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Examples for Language Learning

We want to learn correct programs or programmable descriptions
for given languages, such as:

16,12,18,2,4,0,16, . . . “even numbers”

1,16,256,16,4, . . . “powers of 2”

0,0,0,0,0, . . . “singleton 0”
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Language Learning from Positive Data

Let N = {0,1,2, . . .}, the set of all natural numbers.
A language is a set L ⊆ N.
A presentation for L is essentially an (infinite) listing T of all and
only the elements of L. Such a T is called a text for L.
We numerically name programs or grammars in some standard
general hypothesis space, where each e ∈ N generates some
language.
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Success: TxtEx-Learning

Let L be a language, h an algorithmic learner and T a text (a
presentation) for L.
For all k , we write T [k ] for the sequence T (0), . . . ,T (k − 1).
The learning sequence pT of h on T is given by

∀k : pT (k) = h(T [k ]).

Gold 1967: h TxtEx-learns L iff, for all texts T for L, there is i
such that pT (i) = pT (i + 1) = pT (i + 2) = . . . and pT (i) is a
program for L.
A class L of languages is TxtEx-learnable iff there exists an
algorithmic learner h TxtEx-learning each language L ∈ L.
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Restrictions

An (algorithmic) learner h is called set-driven iff, for all σ, τ
listing the same (finite) set of elements, h(σ) = h(τ).
A learner h is called partially set-driven iff, for all σ, τ of same
length and listing the same set of elements, h(σ) = h(τ).

The above two restrictions model learner local-insensitivity to
order of data presentation.

A learner h is called iterative iff, for all σ, τ with h(σ) = h(τ), for
all x , h(σ � x) = h(τ � x).1

1This is equivalent to a learner having access only to the current datum and
the just prior hypothesis.
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U-Shapes

For learning with any of the above restrictions we investigate the
necessity of (two kinds of) U-shapes.
U-shaped learning occurs empirically in human child
development: learn, unlearn, relearn.

A learner h is said to be non-U-shaped on a class of languages
L iff, for each language L ∈ L, h, when learning L, never
semantically abandons a correct hypothesis.
A learner h is said to be strongly non-U-shaped on a class of
languages L iff, for each language L ∈ L, h, when learning L,
never syntactically abandons a correct hypothesis.
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Results

For set-driven learning, we can assume strongly non-U-shaped
learners.
For partially set-driven learning, we can assume strongly
non-U-shaped learners.
Surprisingly, for iterative learning, we cannot assume strongly
non-U-shaped learners.

From Case and Moelius 2007, we know that, for iterative
learning, we can assume (not necessarily strongly)
non-U-shaped learners.
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Techniques

How did we get those results?

For unnecessary U-shapes, we give a general scheme for how
to remove them.
We apply this scheme for both set-driven and partially
set-driven learning.
We use an different (self-referential or self-learning) approach
for showing the necessity of U-shapes.
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Surprise re Self-Learning Technique

We have a very general result employing self-learning classes
of languages to completely epitomize or characterize any strict
learning power difference between two learning criteria.
Suppose L is a self-learning class for this result. Each
language of L contains only programs which completely specify
how the corresponding learner of L is to transform its data into
output programs.
This technique applies well beyond criteria featuring presence
or absence of U-shapes.
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Conclusion and Future Work

We added to the picture regarding the necessity of U-shapes.
In the future, we will try to get an even better understanding wrt
the necessity of U-shapes for other learning criteria.
Regarding self-learning classes of languages, we currently
work on a considerable expansion of the surprising result that
self-learning classes characterize learning power differences.
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Thank You.
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