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Abstract

This paper addresses the general problem of domain adapteliich arises in a variety of appli-
cations where the distribution of the labeled sample abkElaomewhat differs from that of the
test data. Building on previous work by Ben-David et al. (20Qve introduce a novel distance
between distributionsjiscrepancy distancehat is tailored to adaptation problems with arbitrary
loss functions. We give Rademacher complexity bounds fomesing the discrepancy distance
from finite samples for different loss functions. Using tHlistance, we derive new generalization
bounds for domain adaptation for a wide family of loss fuoict. We also present a series of novel
adaptation bounds for large classes of regularizatioedatgorithms, including support vector
machines and kernel ridge regression based on the empliscaépancy. This motivates our anal-
ysis of the problem of minimizing the empirical discrepafiayvarious loss functions for which
we also give several algorithms. We report the results dirpigary experiments that demonstrate
the benefits of our discrepancy minimization algorithmsdfomain adaptation.

1 Introduction

In the standard PAC model (Valiant, 1984) and other thezabtnodels of learning, training and test instances
are assumed to be drawn from the same distribution. This &wal assumption since, when the training
and test distributions substantially differ, there can béape for generalization. However, in practice, there
are several crucial scenarios where the two distributiomsrere similar and learning can be more effective.
One such scenario is that ddmain adaptatiojthe main topic of our analysis.

The problem of domain adaptation arises in a variety of apfibns in natural language processing
(Dredze et al., 2007; Blitzer et al., 2007; Jiang & Zhai, 200felba & Acero, 2006; Daumé IIl & Marcu,
2006), speech processing (Legetter & Woodland, 1995; GawaChin-Hui, 1994; Pietra et al., 1992;
Rosenfeld, 1996; Jelinek, 1998; Roark & Bacchiani, 2008jnputer vision (Martinez, 2002), and many
other areas. Quite often, little or no labeled data is al@lérom thetarget domainbut labeled data from
a source domairsomewhat similar to the target as well as large amounts ahatéd data from the target
domain are at one’s disposal. The domain adaptation prothlemconsists of leveraging the source labeled
and target unlabeled data to derive a hypothesis performatigon the target domain.

A number of different adaptation techniques have beendiiced in the past by the publications just
mentioned and other similar work in the context of specifiplations. For example, a standard technique
used in statistical language modeling and other generatoels for part-of-speech tagging or parsing is
based on the maximum a posteriori adaptation which use®tireesdata as prior knowledge to estimate the
model parameters (Roark & Bacchiani, 2003). Similar teghes and other more refined ones have been
used for training maximum entropy models for language mnder conditional models (Pietra et al., 1992;
Jelinek, 1998; Chelba & Acero, 2006; Daumé Il & Marcu, 2D06

The first theoretical analysis of the domain adaptation lgrolwas presented by Ben-David et al. (2007),
who gave VC-dimension-based generalization bounds fgutatlan in classification tasks. Perhaps, the most
significant contribution of this work was the definition arpécation of a distance between distributions,
the d 4 distance, which is particularly relevant to the problem ofrain adaptation and can be estimated
from finite samples for a finite VC dimension, as previouslgwh by Kifer et al. (2004). This work was
later extended by Blitzer et al. (2008) who also gave a boundhe error rate of a hypothesis derived
from a weighted combination of the source data sets for theip case of empirical risk minimization. A
theoretical study of domain adaptation was also presentdtamsour et al. (2009), where the analysis deals



with the related but distinct case of adaptation with migtgources, and where the target is a mixture of the
source distributions.

This paper presents a new theoretical and algorithmic aisatyf the problem of domain adaptation. It
builds on the work of Ben-David et al. (2007) and extends geweral ways. We introduce a novel distance,
the discrepancy distangehat is tailored to comparing distributions in adaptatidris distance coincides
with thed 4 distance for 0-1 classification, but it can be used to comgistebutions for more general tasks,
including regression, and with other loss functions. Agadly pointed out, a crucial advantage of the
distance is that it can be estimated from finite samples winesét of regions used has finite VC-dimension.
We prove that the same holds for the discrepancy distancéndiadt give data-dependent versions of that
statement with sharper bounds based on the Rademacheresdtypl

We give new generalization bounds for domain adaptationpaiut out some of their benefits by com-
paring them with previous bounds. We further combine thaetive properties of the discrepancy distance
to derive data-dependent Rademacher complexity learrongds. We also present a series of novel results
for large classes of regularization-based algorithmduding support vector machines (SVMs) (Cortes &
Vapnik, 1995) and kernel ridge regression (KRR) (Saundeat €1998). We compare the pointwise loss of
the hypothesis returned by these algorithms when trainead sample drawn from the target domain distri-
bution, versus that of a hypothesis selected by these #igwiwhen training on a sample drawn from the
source distribution. We show that the difference of thesatpdse losses can be bounded by a term that
depends directly on the empirical discrepancy distanche$burce and target distributions.

These learning bounds motivate the idea of replacing thdregralpsource distribution with another dis-
tribution with the same support but with the smallest digarey with respect to the target empirical dis-
tribution, which can be viewed as reweighting the loss orhdabeled point. We analyze the problem of
determining the distribution minimizing the discrepaneybth 0-1 classification and square loss regression.
We show how the problem can be cast as a linear program (LB)édi-1 loss and derive a specific efficient
combinatorial algorithm to solve it in dimension one. Weoaiéve a polynomial-time algorithm for solving
this problem in the case of the square loss by proving thatritlie cast as a semi-definite program (SDP).
Finally, we report the results of preliminary experimertswing the benefits of our analysis and discrepancy
minimization algorithms.

In section 2, we describe the learning set-up for domain tadiap and introduce the notation and
Rademacher complexity concepts needed for the presemttiour results. Section 3 introduces the dis-
crepancy distance and analyzes its properties. Sectioesgepts our generalization bounds and our the-
oretical guarantees for regularization-based algorith8ection 5 describes and analyzes our discrepancy
minimization algorithms. Section 6 reports the resultswfreliminary experiments.

2 Preliminaries

2.1 Learning Set-Up

We consider the familiar supervised learning setting wlieeelearning algorithm receives a samplenof
labeled pointsS = (z1,...,2m) = ((z1,y1), - -, (Tm, Ym)) € (X x Y)™, whereX is the input space and
Y the label set, which i$0, 1} in classification and some measurable subs&t iof regression.

In thedomain adaptation problenthe training samplé is drawn according to aource distributiorn?),
while test points are drawn according tteaget distributionP that may somewhat differ fro@. We denote
by f: X — Y the target labeling function. We shall also discuss casesevtihe source labeling function
fo differs from the target domain labeling functigia. Clearly, this dissimilarity will need to be small for
adaptation to be possible.

We will assume that the learner is provided with an unlabeketpleZ drawn i.i.d. according to the
target distributionP. We denote byL.: Y x Y — R a loss function defined over pairs of labels and by
Lo(f, g) the expected loss for any two functiofisy: X — Y and any distributio® over X: Lo(f,g) =
E,nolL(f(2),9(x)). _ _ , | ,

The domain adaptation problem consists of selecting a Ings@/ out of a hypothesis sef with a
small expected loss according to the target distribulte » (1, f).

2.2 Rademacher Complexity
Our generalization bounds will be based on the followingae#gpendent measure of the complexity of a
class of functions.

Definition 1 (Rademacher Complexity) Let H be a set of real-valued functions defined over a¥eGiven
a sampleS € X™, the empirical Rademacher complexityféfis defined as follows:

%(H):—E[sup‘Zm xz“S (X1,...,x )} 1)

9 LheH



The expectation is taken over= (o1, ..., 0,) whereo;s are independent uniform random variables taking
values in{—1,+1}. The Rademacher complexity of a hypothesisféds defined as the expectation of

E)A%S(H) over all samples of size:
R, (H) = E [Rs(H)]|S| = m]. (2)

The Rademacher complexity measures the ability of a clafssofions to fit noise. The empirical Rademacher
complexity has the added advantage that it is data-depeaddncan be measured from finite samples. It
can lead to tighter bounds than those based on other measfucesnplexity such as the VC-dimension
(Koltchinskii & Panchenko, 2000).

We will denote byRs(h) the empirical average of a hypothesis X — R and by R(h) its expec-
tation over a sampl& drawn according to the distribution considered. The foilayis a version of the
Rademacher complexity bounds by Koltchinskii and Pancb€BR00) and Bartlett and Mendelson (2002).
For completeness, the full proof is given in the Appendix.

Theorem 2 (Rademacher Bound)Let H be a class of functions mappidg = X x Y to [0,1] andS =
(#1,...,2m) afinite sample drawn i.i.d. according to a distributiéh Then, for any > 0, with probability
at leastl — § over samples of sizem, the following inequality holds for alk € H:

~ N log 2
R(h) < R(h)+Rs(H) +3

®3)

2m

3 Distances between Distributions

Clearly, for generalization to be possible, the distribnti) and P must not be too dissimilar, thus some
measure of the similarity of these distributions will beticdl in the derivation of our generalization bounds
or the design of our algorithms. This section discussesgiéstion and introducesdiscrepancydistance
relevant to the context of adaptation.

Thel, distance yields a straightforward bound on the differeri¢keerror of a hypothesfswith respect
to @ versus its error with respect fo.

Proposition 1 Assume that the lodsis bounded[. < M for someM > 0. Then, for any hypothesise H,

This provides us with a first adaptation bound suggestingfthamall values of thé, distance between
the source and target distributions, the average loss afthggish tested on the target domain is close to its
average loss on the source domain. However, in generabashisd is not informative since the distance
can be large even in favorable adaptation situations. ddstene can use a distance between distributions
better suited to the learning task.

Consider for example the case of classification with the 8s%.IFixh € H, and leta denote the support
of |h — f|. Observe thatlq(h, f) — Lp(h, f)| = |Q(a) — P(a)|. A natural distance between distributions
in this context is thus one based on the supremum of the hightt side over all regions Since the target
hypothesisf is not known, the region should be taken as the supportbf- #/| for any twoh, h' € H.

This leads us to the following definition of a distance orain introduced by Devroye et al. (1996) [pp.
271-272] under the name géneralized Kolmogorov-Smirnov distantaer by Kifer et al. (2004) athed 4
distance and introduced and applied to the analysis of adaptatiotassification by Ben-David et al. (2007)
and Blitzer et al. (2008).

Definition 3 (d 4-Distance) Let A C 2IX1 be a set of subsets df. Then, thed 4-distancebetween two
distributions@; and@s over X, is defined as

da(Q1,Q2) = sup|Qi(a) — Qz(a). (5)
acA

As just discussed, in 0-1 classification, a natural choicelfs A = HAH = {|h'—h|: h,h' € H}. We
introduce a distance between distributiodiscrepancy distancehat can be used to compare distributions
for more general tasks, e.g., regression. Our choice ottineimology is partly motivated by the relationship
of this notion with the discrepancy problems arising in camalorial contexts (Chazelle, 2000).

Definition 4 (Discrepancy Distance)Let H be a set of functions mappingtoY andletL: Y xY — R,
define a loss function ovéf. The discrepancy distanckscy between two distribution®; and @, over X
is defined by

diser (Q1,Q2) = max, Lo, (K, h) — Lay (1),



The discrepancy distance is clearly symmetric and it is raotl ho verify that it verifies the triangle in-
equality, regardless of the loss function used. In gené@kever, it does not definedistance we may
havediscy, (Q1,Q2) = 0 for Q1 # Q2, even for non-trivial hypothesis sets such as that of bodridear
functions and standard continuous loss functions.

Note that for the 0-1 classification loss, the discrepansyadice coincides with thé, distance with
A = HAH. Butthe discrepancy distance helps us compare distritsifir other losses such ag(y, y') =
|y — y'|? for someg and is more general.

As shown by Kifer et al. (2004), an important advantage ofdhealistance is that it can be estimated
from finite samples wher has finite VC-dimension. We prove that the same holds forlibe, distance
and in fact give data-dependent versions of that statemghtsharper bounds based on the Rademacher
complexity.

The following theorem shows that for a bounded loss funciiptine discrepancy distandésc, between
a distribution and its empirical distribution can be boushareterms of the empirical Rademacher complexity
of the class of functiond.; = {x — L(h'(z),h(x)): h,h’ € H}. In particular, whenLy has finite

pseudo-dimension, this implies that the discrepancyniigt@onverges to zero 85+/logm/m).

Proposition 2 Assume that the loss functidnis bounded byl > 0. Let@ be a distribution overX and

let @ denote the corresponding empirical distribution for a sé&® = (z1,...,z,,). Then, forany > 0,
with probability at leastl — § over samples of sizem drawn according tay:

: A& log 3
discr,(Q, Q) <Rs(Ly) +3M .

(6)

Proof: We scale the losé to [0, 1] by dividing by M, and denote the new class By, /M. By Theorem 2
applied toLy /M, for anyd > 0, with probability at leastt — ¢, the following inequality holds for all
h,h' € H:
Lo(W, h) _ Lg(h,h)
M M

-~ log 2
Rs(Ly/M)+3 i
+Rs(Lu /M) + 5

IN

The empirical Rademacher complexity has the propertyﬁ(a{H) = aE)Aﬂi(H) for any hypothesis clas§
and positive real number (Bartlett & Mendelson, 2002). ThuS}s(Ly /M) = +:Rs(Lg), which proves
the proposition. [ |

For the specific case df, regression losses, the bound can be made more explicit.

Corollary 5 Let H be a hypothesis set bounded by salie- 0 for the loss functiorL,: L,(h, k') < M,

forall h,h' € H. LetQ be a distribution overX and Iet@ denote the corresponding empirical distribution
for a sampleS = (z1,...,z,). Then, for any > 0, with probability at leastl — § over samplesS of size
m drawn according taQ:

log %

discr, (Q, Q) < 4gRs(H) + 3M o (7

Proof: The functionf: « — 27 is ¢-Lipschitz forz € [0, 1]:

[f (@) = f(@)] < qla’ — =], (8)
andf(0) = 0. ForL = Ly, Ly = {x — |W/(x) — h(x)|?: h,h’ € H}. Thus, by Talagrand’s con-
traction lemma (Ledoux & Talagrand, 1999} Ly ) is bounded byR¢R(H') with H' = {x — (h/(x) —
h(x)): h,h' € H}. ThenRs(H') can be written and bounded as follows

A R S ol S IR S
%S(H)_E[Z‘f,? Ell;oz(h(zz) W (x:))]] Sg[b%pmli;mh(xz)l]+§[bgpm|;mh (z:)]] (9)
= 2Rs(H), (10)

using the definition of the Rademacher variables and theasldlitivity of the supremum function. This
proves the inequalitii (L) < 4¢93(H) and the corollary. |

A very similar proof gives the following result for class#iton.



Corollary 6 Let H be a set of classifiers mappig to {0, 1} and letL; denote the 0-1 loss. Then, with
the notation of Corollary 5, for any > 0, with probability at leastl — § over samplesS of sizem drawn
according toQ:

log %

discr,, (Q, Q) < 4Rs(H) + 3 (11)

2m

The factor of4 can in fact be reduced tin these corollaries when using a more favorable constant in
the contraction lemma. The following corollary shows tha tliscrepancy distance can be estimated from
finite samples.

Corollary 7 Let H be a hypothesis set bounded by same- 0 for the loss functiorL,: L,(h, k") <M, for
all h,h' € H. Let@ be a distribution overX and@ the corresponding empirical distribution for a samgle
and letP be a distribution ovetX and P the corresponding empirical distribution for a samgle Then, for

anyd > 0, with probability at leasti — § over sampless of sizem drawn according ta) and sample§ of
sizen drawn according taP:

~ A~ ~ ~ log 4 log 4
diser, (P, Q) < discy, (P, Q)+4q(m5(ﬂ)+mT(H)) —|—3M<1/ ;fna N /02gna>_ (12)

Proof: By the triangle inequality, we can write

discp, (P, Q) < discy, (P, P) + disch(ﬁ, Q) + discr, (Q, Q). (13)

The result then follows by the application of Corollary Sdiecy,, (P, ﬁ) anddiscr,, (Q, @). [ |
As with Corollary 6, a similar result holds for the 0-1 los<iassification.

4 Domain Adaptation: Generalization Bounds

This section presents generalization bounds for domaiptatian given in terms of the discrepancy distance
just defined. In the context of adaptation, two types of qaastarise:

(1) we may ask, as for standard generalization, how the gedoss of a hypothesis on the target distribu-
tion, Lp(h, f), differs fromL(h, f), its empirical error based on the empirical distribut@n

(2) another natural question is, given a specific learniggrithm, by how much doegr(hq, f) deviate
from Lp(hp, f) wherehg is the hypothesis returned by the algorithm when trained semaple drawn
from @ andhp the one it would have returned by training on a sample draemfthe true target
distribution P.

We will present theoretical guarantees addressing botktigqunes.

4.1 Generalization bounds

Lethy, € argming, ey Lo (h, fo) and similarly leth}, be a minimizer ofCp(h, fp). Note that these mini-
mizers may not be unique. For adaptation to succeed, itisaldab assume that the average I6gg(h¢), hp)
between the best-in-class hypotheses is small. Under $sahgtion and for a small discrepancy distance,
the following theorem provides a useful bound on the erra loypothesis with respect to the target domain.

Theorem 8 Assume that the loss functidnis symmetric and obeys the triangle inequality. Then, for an
hypothesig € H, the following holds

Lp(h, fp) < Lp(hp, fr) + Lo(h, hg) + dise(P, Q) + Lo (hg, Iip)- (14)

Proof: Fix h € H. By the triangle inequality property df and the definition of the discrepandiscy, (P, Q),
the following holds

Lp(h, fp) < Lp(h,hy) + Lp(hg, hp) + Lp(hp, fp)
SEQ(h, h*Q)+diSCL(P, Q)-i—ﬁp(ha,h?p)—f—ﬁp( *P,fp). [ |
We compare (14) with the main adaptation bound given by BawidDet al. (2007) and Blitzer et al. (2008):
Lp(h fp) < Lo(h. fo) + diser(P.Q) + min (Lq(h, fo) + Lp(h, fr)). (15)



It is very instructive to compare the two bounds. Intuitiyghe bound of Theorem 8 has only one error
term that involves the target function, while the bound &)(fhas three terms involving the target function.
One extreme case is when there is a single hypotlesisH and a single target functiofi. In this case,
Theorem 8 gives a bound d@p(h, f) + disc(P, @), while the bound supplied by (15) BCq(h, f) +
Lp(h, )+ disc(P, @), which is larger thaBLp(h, f) + disc(P, Q) whenLq(h, f) < Lp(h, f). One can
even see that the bound of (15) might become vacuous for mtdealues o (h, f) andLp(h, f). While
this is clearly an extreme case, an error with a factor of 3arése in more realistic situations, especially
when the distance between the target function and the hgpistblass is significant.

While in general the two bounds are incomparable, it is vwehtte to compare them using some relatively
plausible assumptions. Assume that the discrepancy distagtweer” and( is small and so is the average
loss betweerhy, andhp. These are natural assumptions for adaptation to be pessiifien, Theorem 8
indicates that the regretp(h, fp) — Lp(hp, fp) is essentially bounded bgo (h, h;j?), the average loss
with respect tohg, on Q. We now consider several special cases of interest.

() Whenhg, = hj thenh* = h, = hj and the bound of Theorem 8 becomes

Lp(h, fp) < Lp(R*, fp) + Lo(h, h™) + disc(P, Q). (16)
The bound of (15) becomes

where the right-hand side essentially includes the susreofors and is always larger than the right-hand
side of (16) since by the triangle inequalify, (h, h*) < Lo(h, fo) +Lqo(h", fq).

(i) Whenhy, = hp = h* Adisc(P, Q) = 0, the bound of Theorem 8 becomes

‘CP(hva) < ‘CP(h*va) + ‘CQ(ha h*)7

which coincides with the standard generalization bounde Bdund of (15) does not coincide with the
standard bound and leads to:

Lp(h, fr) < Lp(h*, fp) + Lo(h, fo) + Lo(h", fo).
(i) When fp € H (consistent case), the bound of (15) simplifies to,
[Lp(h, fr) — Lo(h, fp)| < discr(Q, P),
and it can also be derived using the proof of Theorem 8.

Finally, clearly Theorem 8 leads to bounds based on the @mapérror ofh on a sample drawn according
to Q. We give the bound related to the 0-1 loss, others can beatkniva similar way from Corollaries 5-
7 and other similar corollaries. The result follows Theorgmombined with Corollary 7, and a standard
Rademacher classification bound (Bartlett & Mendelson2200

Theorem 9 Let H be a family of functions mapping to {0, 1} and let the rest of the assumptions be as
in Corollary 7. Then, for any hypothesisc H, with probability at leastl — ¢, the following adaptation
generalization bound holds for the 0-1 loss:

Lplh, fr) ~ Lo, fr) < La(hh) +discr,, (P, Q) + (dg + 5)Rs (H) + 4qPer (H)+

log% log% v
4\/ om +3\/ o +£Q(hQ,hP). (18)

4.2 Guarantees for regularization-based algorithms

In this section, we first assume that the hypothesigisatcludes the target functiofi-. Note that this does
not imply thatfq is in H. Even whenfp and f¢ are restrictions teupp(P) andsupp(()) of the same
labeling functionf, we may havefp € H andfq ¢ H and the source problem could be non-realizable.

For a fixed loss functior,, we denote bﬁ@(h) the empirical error of a hypothesiswith respect to an

empirical distribution(: R@(h) = Eé(h,f). Let N: H — R, be a function defined over the hypothesis
setH. We will assume that/ is a convex subset of a vector space and that the loss funci®oonvex with
respect to each of its arguments. Regularization-basedi#ins minimize an objective of the form

~

Fg(h) = Rg(h) + AN (h), (19)



where) > 0 is a trade-off parameter. This family of algorithms incladipport vector machines (SVM)
(Cortes & Vapnik, 1995), support vector regression (SVR)(iMk, 1998), kernel ridge regression (Saunders
et al., 1998), and other algorithms such as those based aeldizre entropy regularization (Bousquet &
Elisseeff, 2002).

We denote by the Bregman divergence associated to a convex funétjon

Br(fllg) = F(f) — F(9) — (f — 9. VF(g)) (20)
and defineAh asAh = h/ — h.

Lemma 10 Let the hypothesis séf be a vector space. Assume th¥tis a proper closed convex function
and thatN and L are differentiable. Assume thﬁb admits a minimizeh € H and Fz a minimizerh' € H
and thatfp and f¢ coincide on the support (@ Then, the following bound holds,
2discr, (P, Q
By () + By (hp) < 2D
Proof: SinceBFQ :B% + ABn andBFI5 = Bp_ + ABy, and a Bregman divergence is non-negative, the
P
following inequality holds:

A(Bn (W'|h) + B (h|[B)) < Brg (W||h) + Br, (h[A).

(21)

By the definition ofh and/’ as the minimizers of5 andFs, V@F(h) =VpF(h)=0and

Br, (W||h) + Bry (h|1) = Rg(h') — Rg(h) + Rp(h) — Rp(h) (22)
= (ﬁﬁ(h,fp) - ﬁ@(h,fp)) - (‘Cﬁ(hla fP) - ‘c@(hla fP)) < 2diSCL(P\7 @\)

(23)

This last inequality holds since by assumptignis in H. [ |

We shall consider loss functiorsfor which there exists € R, such thatl.(-, y) is o-Lipschitz for all
y € Y. This assumption holds for the hinge loss witk: 1 and for theL,, loss witho = ¢q(2M/)9~! when the
hypothesis set and the set of output labels are bounded by 6ra R, : Vh € H,Vx € X, |h(z)] < M
andvy €Y, |y| < M.

Theorem 11 Let K: X x X — R be a positive-definite symmetric kernel such that:, z) < x2 < oo for all
z€ X, and letH be the reproducing kernel Hilbert space associatetoAssume thak (-, y) is o-Lipschitz
forall y € Y. Leth’ be the hypothesis returned by the regularization algorlthmed oV (-)=|-||% for the
empirical distribution?, and the one returned for the empirical dlstrlbuuc@ and assume thafpr and
fo coincide onsupp(Q). Then, forallx € X,y €Y,

LK (@), ) — L(h(a),y)| < ro| L@ (24)
A

Proof: ForN( ) = |I-l%, IV is a proper closed convex function and is differentiable.N&ee By (h'[|h) =
|h' — h|%, thusBN(h’Hh) + By (h||h') = 2||Ah||%. WhenL is differentiable, by Lemma 10,

2discr (P, Q)
—
This result can also be shown directly without assuming thistdifferentiable by using the convexity of
and the minimizing properties éfandh’ with a proof that is longer than that of Lemma 10.

Now, by the reproducing property df, for all z € H, Ah(z) = (Ah, K(x,-)) and by the Cauchy-
Schwarz inequalityAh(x)| < ||AR| x (K (2, z))'/? < k|| Ah| k. Since for ally € Y L(-,y) is o-Lipschitz,
forallz € X,y eY,

2| An|% < (25)

|L(W (2),y) — L(h(z),y)| < o|Ah(z)| < kol| ARk,
which, combined with (25), proves the statement of the thieor [ |

Theorem 11 provides a strong guarantee on the pointwisereifEe of the loss fdr’ andh with proba-
bility one. The result, as well as the proof, also suggeststtie discrepancy distance is the “right” measure
of difference of distributions for this context. The themrapplies to a variety of algorithms, in particular
SVMs combined with arbitrary PDS kernels and kernel ridggession.



A similar result can be derived for the difference betwegreeked losses by bounding the expectation of
Ah(x) in the proof, instead of its maximum. But, the resulting ugpeaund only differs from that of theorem
by Ep[K (z,2)'/?] versusmax, K (x,x)'/?, which, for a fixed kernel, are both constant terms and cap@ot
minimized.

In general, the functiongr and fo may not coincide osupp(()). For adaptation to be possible, it is
reasonable to assume however that

L(fo(@), fr(z)) <1 and Lp(fo(z), fr(z)) < 1.

This can be viewed as a condition on the proximity of the lmigeiunctions (the¥’s), while the discrepancy
distance relates to the distributions on the input spa@X(#). The following result generalizes Theorem 11
to this setting in the case of the square loss.

Theorem 12 Under the assumptions of Theorem 11, but vfithand fp potentially different orsupp(@),
whenL is the square los&» and§? = La(fo(z), fr(z)) < 1, then, forallz € X,y €Y,

LW (), ) — Lih(),y)] < 252

Proof: Proceeding as in the proof of Lemma 10 and using the definitidhe square loss and the Cauchy-
Schwarz inequality give

B (W |) + B, (h|') = Rg () — R
)

(w6 + \/ 5262 + axdisey (P, Q). (26)

< 2discr, (P, Q) + 2| Ah| k6.
SinceN(+) = ||-||%, the inequality can be rewritten as
M| AR|% < diser, (P, Q) + k6| Ah|| k- (27)
Solving the second-degree polynomia||if_\h|\K leads to the equivalent constraint

ARk < o (ms + /5202 + ardiser (P, Q). (28)

The result then follows by the-Lipschitzness oL (-, y) as in the proof of Theorem 11, with=4M. N

Using the same proof schema, similar bounds can be derivedHer loss functions.
When the assumptiofir € H is relaxed, the following theorem holds.

Theorem 13 Under the assumptions of Theorem 11, but withnot necessarily ifd and fo and fp poten-
tially different onsupp(Q), whenL is the square losg, ands’ = Lo(hp (@), fo(@)?+Lp(hp(x), fr(x)'/? <
1,then, forallz € X,y €Y,

|L(W (2),) — L(h(z),y)| < 2“AM (ms’ + \/ k26”2 + 4xdiscr (P, @)). (29)

Proof: Proceeding as in the proof of Theorem 12 and using the definiti the square loss and the Cauchy-
Schwarz inequality give
Br, (W||h) + Br, (hl|l) = (Lp(h, hp) — Lg(h, b)) — (Lp(h', b > (' 1))

La(
—25[(5() h(z))(hp () = fp(z)] g[(h() h(z))(hp(2) = fo()]

[L(hp(x), fr ()]
)]

< 2discL(ﬁ,@) + 2\/E[Ah( r)?]

E
WM(” E[L(h} (), fo(a
Q Q

< 2disc, (P, Q) + 2| Ak 0.
The rest of the proof is identical to that of Theorem 12. [ |



5 Discrepancy Minimization Algorithms

The discrepancy distanchscL(ﬁ, @) appeared as a critical term in several of the bounds in thedasion.
In particular, Theorems 11 and 12 suggest that if we coulkecseihstead o@, some other empirical distri-
bution @’ with a smaller empirical discrepandyscL(ﬁ, @’) and use that for training a regularization-based
algorithm, a better guarantee would be obtained on therdiffee of pointwise loss betweéhandh. Since
h' is fixed, a sufficiently smaller discrepancy would actuadigd to a hypothesiswith pointwise loss closer
to that ofh/.

The training sample is given and we do not have any contral theesupport o@. But, we can search

for the distribution@’ with the minimal empirical discrepancy distance:

@’ = arAgmin discy, (ﬁ, C/Q\/), (30)
Q'eQ

whereQ denotes the set of distributions with supporpp(@). This leads to an optimization problem that
we shall study in detail in the case of several loss functions
Note that usingﬁ’ instead of@ for training can be viewed agweightingthe cost of an error on each
training point. The distributio@’ can be used to emphasize some points or de-emphasize ahetkite
the empirical discrepancy distance. This bears some sityil@ith the reweighting oimportance weighting
ideas used in statistics and machine learning for sampke dmarection techniques (Elkan, 2001; Cortes
et al., 2008) and other purposes. Of course, the objectitmnized here based on the discrepancy distance is
distinct from that of previous reweighting techniques.
We will denote bySy the support of), by Sp the support of?, and bys their uniomupp(@)Usupp(ﬁ),
with |Sg| = mo < mand|Sp| =ny < n.
In view of the definition of the discrepancy distance, prab{80) can be written as a min-max problem:
!/ !/
Q' = arg/mln h{%anHw (W', h) — La (R, ). (31)
QeQ
As with all min-max problems, the problem has a natural gamertetical interpretation. However, here, in
general, we cannot permute thén andmax operators since the convexity-type assumptions of themari

theorems do not hold. Nevertheless, since the max-min valakvays a lower bound for the min-max, it
provides us with a lower bound on the value of the game, ththakisninimal discrepancy:

(B! < : (B! (B )
hrgllﬁengnréIE( Jh) = Lg (W, h)| < pin e |Cp(R',h) — Lo, (W 1) (32)

We will later make use of this inequality. Let us now examine minimization problem (30) and its algo-
rithmic solutions in the case of classification with the @344 and regression with the loss.

5.1 Classification, 0-1 Loss

For the 0-1 loss, the problem of finding the best distribu@man be reformulated as the following min-max
program:

min max |Q'(a) - P(a)| (33)
subjectto Va € Sg,Q'(x) > 0A > Q' (x (34)
z€SQ

where we have identifieB AH = {|h' — h|: h,h' € H} with the set of regiona C X that are the support
of an element off AH. This problem is similar to the min-max resource allocaooblem that arises in
task optimization (Karabati et al., 2001). It can be rewritas the following linear program (LP):

min 6 (35)
subjectto Va € HAH,Q'(a) — P(a) < 6 (36)
Va € HAH, P(a) — Q'(a) < (37)
Vz € S0,Q'(z) >0 /\ZQ (38)

z€SqQ

The number of constraints is proportional|fd A H | but it can be reduced to a finite number by observing
that two subsets, «’ € HAH containing the same elements$fead to redundant constraints, since

|Q'(a) - P(a)] = |Q'(d") — P(a')]. (39)



Thus, it suffices to keep one canonical membésr each such equivalence class. The necessary number of
constraints to be considered is proportiondlliga i (mo +no ), the shattering coefficient of ordern + ng)
of the hypothesis clas§ AH. By the Sauer’s lemma, this is bounded in terms of the VC-dsian of the
classHAH, Mgam(mo +no) < O((mo +no)V¢HAR), which can be bounded Wy((mg 4 ng)?Y ¢ H))
since itis not hard to see theiC(HAH) < 2VC(H).

In cases where we can test efficiently whether there existmaistent hypothesis if/, e.g., for half-
spaces irR?, we can generate in tim@((mg + no)??) all consistent labeling of the sample points Hy
(We remark that computing the discrepancy with the 0-1 lesdasely related to agnostic learning. The
implications of this fact will be described in a longer versiof this paper.)

5.2 Computing the Discrepancy in 1D

We consider the case wheke= [0, 1] and derive a simple algorithm for minimizing the discrepafur 0-1
loss. LetH be the class of all prefixes (i.€0, z]) and suffixes (i.e.[z, 1]). Our class off AH includes all
the intervals (i.e.(z1, z2]) and their complements (i.€0, z1] U (22, 1]). We start with a general lower bound
on the discrepancy.

LetU denote the set afnlabeled regionghat is the set of regionssuch that:N.Sg =  andaNSp # 0.

If a is an unlabeled region, thé®’(a) — P(a)| = P(a) for anyQ’. Thus, by the max-min inequality (32),
the following lower bound holds for the minimum discrepancy

P(a) < mi S, h) = LA (R, R)|.
gleagP(a)_é:{lé% Jax |Lp(h', h) = Lo (B, R)] (40)

In particular, if there is a large unlabeled regiarwe cannot hope to achieve a small empirical discrepancy.

In the one-dimensional case, we give a simple linear-tigeri¢hm that does not require an LP and show
that the lower bound (40) is reached. Thus, in that casenth@ndmax operators commute and the minimal
discrepancy distance is preciselyn, ¢y 13(a).

Given our definition ofH, the unlabeled regions are open intervals, or compleméritese sets, con-
taining only points fromSp with endpoints defined by elementsy.

Letus denote by, .. ., s, the elements af, byn;, i € [1,mo], the number of consecutive unlabeled
points to the right ok; andn = 3 n;. We will make an additional technical assumption that theeeeno

unlabeled points to the left af,. Our algorithm consists of defining the weig:ﬁt(si) as follows:

Q' (s:) = ni/n. (41)

This requires first sorting U Sp and then computing; for eachs;. The figure illustrates the algorithm.

Proposition 3 Assume thaX consists of the set of points on the real line dhdhe set of half-spaces oXi.
Then, for anyQ and P, Q'(s;) = n;/n minimizes the empirical discrepancy and can be computeithie t
O((m + n)log(m + n)).

The proof is given in the Appendix.

5.3 Regression/; loss
For the square loss, the problem of finding the best distdbwdan be written as

pin mes, | B (@) ~ h@))") - Bl (@) - )]

If X is a subset oRY, N > 1, and the hypothesis séf is a set of bounded linear functiodt = {x
w'x: ||w| <1}, then, the problem can be rewritten as

min - max [E[(w —w)"x)?) = E[(W — w)"x)?]
P

Qreo lwli<1 o
w'l<1
i, | > (P9 - QI - w) x|
w'||<1 x
_ : D Y T
= min {rllaé‘);s(P(X) Q' (x))[u X]Q‘
= min max ‘uT(Z(ﬁ(x) — @’(x))xxT)u‘. (42)

?) <2
Qe lull< et



We now simplify the notation and denote &y, . . ., s,,,, the elements of, by z; the distribution weight at
points;: z; = Q'(s;), and byM(z) € SV a symmetric matrix that is an affine functionzf
mo
M(z) = Mo — Y zM;, (43)

=1

whereMg = > . P(x)xx" andM; = sis;r. Since problem (42) is invariant to the non-zero bound on
|[ul|, we can equivalently write it with a bound of one and in viewtloé notation just introduced give its
equivalent form

u' M(z)ul. (44)

min
[lz[[1=1 [Jul|=1
z>0

SinceM(z) is symmetricmax =1 u' M(z)u is the maximum eigenvalue,,.. of M(z) and the problem
is equivalent to the following maximum eigenvalue minintiaa for a symmetric matrix:
miril max{ Amax(M(2)), Amax(—M(z)) }. (45)
i
This is a convex optimization problem since the maximummig&ie of a matrix is a convex function of that
matrix andM is an affine function of, and sincez belongs to a simplex. The problem is equivalent to the
following semi-definite programming (SDP) problem:

mi}\n A (46)
subjectto AXI — M(z) > 0 (47)
M+ M(z) = 0 (48)
1'z2=1A2z2>0. (49)

SDP problems can be solved in polynomial time using genetatior point methods (Nesterov & Ne-
mirovsky, 1994). Thus, using the general expression of gmepiexity of interior point methods for SDPs,
the following result holds.

Proposition 4 Assume thaf{ is a subset oR" and that the hypothesis séf is a set of bounded linear
functionsH = {x — w'x: ||w| <1}. Then, for anyQ and P, the discrepancy minimizing distributiap/
for the square loss can be found in tif¥ém2 N2-5 4 ngN?).

It is worth noting that the unconstrained version of thisigheon (no constraint o) and other close problems
seem to have been studied by a number of optimization puiolica(Fletcher, 1985; Overton, 1988; Jarre,
1993; Helmberg & Oustry, 2000; Alizadeh, 1995). This suggesssibly more efficient specific algorithms
than general interior point methods for solving this prabla the constrained case as well. Observe also that
the matricedMl; have a specific structure in our case, they are rank-onegeataind in many applications
quite sparse, which could be further exploited to improvieiehcy.

As shown in a longer version of this paper, the results ofghigtion can be extended to the case where
H is areproducing kernel Hilbert space associated to a pesigfinite symmetric kernel functiafd.

6 Experiments

This section reports the results of preliminary experirmshbwing the benefits of our discrepancy minimiza-
tion algorithms. Our results confirm that our algorithm ieefive in practice and produces a distribution that
reduces the empirical discrepancy distance, which allaits train on a sample closer to the target distribu-
tion with respect to this metric. They also demonstrate theigacy benefits of this algorithm with respect to
the target domain.

The figures show the empirical advantages of using the bligioin )’ returned by the discrepancy mini-
mizing algorithm described in Proposition 3 in a case whetgee and target distributions are shifted Gaus-
sians: the source distribution is a Gaussian centered a&nd the target distribution a Gaussian centered at
+1, both with standard deviation 2. The hypothesis set usediveeset of half-spaces and the target function
selected to be the intervgt1, 1]. Thus, training on a sample drawn foghgenerates a separator-at and

errs on about half of the test points producedryin contrast, training with the distributic@’ minimizing
the empirical discrepancy yields a hypothesis separatiagoints at+1, thereby dramatically reducing the
error rate.

In the figure, the distribution§ and P are Gaussians centered (a2, v/2) and (—v/2, —v/2), both
with covariance matri2I. The target function isf(z1,z2) = (1 — |z1]) + (1 — |z2]), thus the optimal



linear prediction derived from) has a negative slope, while the optimal prediction with eespo the target
distribution P in fact has a positive slope. The figure shows the performahdege regression when the
example is extended to 16-dimensions, before and aftermizinig the discrepancy. In this higher-dimension
setting and even with several thousand points, ugittg:{sedumi.ie.lehigh.edy/our SDP problem could be
solved in about 15s using a single 3GHz processor with 2GB RAM SDP algorithm yields distribution
weights that decrease the discrepancy and assist ridgessgégn in selecting a more appropriate hypothesis
for the target distribution.

7 Conclusion

We presented an extensive theoretical and an algorithnailysis of domain adaptation. Our analysis and
algorithms are widely applicable and can benefit a varietadsptation tasks. More efficient versions of
these algorithms, in some instances efficient approximatishould further extend the applicability of our
techniques to large-scale adaptation problems.
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A Proof of Theorem 2

Theorem 14 (Rademacher Bound)Let H be a class of functions mappidg= X x Y to [0, 1] andS =
(#1,...,2m) afinite sample drawn i.i.d. according to a distributiéh Then, for any > 0, with probability
at leastl — § over sampless of sizem, the following inequality holds for alk € H:

log %

R(h) < R(h) + Rs(H) +3 (50)

2m
Proof: Let ®(S) be defined byp(S) = supj,cy R(h) — R(h). Changing a point of affects®(S) by at

most1/m. Thus, by McDiarmid’s inequality applied #(S), for anyd > 0, with probability at least — %
the following holds for allh € H:

log %

0(S) < (B [0(S)]+ | 5 51

Es~p[®(S)] can be bounded in terms of the empirical Rade-macher coritybexfollows:

B(2(S)] = Esup ElRs ()] — Rs(h)]
= E[sup E[Rs () — Rs(h)]
< B [sgg Rsi(h) — Rs(h)]
1 ,
= & [s = ;(h(:cz) h(a))]
1 & ,
=L e ;C’i(b(m Al
m , 1 m
< 5 [pup D ouh(aD)] + B [oup 3 —ouh(o)]
1 m
=25 [:1612 m ; oih(s)]

= R, (H).

Changing a point of affects?i,,,(H) by at most/m. Thus, by McDiarmid’s inequality applied f&,,,(H),
with probability at least — ¢/2, the following holds:

2log%

R, (H) < Rs(H) + (52)

m

Combining this inequality with Inequality (51) and the badwmEs [®(S)] above yields directly the statement
of the theorem. |

B Proof of Proposition 3

Proposition 5 Assume thak consists of the set of points on the real line dhdhe set of half-spaces oxi.
Then, for anyQ and P, Q’(s;) = n;/n minimizes the empirical discrepancy and can be computeithia t
O((m + n)log(m + n)).

Proof: Consider an intervaky, 25| that maximizes the discrepancy@f. The case of a complement of an in-
terval is the same, since the discrepancy of a hypothesissameation are identical. Lef, ..., s; € [21, z2]

be the subset c@ in that interval, angb;/, ..., p; € [z1, 22 the subset of in that interval. The discrepancy
isd = |7 _.Q'(sx) — £=L|. By our definition ofQ’, we can write>>7_ Q' (s) = L 37 _. ny. Letpyn

n ~n k=1




be the maximal point itP which is less than; andj;” the minimal point inP larger thans;. We have that
=i = (" =)+ 3042 m+ (57 —j"). Thereforel = |(i'—i')+(j" =) —ny| = |(i" =)= (n; = (" =5))].
Sinced is maximal and both terms are non-negative, one of them & &ncej’ — j”/ < n; andi” —i’ < n,,
the discrepancy c@’ meets the lower bound of (40) and is thus optimal. |



