w)⊤x)2] − E

bQ′

[((w′ − w)⊤x)2]
∣∣∣

= min
bQ′∈Q

max
‖w‖≤1
‖w′‖≤1

∣∣∣
∑

x∈S

(P̂ (x) − Q̂′(x))[(w′ − w)⊤x]2
∣∣∣

= min
bQ′∈Q

max
‖u‖≤2

∣∣∣
∑

x∈S

(P̂ (x) − Q̂′(x))[u⊤
x]2
∣∣∣

= min
bQ′∈Q

max
‖u‖≤2

∣∣∣u⊤
(∑

x∈S

(P̂ (x) − Q̂′(x))xx
⊤
)
u

∣∣∣. (42)



We now simplify the notation and denote bys1, . . . , sm0
the elements ofSQ, by zi the distribution weight at

pointsi: zi = Q̂′(si), and byM(z) ∈ S
N a symmetric matrix that is an affine function ofz:

M(z) = M0 −
m0∑

i=1

ziMi, (43)

whereM0 =
∑

x∈S P (x)xx
⊤ andMi = sis

⊤
i . Since problem (42) is invariant to the non-zero bound on

‖u‖, we can equivalently write it with a bound of one and in view ofthe notation just introduced give its
equivalent form

min
‖z‖1=1
z≥0

max
‖u‖=1

|u⊤
M(z)u|. (44)

SinceM(z) is symmetric,max‖u‖=1 u
⊤
M(z)u is the maximum eigenvalueλmax of M(z) and the problem

is equivalent to the following maximum eigenvalue minimization for a symmetric matrix:

min
‖z‖1=1
z≥0

max{λmax(M(z)), λmax(−M(z))}. (45)

This is a convex optimization problem since the maximum eigenvalue of a matrix is a convex function of that
matrix andM is an affine function ofz, and sincez belongs to a simplex. The problem is equivalent to the
following semi-definite programming (SDP) problem:

min
z,λ

λ (46)

subject to λI − M(z) � 0 (47)

λI + M(z) � 0 (48)

1
⊤
z = 1 ∧ z ≥ 0. (49)

SDP problems can be solved in polynomial time using general interior point methods (Nesterov & Ne-
mirovsky, 1994). Thus, using the general expression of the complexity of interior point methods for SDPs,
the following result holds.

Proposition 4 Assume thatX is a subset ofRN and that the hypothesis setH is a set of bounded linear
functionsH = {x 7→ w

⊤
x : ‖w‖≤1}. Then, for anyQ̂ andP̂ , the discrepancy minimizing distribution̂Q′

for the square loss can be found in timeO(m2
0N

2.5 + n0N
2).

It is worth noting that the unconstrained version of this problem (no constraint onz) and other close problems
seem to have been studied by a number of optimization publications (Fletcher, 1985; Overton, 1988; Jarre,
1993; Helmberg & Oustry, 2000; Alizadeh, 1995). This suggests possibly more efficient specific algorithms
than general interior point methods for solving this problem in the constrained case as well. Observe also that
the matricesMi have a specific structure in our case, they are rank-one matrices and in many applications
quite sparse, which could be further exploited to improve efficiency.

As shown in a longer version of this paper, the results of thissection can be extended to the case where
H is a reproducing kernel Hilbert space associated to a positive definite symmetric kernel functionK.

6 Experiments

This section reports the results of preliminary experiments showing the benefits of our discrepancy minimiza-
tion algorithms. Our results confirm that our algorithm is effective in practice and produces a distribution that
reduces the empirical discrepancy distance, which allows us to train on a sample closer to the target distribu-
tion with respect to this metric. They also demonstrate the accuracy benefits of this algorithm with respect to
the target domain.

The figures show the empirical advantages of using the distributionQ̂′ returned by the discrepancy mini-
mizing algorithm described in Proposition 3 in a case where source and target distributions are shifted Gaus-
sians: the source distribution is a Gaussian centered at−1 and the target distribution a Gaussian centered at
+1, both with standard deviation 2. The hypothesis set used wasthe set of half-spaces and the target function
selected to be the interval[−1, 1]. Thus, training on a sample drawn formQ generates a separator at−1 and
errs on about half of the test points produced byP . In contrast, training with the distribution̂Q′ minimizing
the empirical discrepancy yields a hypothesis separating the points at+1, thereby dramatically reducing the
error rate.

In the figure, the distributionsQ and P are Gaussians centered at(
√

2,
√

2) and (−
√

2,−
√

2), both
with covariance matrix2I. The target function isf(x1, x2) = (1 − |x1|) + (1 − |x2|), thus the optimal



linear prediction derived fromQ has a negative slope, while the optimal prediction with respect to the target
distributionP in fact has a positive slope. The figure shows the performanceof ridge regression when the
example is extended to 16-dimensions, before and after minimizing the discrepancy. In this higher-dimension
setting and even with several thousand points, using (http://sedumi.ie.lehigh.edu/), our SDP problem could be
solved in about 15s using a single 3GHz processor with 2GB RAM. The SDP algorithm yields distribution
weights that decrease the discrepancy and assist ridge regression in selecting a more appropriate hypothesis
for the target distribution.

7 Conclusion

We presented an extensive theoretical and an algorithmic analysis of domain adaptation. Our analysis and
algorithms are widely applicable and can benefit a variety ofadaptation tasks. More efficient versions of
these algorithms, in some instances efficient approximations, should further extend the applicability of our
techniques to large-scale adaptation problems.
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A Proof of Theorem 2

Theorem 14 (Rademacher Bound)Let H be a class of functions mappingZ = X × Y to [0, 1] andS =
(z1, . . . , zm) a finite sample drawn i.i.d. according to a distributionQ. Then, for anyδ > 0, with probability
at least1 − δ over samplesS of sizem, the following inequality holds for allh ∈ H :

R(h) ≤ R̂(h) + R̂S(H) + 3

√
log 2

δ

2m
. (50)

Proof: Let Φ(S) be defined byΦ(S) = suph∈H R(h) − R̂(h). Changing a point ofS affectsΦ(S) by at
most1/m. Thus, by McDiarmid’s inequality applied toΦ(S), for anyδ > 0, with probability at least1 − δ

2 ,
the following holds for allh ∈ H :

Φ(S) ≤ E
S∼D

[Φ(S)] +

√
log 2

δ

2m
. (51)

ES∼D[Φ(S)] can be bounded in terms of the empirical Rade-macher complexity as follows:

E
S
[Φ(S)] = E

S

[
sup
h∈H

E
S′

[RS′(h)] − RS(h)
]

= E
S

[
sup
h∈H

E
S′

[RS′(h) − RS(h)]
]

≤ E
S,S′

[
sup
h∈H

RS′(h) − RS(h)
]

= E
S,S′

[
sup
h∈H

1

m

m∑

i=1

(h(x′
i) − h(xi))

]

= E
σ,S,S′

[
sup
h∈H

1

m

m∑

i=1

σi(h(x′
i) − h(xi))

]

≤ E
σ,S′

[
sup
h∈H

1

m

m∑

i=1

σih(x′
i)
]
+ E

σ,S

[
sup
h∈H

1

m

m∑

i=1

−σih(xi)
]

= 2 E
σ,S

[
sup
h∈H

1

m

m∑

i=1

σih(xi)
]

≤ 2 E
σ,S

[
sup
h∈H

∣∣ 1

m

m∑

i=1

σih(xi)
∣∣]

= Rm(H).

Changing a point ofS affectsRm(H) by at most2/m. Thus, by McDiarmid’s inequality applied toRm(H),
with probability at least1 − δ/2, the following holds:

Rm(H) ≤ R̂S(H) +

√
2 log 2

δ

m
. (52)

Combining this inequality with Inequality (51) and the bound onES [Φ(S)] above yields directly the statement
of the theorem.

B Proof of Proposition 3

Proposition 5 Assume thatX consists of the set of points on the real line andH the set of half-spaces onX .
Then, for anyQ̂ and P̂ , Q̂′(si) = ni/n minimizes the empirical discrepancy and can be computed in time
O((m + n) log(m + n)).

Proof: Consider an interval[z1, z2] that maximizes the discrepancy ofQ̂′. The case of a complement of an in-
terval is the same, since the discrepancy of a hypothesis andits negation are identical. Letsi, . . . , sj ∈ [z1, z2]

be the subset of̂Q in that interval, andpi′ , . . . , pj′ ∈ [z1, z2] the subset of̂P in that interval. The discrepancy

is d = |∑j
k=i Q̂′(sk) − j′−i′

n |. By our definition ofQ̂′, we can write
∑j

k=i Q̂′(sk) = 1
n

∑j
k=i nk. Let pi′′



be the maximal point in̂P which is less thansi andj′′ the minimal point inP̂ larger thansj . We have that
j′−i′ = (i′′−i′)+

∑j−1
k=i nk+(j′′−j′). Therefored = |(i′′−i′)+(j′′−j′)−nj | = |(i′′−i′)−(nj−(j′′−j′))|.

Sinced is maximal and both terms are non-negative, one of them is zero. Sincej′−j′′ ≤ nj andi′′−i′ ≤ ni,
the discrepancy of̂Q′ meets the lower bound of (40) and is thus optimal.


