Nonparametric Bandits with Covariates

Philippe Rigollet

Princeton University

with A. Zeevi (Columbia University)

Support from NSF (DMS-0906424)
Example: Real time web page optimization
Example: Real time web page optimization
Example: Real time web page optimization

Which ad will generate the most $/clicks?
Characteristics of the problem

• A choice must be made for each customer.
• Cannot observe the outcome of the alternative choice.
• Try to maximize the rewards.

Exploration vs. Exploitation dilemma

Exploration: which one is the best?
Exploitation: display the best as much as possible.
Two armed bandit problem: setup

• Two arms (e.g.: actions, ads): \(i \in \{1, 2\} \).

• At time \(t \), random reward \(Y_t^{(i)} \) is observed when arm \(i \) is pulled.

• A policy \(\pi \) is a sequence \(\pi_1, \pi_2, \ldots \in \{1, 2\} \), which indicates which arm to pull at each time \(t \).

• Performance: Expected cumulative reward at time \(n \)

\[
\mathbb{E} \sum_{t=1}^{n} Y_t^{(\pi_t)}
\]

• Goal: MAXIMIZE reward.
Two armed bandit problem: regret

- Oracle policy $\pi^* = (\pi_1^*, \pi_2^*, \ldots)$ pulls at each time t the best arm (in expectation)

$$\pi_t^* = \arg\max_{i=1,2} \mathbb{E}[Y_t^{(i)}].$$

- We measure our performance by the regret

$$R_n(\pi) = \mathbb{E} \sum_{t=1}^{n} (Y_t^{(\pi_t^*)} - Y_t^{(\pi_t)})$$
Static Environment

- The problem is not new: Robbins ('52), Lai & Robbins ('85)
• The problem is not new: Robbins ('52), Lai & Robbins ('85)

• Key assumption:

\[\mu_i = \mathbb{E}[Y_t^{(i)}] \]

are constant.

• One way to solve the problem is to use

Upper Confidence Bounds policy.
Side information
Side information

Your Recent History

Recently Viewed Items

- *Introduction à l'estimation non paramétriq...* by Alexandre B. T...
- *Applied Econometrics with R (Use R)* by Christian Kleiber
- *Introduction to Bayesian Statistics* by William M. Bol...
- *Time Series Analysis: With Applications in...* by Jonathan D. Cryer
Recently Viewed Items

- **Leonardo's Notebooks** by Leonardo da Vinci
- **Opus Dei: An Objective Look Behind the Myths a...** by John L. Allen
- **Foucault's Pendulum** by Umberto Eco
- **Jurassic Park** by Michael Crichton
Side information and covariates

- At time t, the reward of each arm $i \in \{1, 2\}$ depends on a covariate $X_t \in \mathcal{X} \subset (\mathbb{R}^d)$

$$Y_t^{(i)} = f^{(i)}(X_t) + \varepsilon_t, \quad t = 1, 2, \ldots, \quad i = 1, 2.$$

with standard regression assumptions on $\{\varepsilon_t\}$.

- A policy is now a sequence of functions

$$\pi_t : \mathcal{X} \rightarrow \{1, 2\}.$$

- Oracle policy

$$\pi^*(x) = \arg \max_{i=1,2} \mathbb{E}[Y_t^{(i)} | X_t = x] = \arg \max_{i=1,2} f^{(i)}(x)$$
Assumptions on the expected rewards

Assume now that $\mathcal{X} = [0, 1]$.

1. **Constant:** Static model studies by Lai & Robbins:

 $$f^{(i)}(x) = \mu_i, \ i = 1, 2 \quad \mu_i \ unknown$$

2. **Linear:** One-armed bandit problem, studied by Goldenshluger & Zeevi (2008)

 $$f^{(1)}(x) = x - \theta, \ i = 1, 2 \quad \theta \ unknown$$

 and $f^{(2)}(x) = 0$ is constant and **known**.

3. **Smooth:** We assume that the functions are Hölder smooth with parameter $\beta \leq 1$:

 $$|f^{(i)}(x) - f^{(i)}(x')| \leq L|x - x'|^\beta.$$

 (Consistency studied by Yang & Zhu, 2002)
Constant rewards

\[f(1) \]

\[f(2) \]
One-armed linear reward
Smooth rewards

\[f(1) \]

\[f(2) \]
Nonparametric bandit with covariates
Two armed bandit problem with uniform covariates

- Covariates: \(\{X_t\} \) i.i.d in \([0, 1]\) with uniform distribution
- Rewards: \(Y_t^{(i)} \in [0, 1] \)

\[
\mathbb{E}[Y_t^{(i)}|X_t] = f^{(i)}(X_t) \quad t = 1, 2, \ldots, i = 1, 2,
\]

where \(|f^{(i)}(x) - f^{(i)}(x')| \leq L|x - x'|^\beta, \beta \leq 1, i = 1, 2\)

- Oracle policy pulls at time \(t \)

\[
\pi^*(X_t) = \arg\max_{i=1,2} f^{(i)}(X_t)
\]

- Regret

\[
R_n(\pi) = \mathbb{E} \sum_{t=1}^{n} \left(f^{(\pi^*(X_t))}(X_t) - f^{(\pi_t(X_t))}(X_t) \right)
\]
Margin condition

\[\mathbb{P} \left[0 < |f^{(1)}(X) - f^{(2)}(X)| \leq \delta \right] \leq C\delta^\alpha. \]

- first used by Goldenshluger and Zeevi (2008) in the one-armed bandit setting
- In the one-armed setup, it is an assumption on the distribution of \(X \) only
- Here: fixed marginal (e.g. uniform) so it measures how close the functions are
Margin condition

\[\mathbb{P} \left[0 < |f^{(1)}(X) - f^{(2)}(X)| \leq \delta \right] \leq C\delta^\alpha. \]

- first used by Goldenshluger and Zeevi (2008) in the one-armed bandit setting
- In the one-armed setup, it is an assumption on the distribution of \(X\) only
- Here: fixed marginal (e.g. uniform) so it measures how close the functions are

Proposition: Conflict \(\alpha \) vs. \(\beta \)

\[\alpha \beta > 1 \implies \pi^* \text{ is a.s constant on } [0, 1] \]
Illustration of the margin condition
Illustration of the margin condition

\[\alpha = 1 \]

\(f(1) \)

\(f(2) \)
Illustration of the margin condition

\[\alpha = 2, \quad \beta = \frac{1}{2} \]
Binning (Exploiting smoothness)

- Fix $M > 1$. Consider the bins

$$B_j = [j/M, (j + 1)/M]$$

- Consider the **average reward** on each bin

$$\bar{f}_j^{(i)} = \frac{1}{p_j} \int_{B_j} f^{(i)}(x) dx ,$$

$$Z_t = j \text{ iff } X_t \in B_j$$
Binned UCB

- For uniformly distributed X_t, we have

 $$p_j = \mathbb{P}(Z_t = j) = \mathbb{P}(X_t \in B_j) = 1/M$$

- The rewards are

 $$\mathbb{E}[Y_t^{(i)} | Z_t = j] = \bar{f}_j^{(i)} \quad t = 1, 2, \ldots, i = 1, 2,$$

Play UCB on the $(Z_t, Y_t), t = 1, \ldots, n$
Binned problem
Binned problem
Binned problem

\[f(1) \]

\[f(2) \]
Binned problem

\[\bar{f}(1) \]

\[\bar{f}(2) \]
Two armed bandit problem with discrete covariates

- Covariates: \(\{Z_t\} \) i.i.d in \(\{1, \ldots, M\} \)
 \[
P(Z_t = j) = p_j, \quad t = 1, 2, \ldots
\]

- Rewards: \(Y_t^{(i)} \in [0, 1] \)
 \[
 \mathbb{E}[Y_t^{(i)} | Z_t = j] = \bar{f}_j^{(i)} \quad t = 1, 2, \ldots, \ i = 1, 2,
 \]

- Oracle policy pulls at time \(t \)
 \[
 \pi^*(Z_t) = \arg\max_{i=1,2} \bar{f}_Z^{(i)}_{Z_t}
 \]
Regret

- Regret given by

\[
R_n(\pi) = \mathbb{E} \sum_{j=1}^{M} \sum_{t=1}^{n} \left(\bar{f}_j^{(\pi^*(j))} - \bar{f}_j^{(\pi_t(j))} \right) \mathbb{I}(Z_t = j)
\]
Regret

- Regret given by

\[
R_n(\pi) = \mathbb{E} \sum_{j=1}^{M} \sum_{t=1}^{n} \left(\bar{f}_j^{(\pi^*(j))} - \bar{f}_j^{(\pi_t(j))} \right) \mathbb{I}(Z_t = j)
\]

Idea: play independently for each \(j = 1, \ldots, M \)
UCB policy for discrete covariate

- Based **Upper Confidence Bounds** given by concentration inequalities (Hoeffding or Bernstein):

\[B_t(s) := \sqrt{\frac{2 \log t}{s}}. \]

- Define the number of times \(\hat{\pi} \) prescribed to pull arm \(i \) and \(Z_t = j \), before time \(t \)

\[N_{j}^{(i)}(t) = \sum_{s=1}^{t} \mathbb{I}(Z_s = j, \hat{\pi}_s(Z_s) = i), \]

- Average reward collected at those times

\[\overline{Y}_j^{(i)}(t) = \frac{1}{N_{j}^{(i)}(t)} \sum_{s=1}^{t} Y_s^{(i)} \mathbb{I}(Z_s = j, \hat{\pi}_s(Z_s) = i), \]
A first bound on the regret

Binned UCB policy: conditionally on \(Z_t = j \),

\[
\hat{\pi}_t(j) = \arg\max_{i=1,2} \left\{ \overline{Y}_{j}^{(i)}(t) + B_t(N_{j}^{(i)}(t)) \right\}
\]

Theorem 1. A first bound on the regret

Denote by \(\Delta_j = |\bar{f}_{j}^{(1)} - \bar{f}_{j}^{(2)}| \).

\[
R_n(\hat{\pi}) \leq C \sum_{j=1}^{M} \left(\Delta_j + \frac{\log n}{\Delta_j} \right)
\]

Direct consequence of Auer, Cesa-Bianchi & Fischer (2002)
Margin condition

\[\sum_{j=1}^{M} \left(\Delta_j + \frac{\log n}{\Delta_j} \right) \]

- The previous bound can become arbitrary large if one of the \(\Delta_j, j = 1, \ldots, M \) becomes too small.
- Using the margin condition we can make local conclusions on gaps \(\Delta_j \):

 Few \(j \)'s such that \(\Delta_j \) is small
Theorem 2. A bound on the regret for the binned UCB policy

Fix $\alpha > 0$ and $0 < \beta \leq 1$ and choose $M \sim (n/\log n)^{\frac{1}{2\beta+1}}$. Then

$$R_n(\hat{\pi}) \leq \begin{cases}
C n \left(\frac{n}{\log n}\right)^{-\frac{\beta(1+\alpha)}{2\beta+1}} & \text{if } \alpha < 1 \\
C n \left(\frac{n}{\log n}\right)^{-\frac{2\beta}{2\beta+1}} & \text{if } \alpha > 1
\end{cases}$$
Suboptimality for $\alpha > 1$

- If $\alpha > 1$, the bound becomes

$$R_n(\hat{\pi}) \leq C \left[nM^{-\beta(1+\alpha)} + M \log n \right]$$

- Minimum for

$$M \sim \left(\frac{n}{\log n} \right)^{\frac{1}{\beta(1+\alpha)+1}}$$

- which yields

$$R_n(\hat{\pi}) \leq Cn \left(\frac{n}{\log n} \right)^{-\frac{\beta(1+\alpha)}{\beta(1+\alpha)+1}}$$

- Problem is: too many bins. Solution: Online/adaptive construction of the bins
Conditional distributions

- The distribution of $Y^{(i)}|X$ belongs to $\mathcal{P} = \{P_\theta, \theta \in \Theta\}$, where θ is the mean parameter:

$$\theta = \int x dP_\theta(x)$$

- Assume that the family \mathcal{P} is such that

$$\mathcal{K}(P_\theta, P_{\theta'}) \leq \frac{(\theta - \theta')^2}{\kappa}, \quad \kappa > 0.$$

For any $\theta, \theta' \in \Theta \subset \mathbb{R}$

- Satisfied in particular for Gaussian (location) and Bernoulli families.
Theorem 3.

Let $\alpha \beta \leq 1$ and the covariates $\{X_t\}$ be uniformly distributed on $[0, 1]^d$. Assume also that $\{P^{(i)}_\theta, \theta \in \text{Im} f^{(i)}(X)\}$ satisfies the condition on Kullback-leibler for any $i = 1, 2$. Then, for any policy π,

$$\sup_{f^{(1)}, f^{(2)} \in \Sigma(\beta, L)} R_n(\pi) \geq C n \cdot n^{-\frac{\beta(1+\alpha)}{2\beta+1}},$$

for some positive constant C.
• Same bound as in the full information case (see Audibert & Tsybakov, 07)
• Gap (of logarithmic size) between upper and lower bound.
Extensions

- Higher dimension $d \geq 2$, choose $\| \cdot \|_\infty$

\[R_n(\hat{\pi}) \leq C(d)n\left(\frac{n}{\log n}\right)^{-\frac{\beta(1+\alpha)}{2\beta+d}} \]

- The lower bound also holds.
- Unknown n: doubling trick
K-armed bandit

- K-armed bandit problem

$$\mathbb{P}\left[0 < \min_{i \neq i^*(X)} |f^{(i)}(X) - f^{(i^*(X))}(X)| \leq \delta \right] \leq C\delta^\alpha.$$

where $i^*(x) = \arg \max_{1 \leq i \leq K} f^{(i)}(x)$

$$R_n(\hat{\pi}) \leq CKn\left(\frac{n}{\log n}\right)^{-\frac{\beta(1+\alpha)}{2\beta+1}}.$$
Conclusion

• We introduced a simple model to handle covariates and proposed a naive policy.
• It has near optimal rates on the regret
• Same rates as full information case but new techniques.
• Current research”
 1. Adaptive partitioning to handle $\alpha > 1$
 2. Use of kernel-type (smooth) regression estimators (fill the gap??)
 3. Time varying rewards