Adaptive Submodularity:
A New Approach to Active Learning
and Stochastic Optimization

Daniel Golovin and Andreas Krause
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(FYI, a powerpoint version of these slides is available on Daniel Golovin's website.)
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Submodularity

Discrete diminishing returns property for set functions.

“Playing an action at an earlier stage
only increases its marginal benefit"

marginal benefit is

v y=F{@ 0O}) - F{@})

Time

Time

Q marginal benefit is
M r=F{ @880} — F{@8®})

Submodularity implies y > =.
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The Greedy Algorithm

[ Problem: Find S* = argmax{f(S) : |[S| < k} ]

4 Initialize Sg = () A
For:=1,2,...,k
e; = arg max, f(S;_1 U {e})
S; =85;_1 U {61}

\_ Select e; )
~N

(Theorem [INemhauser et al '78]
Given a monotone submodular function f, f(()) =0,

the greedy algorithm selects a set Sgreedy such that

. F(Siseeay) > (1= 1/e) max (S) )




Stochastic Max K-Cover

Bayesian: Known failure distribution.
Adaptive: Deploy a sensor and see what you get. Repeat K times.
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Asadpour & Saberl ( 08) (1-1/e)-approx if sensors
(independently) either work perfectly or fail completely.
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Adaptive Submodularity

Select ltem
Stochastlc
Q Outcome
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Gain less Gain more

Playing an action at an earlier stage (i.e., at an ancestor)
only increases itﬁ\marginal benefit

expected
(taken over its outcome)
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Adaptive Monotonicity

Definition: For all policies T and 75, the
benefit of [Tl@Tg] is at least that of
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What Is it good for?

Allows us to generalize various results to the adaptive
realm, including:

* (1-1/e)-approximation for Max K-Cover, submodular
maximization subject to a cardinality constraint

* (In(n)+1)-approximation for Set Cover
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Recall the Greedy Algorithm

[ Problem: Find S* = argmax{f(S) : |[S| < k} ]

4 Initialize Sg = () A
For:=1,2,...,k
e; = arg max, f(S;_1 U {e})
S; =85;_1 U {61}

\_ Select e; )
~N

(Theorem [INemhauser et al '78]
Given a monotone submodular function f, f(()) =0,

the greedy algorithm selects a set Sgreedy such that

. F(Siseeay) > (1= 1/e) max (S) )
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The Adaptive-Greedy Algorithm

[ Problem: Find T = argmax{F(T) : depth(T") < k} ]

" Initialize S, = 0 )
For:=1,2,...,k
e; = arg max. E[f(S;—1 U {e}) | outcomes oy,...,0;_1]
St' — Sg'_l U {61}
\_ Select e; and observe outcome o; for it. y
Theorem )

Given an adaptive monotone submodular function f
with f(()) = 0, the adaptive greedy algorithm
returns 787°¢Y such that

F(TseY) > (1 -1 F(T
 FEM 2o, mec PT)
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A A <:%: A [Adapt-monotonicity]

< ; ( = A) [Adapt-submodularity]
= -
J=1

I S layer j of T* played as
layer (i + 1) of T&reedy

[Lemma OPT — F(Tgreedy) }C( (Tgreedy) (Tgreedy)) ]




How to play layer | at layer 1+1

The world-state dictates which path in the tree we’ll take.

1. For each node at layer i+1,
2. Sample path to layer j,
3. Play the resulting layer j action at layer i+1.
playing a layer earlier

laver 7 + 1 |onlyincreases it's
/Q\ \ * Y marginal benefit
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[i+1] 4]
T* Tgreedy Tgreedy
VAN AN ]
A -A g ,@H - A [Adapt-monotonicity]
L — —
< T( - A) [Adapt-submodularity]
= -
J=1

I S layer j of T* played as
layer (i + 1) of T&reedy

gé( - A\) - k(@A -A)

[Def. of adapt-greedy]

[ Lemma: OPT — F(Tﬁegdy) < k- (F(Tgree‘j}") _ F(Tgree‘jy)) ]
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[ Lemma: OPT — F(T5*Y) < k- (F(Tg“eed?*’) - F(Tg“ee‘f‘y)) ]

[i4-1] [4]

Let A; := OPT — F(T5Y)

svalue
A < k(A —Ajiq) - orr
1 N AE
AVER LS (1 — —) A;
k 1> F(T[%]r%dy)
k
1 PT
A < (1——) AOSO
k e >
# of actions ¢
reed
F(T5™) =2 (1-2)OPT
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Random sets distributed

independently.
r\ X adapt-greet_:ly Isa (1-1/e) = 63%
Gainless  Gammore G0N R oon
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Stochastic Min Cost Cover

e Adaptively get a threshold amount of value.
e Minimize expected number of actions.

e |f objective Is adapt-submod and
monotone, we get a logarithmic
approximation.

In(n) + 1 for Stochastic Set Cover, {Sﬁeerpz{_‘sg (;/I?/Ir(])dlga‘lz)’sliATlN '06]

matching the Set Cover lower bound
assuming NP ¢ DTIME(n©Ucglogn)) [Feige, JACM ‘98]

c.f., Interactive Submodular Set Cover [Guillory & Bilmes, ICML “10]
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Optimal Decision Trees

“Diagnose the patient as cheaply as possible (w.r.t. expected cost)”
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Garey & Graham, 1974;
Loveland, 1985;

Arkin et al., 1993;
Kosaraju et al., 1999;
Dasgupta, 2004,
Guillory & Bilmes, 2009;
Nowak, 2009;

Gupta et al., 2010

Adaptive-Greedy is a (In(1/pmin) + 1) approximation.




Objective = probability mass of hypotheses

i ‘ you have ruled out.
"l

It's Adaptive Submodular.

Not hard to show Agpai(x) < At ()



Conclusions

e New structural property useful for design & analysis of
adaptive algorithms

e Powerful enough to recover and generalize many known
results in a unified manner. (We can also handle costs)

e Tight analyses and optimal approximation factors in
many cases.
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