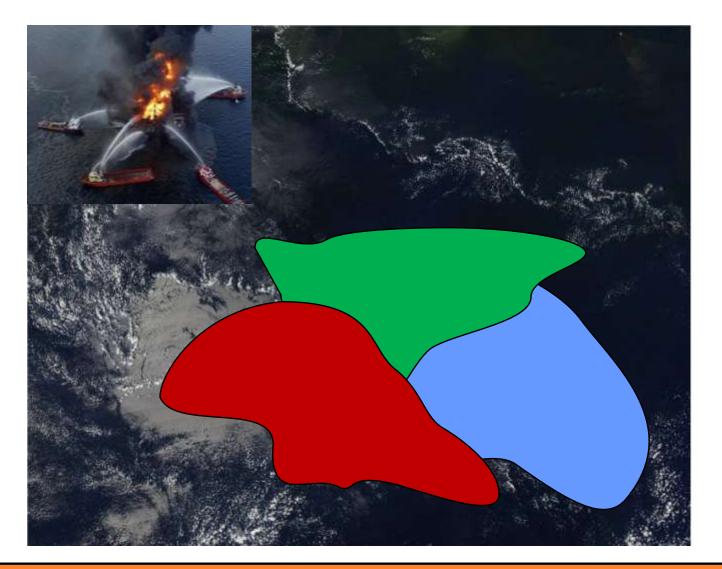
Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization

Daniel Golovin and Andreas Krause

(FYI, a powerpoint version of these slides is available on Daniel Golovin's website.)

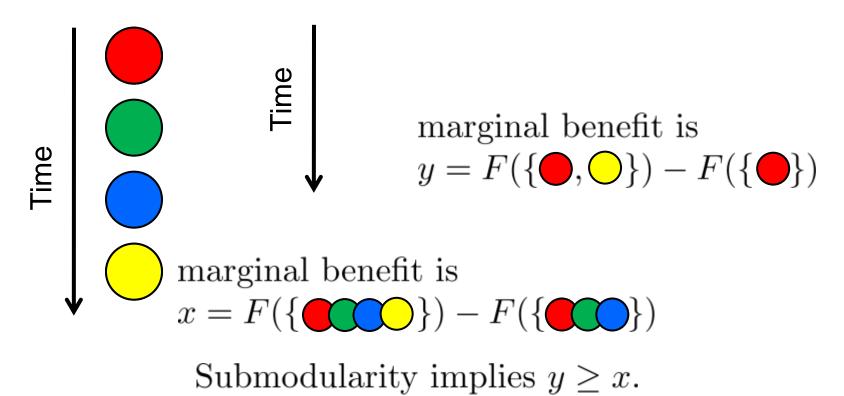
Max K-Cover (Oil Spill Edition)



Submodularity

Discrete diminishing returns property for set functions.

``Playing an action at an earlier stage only increases its marginal benefit''



The Greedy Algorithm

Problem: Find $S^* = \arg \max\{f(S) : |S| \le k\}$

Initialize
$$S_0 = \emptyset$$

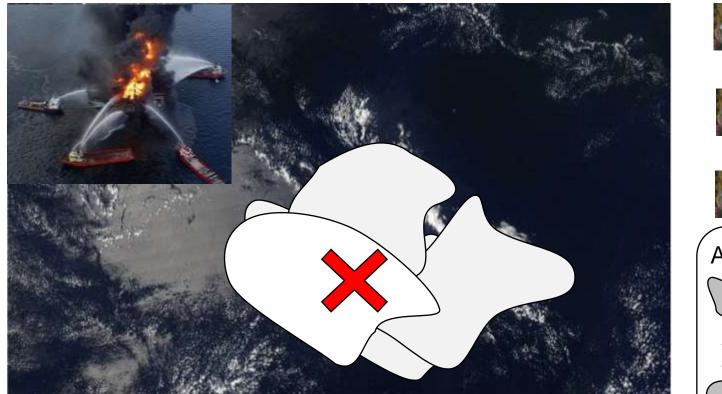
For $i = 1, 2, ..., k$
 $e_i = \arg \max_e f(S_{i-1} \cup \{e\})$
 $S_i = S_{i-1} \cup \{e_i\}$
Select e_i

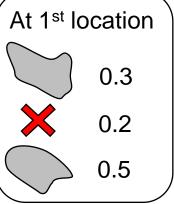
Theorem [Nemhauser et al '78]

Given a monotone submodular function f, $f(\emptyset) = 0$, the greedy algorithm selects a set S_{greedy} such that $f(S_{\text{greedy}}) \ge (1 - 1/e) \max_{|S| \le k} f(S)$

Stochastic Max K-Cover

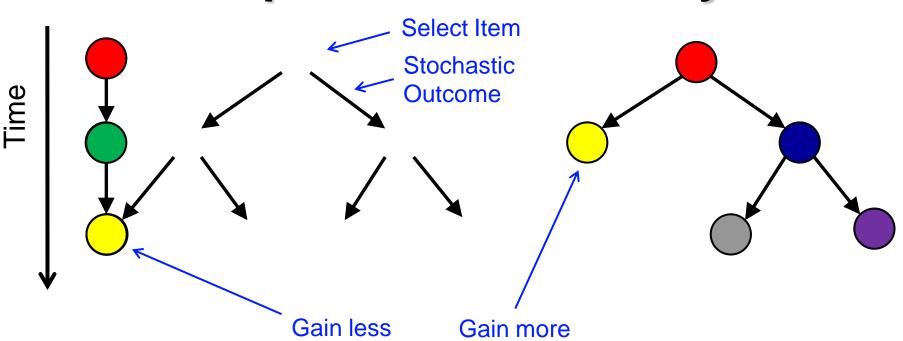
Bayesian: Known failure distribution. Adaptive: Deploy a sensor and see what you get. Repeat K times.





Asadpour & Saberi (`08): (1-1/e)-approx if sensors (independently) either work perfectly or fail completely.

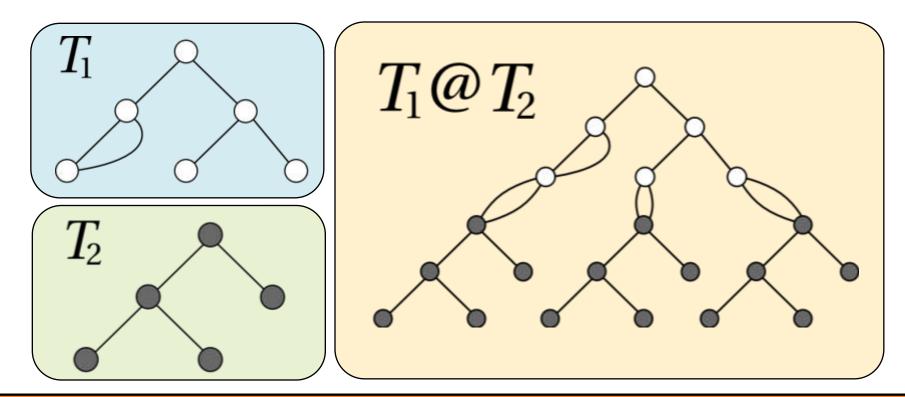
Adaptive Submodularity



Playing an action at an earlier stage (i.e., at an ancestor) only increases its marginal benefit expected (taken over its outcome)

Adaptive Monotonicity

Definition: For all policies T_1 and T_2 , the benefit of $T_1@T_2$ is at least that of T_2



What is it good for?

Allows us to generalize various results to the adaptive realm, including:

- (1-1/e)-approximation for Max K-Cover, submodular maximization subject to a cardinality constraint
- (ln(n)+1)-approximation for Set Cover

Recall the Greedy Algorithm

Problem: Find $S^* = \arg \max\{f(S) : |S| \le k\}$

Initialize
$$S_0 = \emptyset$$

For $i = 1, 2, ..., k$
 $e_i = \arg \max_e f(S_{i-1} \cup \{e\})$
 $S_i = S_{i-1} \cup \{e_i\}$
Select e_i

Theorem [Nemhauser et al '78]

Given a monotone submodular function f, $f(\emptyset) = 0$, the greedy algorithm selects a set S_{greedy} such that $f(S_{\text{greedy}}) \ge (1 - 1/e) \max_{|S| \le k} f(S)$

The Adaptive-Greedy Algorithm

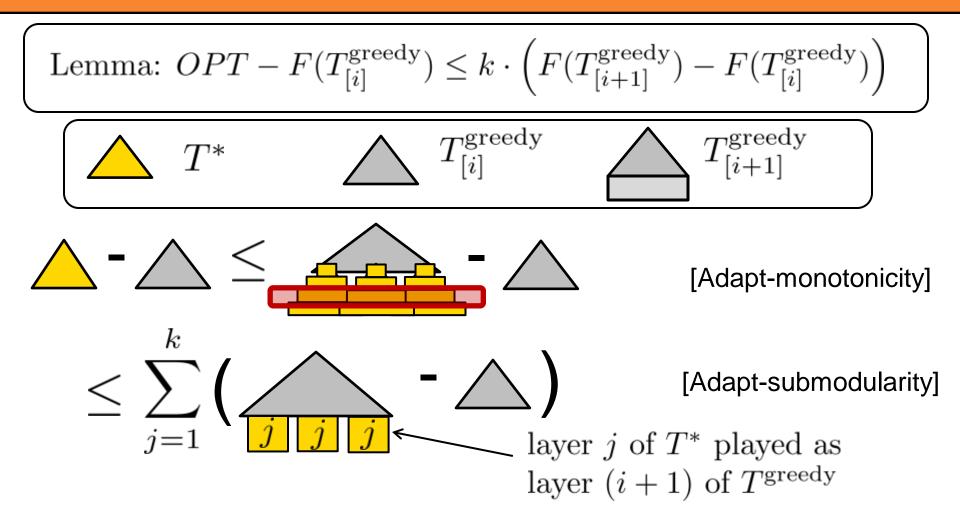
Problem: Find $T^* = \arg \max\{F(T) : \operatorname{depth}(T) \le k\}$

Initialize $S_0 = \emptyset$ For i = 1, 2, ..., k $e_i = \arg \max_e \mathbb{E}[f(S_{i-1} \cup \{e\}) \mid \text{outcomes } o_1, ..., o_{i-1}]$ $S_i = S_{i-1} \cup \{e_i\}$ Select e_i and observe outcome o_i for it.

Theorem

Given an adaptive monotone submodular function fwith $f(\emptyset) = 0$, the adaptive greedy algorithm returns T^{greedy} such that

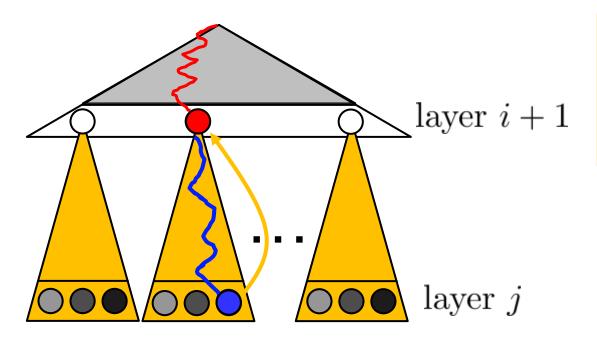
$$F(T^{\text{greedy}}) \ge (1 - 1/e) \max_{T: \text{depth}(T) \le k} F(T)$$



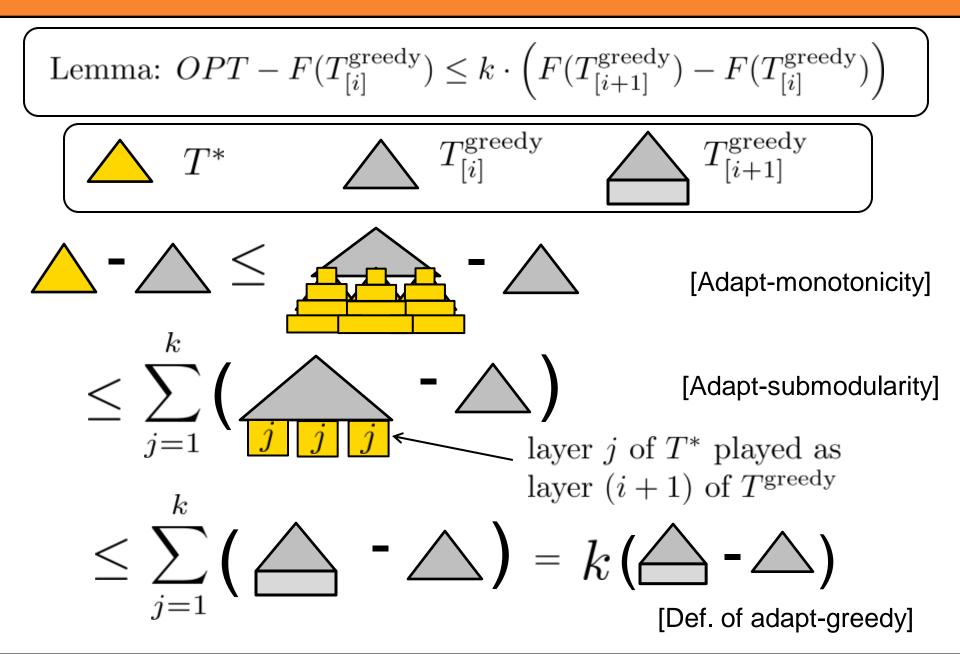
How to play layer *j* at layer *i*+1

The world-state dictates which path in the tree we'll take.

- 1. For each node at layer *i*+1,
- 2. Sample path to layer j,
- 3. Play the resulting layer j action at layer i+1.



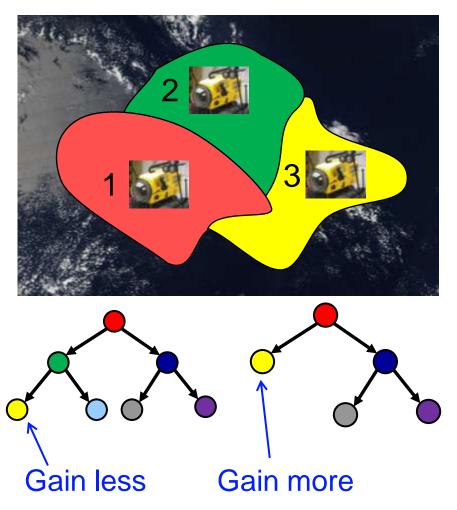
By adapt. submod., playing a layer earlier only increases it's marginal benefit

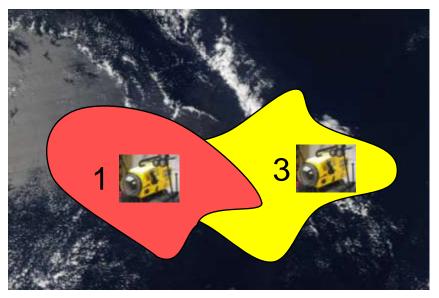


Lemma:
$$OPT - F(T_{[i]}^{\text{greedy}}) \leq k \cdot \left(F(T_{[i+1]}^{\text{greedy}}) - F(T_{[i]}^{\text{greedy}})\right)$$

Let $\Delta_i := OPT - F(T_{[i]}^{\text{greedy}})$
 $\Delta_i \leq k \left(\Delta_i - \Delta_{i+1}\right)$
 $\Delta_{i+1} \leq \left(1 - \frac{1}{k}\right) \Delta_i$
 $\Delta_k \leq \left(1 - \frac{1}{k}\right)^k \Delta_0 \leq \frac{OPT}{e}$
 $F(T_{[k]}^{\text{greedy}}) \geq \left(1 - \frac{1}{e}\right) OPT$

Stochastic Max Cover is Adapt-Submod





Random sets distributed independently.

adapt-greedy is a (1-1/e) ≈ 63% approximation to the adaptive optimal solution.

Stochastic Min Cost Cover

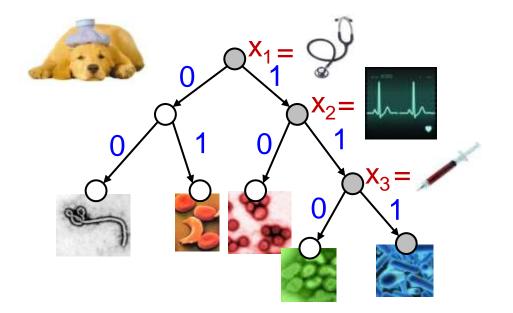
- Adaptively get a threshold amount of value.
- Minimize expected number of actions.
- If objective is adapt-submod and monotone, we get a logarithmic approximation.

 $\ln(n) + 1$ for Stochastic Set Cover, [Goemans & Vondrak, LATIN '06] matching the Set Cover lower bound assuming NP $\not\subseteq$ DTIME $(n^{O(\log \log n)})$ [Feige, JACM '98]

c.f., Interactive Submodular Set Cover [Guillory & Bilmes, ICML '10]

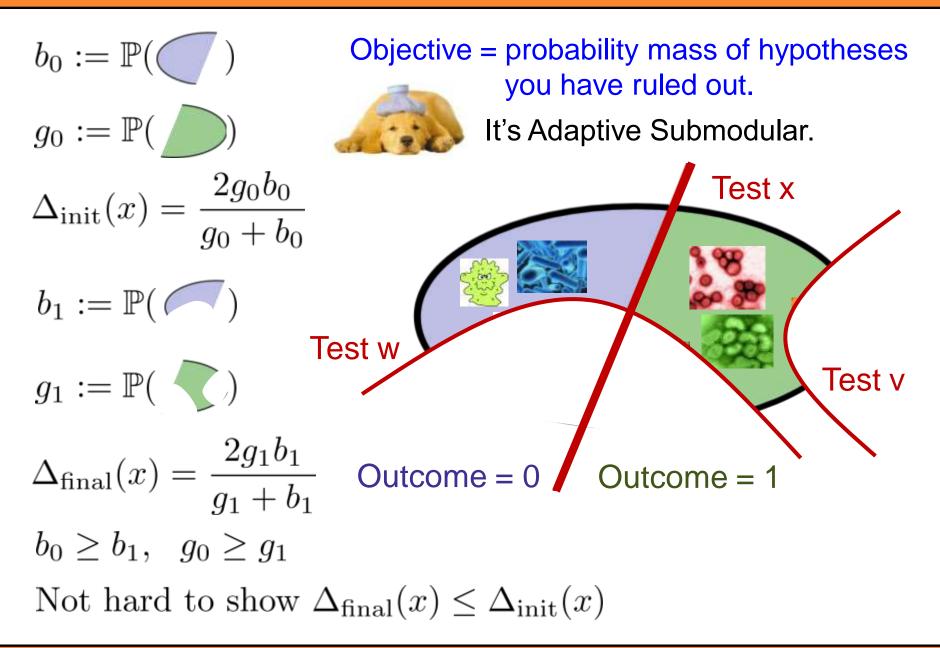
Optimal Decision Trees

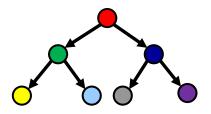
"Diagnose the patient as cheaply as possible (w.r.t. expected cost)"



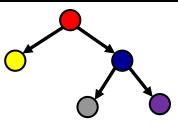
Garey & Graham, 1974; Loveland, 1985; Arkin et al., 1993; Kosaraju et al., 1999; Dasgupta, 2004; Guillory & Bilmes, 2009; Nowak, 2009; Gupta et al., 2010

Adaptive-Greedy is a $(\ln(1/p_{\min}) + 1)$ approximation.





Conclusions



- New structural property useful for design & analysis of adaptive algorithms
- Powerful enough to recover and generalize many known results in a unified manner. (We can also handle costs)
- Tight analyses and optimal approximation factors in many cases.

