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Example: Real time web page optimization
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Characteristics of the problem

e A choice must be made for each customer.
e Cannot observe the outcome of the alternative choice.

o Try to maximize the rewards.

Exploration: which one is the best?
Exploitation: display the best as much as possible.
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Two (e.g.: actions, ads): i € {1, 2}.

At time ¢, random reward Yt(i) is observed when arm i is
pulled.

A is a sequence 71, o, ... € {1,2}, which
indicates which arm to pull at each time t.

Performance: Expected cumulative reward at time n

]E Xn: }/t(ﬁt)
t=1

Goal: MAXIMIZE reward.



Two armed bandit problem: regret

e Oracle policy 7* = (7}, 75, ...) pulls at each time ¢ the
best arm (in expectation)

T = argmax E[Y,"].
i=1,2

o We measure our performance by the regret

Ro(m) =By (v —v™)
t=1



Static Environment

o The problem is not new: Robbins ('52), Lai & Robbins
('85)
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Static Environment

o The problem is not new: Robbins ('52), Lai & Robbins
('85)

o Key assumption:

e i.e., the (unknown) expected rewards p; = ]E[Y;(i)] are
constant.

¢ One way to solve the problem is to use
Upper Confidence Bounds policy.
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Side information

Your Recent History whatsini?)
Recently Viewed Items

T
Intreduction & I'estimation non paramétrig... by

Alexandre B. T...

Applied Econometrics with B (Use R) by Christian

Kleiber

Introduction to Bayesian Statistics by William M.

Bal...

Time Series Analysis: With Applications in... by
Jonathan D. Cryer i
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Side information

Your Recent History whatsihir)

Recently Viewed ltems

Leonardo's Motebooks by Leonardo da Vinei

Qpus Dei: An Objective Look Behind the Myths a...

by John L. Allen

Foucault's Pendulum by Umberto Eco

Jurassic Park by Michael Crichton
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Side information and covariates

o At time ¢, the reward of each arm i € {1,2} depends on
a covariate X; € X(C (IR%))

Y;(Z):f(l)(Xt)—l-St, t:].)Qaa 22172

with standard regression assumptions on {&;}.

¢ A policy is now a sequence of functions
m o X — {1,2}.
¢ Oracle policy

(@) = angmax B[y, X, = a] = argmax /0(z)

i=1,2 i=1,2
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Assume now that & = [0, 1].
Static model studies by Lai & Robbins:
fO9z) =y, i =1,2 ft; unknown

One-armed bandit problem, studied by
Goldenshluger & Zeevi (2008)

f(l)(x) =x—0,i=1,2 f unknown

and f®(z) = 0 is constant and
We assume that the functions are Holder
smooth with parameter 3 < 1:

f () = fO)] < Lz — 27
(Consistency studied by Yang & Zhu, 2002)



Constant rewards

A
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One-armed linear reward

A
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Smooth rewards

A
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Two armed bandit problem with uniform covariates

Covariates: {X;} i.i.d in [0, 1] with uniform distribution
Rewards: Y, € [0, 1]

IE][y;(i)|Xt] = fO(Xx,) t=1,2,...,i=1,2,

where |f0)(x) — f@(a")] < Lz — 2|, 5 <1, i =1,2
Oracle policy pulls at time ¢

7*(X;) = argmax f?(X;)

1=1,2

[}
X
D
o
=
D
=3



P[0 < [fP(X) - fP(X)| < 0] < Cs~.

first used by Goldenshluger and Zeevi (2008) in the
one-armed bandit setting

In the one-armed setup, it is an assumption on the
distribution of X

Here: fixed marginal (e.g. uniform) so it
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Margin condition

Margin condition

P[0 <|fY(X) - fPX) <] <os”.

o first used by Goldenshluger and Zeevi (2008) in the
one-armed bandit setting

¢ In the one-armed setup, it is an assumption on the
distribution of X only

o Here: fixed marginal (e.g. uniform) so it measures how
close the functions are

Proposition: Conflict a vs. 3




[llustration of the margin condition

4
f(l)
f(2)
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[llustration of the margin condition
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[llustration of the margin condition

[\ f(l)

f(2)
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Binning (Exploiting smoothness)

o Fix M > 1. Consider the bins
By =[j/M,(j+1)/M)

o Consider the average reward on each bin

vy 1 X
i == 9@,
Dj J B,
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Binned UCB

o For uniformly distributed X;, we have
o The rewards are

IE[y;(i)|Zt:j]:fj(i) t=1,2,...,i=1,2,




Binned problem
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Binned problem
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Binned problem
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Binned problem

A
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Two armed bandit problem with discrete covariates

o Covariates: {Z;} i.idin{1,...,M}
P(Z,=j)=p;, t=12 ...
« Rewards: v," € [0, 1]
E[Y"|Z, =j]=f" t=12.. i=12,
o Oracle policy pulls at time ¢

1*(Z;) = argmax fgt)
i=1,2
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Regret

o Regret given by

Jj=1

n

t=1

(m(]))) ]I(Zt _ ])
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Regret

* Regret given by

n

Rn(ﬂ') _ IEZ Z (f;ﬁ*(j)) - Jc_‘](ﬂt(j)))]I(Zt _ ])

=1 t=1

¥
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Based given by
concentration inequalities (Hoeffding or Bernstein):

2logt
By(s) =1/ sg .

Define the number of times 7 prescribed to pull arm i
Zy = j, before time t

t

s=1
Average reward collected at those times

t

i) 1 (i) » ]
Y. (t> = D~ }/s ]I(ZS:juﬂ-S(ZS):Z)7

J s=1
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A first bound on the regret

Binned UCB policy: conditionally on Z; = j,

#4:(j) = argmax {?5.” (t) + By(N" (t))}

i=1,2

Theorem 1. A first bound on the regret

Direct consequence of Auer, Cesa-Bianchi & Fischer (2002) w
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i( logn)

j=1 A

The previous bound can become if one the
Aj,7=1,..., M becomes too small.

Using the margin condition we can make local conclusions
on gaps A;:
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Upper bound

Theorem 2. A bound on the regret for the binned
UCB policy
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Suboptimality for oo > 1

If @ > 1, the bound becomes

R.(7) < C [nM_ﬁ(H“) + M logn]

Minimum for

MN( n )W
logn
o which yields
n N\ -—gAure
R.(7) < C’n( ) Bl+a)+
logn

Problem is: too many bins. Solution: Online/adaptive
construction of the bins
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The distribution of Y| X belongs to P ={P,0 € 0},

where 6 is the

0 = /deg(x)

Assume that the family P is such that

AV
K(Py, Py) < w
Forany 0,0/ € © C R

Satisfied in particular for Gaussian (location) and
Bernoulli families.
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Minimax lower bound

Theorem 3.
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Same bound as in the full information case (see Audibert
& Tsybakov, 07)

Gap (of logarithmic size) between upper and lower bound.

29 /32



Extensions

« Higher dimension d > 2, choose || - ||oo

B(+a)

Ry () SC(({)n( n >— S

e The lower bound also holds.

e Unknown n: doubling trick
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K-armed bandit

o K-armed bandit problem

IP[O < ;Illn ’f ( ) f(l*(X))(X)’ < 5:| < 5% .
where ¢*(2) = argmax; <;< g fO(x)
n )—Bz(éi‘i‘)
logn

R(7) < C’]\'n(
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We introduced a simple model to handle covariates and
proposed a naive policy.

It has near optimal rates on the regret
Same rates as full information case but new techniques.
Current research”

Adaptive partitioning to handle o > 1

Use of kernel-type (smooth) regression estimators (fill
the gap??)

Time varying rewards
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