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There are a wide variety of clustering 
algorithms, which often produce very different 
clusterings. 

How should a user decide which algorithm to use 
for a given application?

Motivation
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• Identify properties that separate input-output 
behaviour of different clustering paradigms

• The properties should 

1) Be intuitive and meaningful to clustering users

2)   Distinguish between different clustering 
algorithms

Our approach for clustering algorithm selection
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• Kleinberg proposes abstract properties 
(“Axioms”) of clustering functions (NIPS, 2002)

• Bosagh Zadeh and Ben-David provide a set of 
properties that characterize single linkage 
clustering (UAI, 2009)

Previous work
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Characterize linkage-based clustering algorithms, 
using a set of intuitive properties

Our contributions
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• Define linkage-based clustering

• Introduce new clustering properties

• Main result 

• Sketch of proof

• Conclusions

Outline
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For a finite domain set X, a dissimilarity function d
over the members of X.

A Clustering Function F maps
Input: (X,d)  and k>0 
to
Output: a k-partition (clustering) of X

We require clustering functions to be representation independent and 
scale invariant. 

Formal setup
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Proceed in steps: 
• Start with the clustering of singletons
• At each step, merge the closest pair of clusters 
• Repeat until only k clusters remain.

Ex. Single linkage, average linkage, complete linkage

Informally, a linkage function is
an extension of the between-point distance
that applies to subsets of the domain.

• The choice of the linkage function distinguishes 
between different linkage-based algorithms. 

?

Linkage-based algorithm:
An informal definition
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• Define linkage-based clustering

• Introduce new clustering properties

• Main result 

• Sketch of proof

• Conclusions

Outline
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• A clustering C is a refinement of clustering C’ 

if every cluster in C’ is a union of some 
clusters in C. 

• A clustering function is hierarchical if for

and every 

F(X,d,k’) is a refinement of F(X,d,k).

dX

Hierarchical clustering
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F is local if for any X, d, k and any ),,,( kdXFC 
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Locality
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If d’ equals d, except for increasing between-cluster 
distances, then F(X,d,k)=F(X,d’,k) for all d, X, and k. 

d d’

F(X,d,3) F(X,d’,3)

Outer Consistency 
Based on Kleinberg, 2002.
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• Some common clustering algorithms fail 
locality and outer-consistency
 Ex. Spectral clustering objectives Ratio Cut and Normalized 

Cut

• Locality and outer-consistency can be used to 
distinguish between clustering algorithms 
(they are not axioms). 

Not all algorithms are local and outer-consistent!
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F satisfies extended richness if for any set of domains 

there is a d over                 that extends each of the   
so that
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• Define linkage-based clustering

• Our new clustering properties

• Main result 

• Sketch of proof

• A taxonomy of common clustering algorithms 
using our properties

• Conclusions
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Theorem:
A clustering function is Linkage-Based 

if and only if 
it is Hierarchical, Outer-Consistent, Local and 
satisfies Extended Richness.

Our main result
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Every Linkage-Based clustering function is 
Hierarchical, Local, Outer-Consistent, and 
satisfies Extended Richness. 

The proof is quite straight-forward. 

Easy direction of proof
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If F is Hierarchical and it satisfies Outer 
Consistency, Locality and Extended-Richness

then F is Linkage-Based.

To prove this direction we first need to 
formalize linkage-based clustering, by formally 
defining what is a linkage function.

Interesting direction of proof
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A linkage function is a function 

l:{ : d is a dissimilarity function over } 
that satisfies the following:

What do we expect from linkage function?
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1) Representation independent: Doesn’t 
change if we re-label the data 

2) Monotonic: if we increase edges that go 
between        and      , then l
doesn’t decrease. 

3) Any pair of clusters can be made 
arbitrarily distant:
By increasing edges that go between 

and  , we can make l
exceed any value in the range of l.
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Need to prove: 
If F is a hierarchical function that satisfies the above 
clustering properties then F is linkage-based.

Goal: 
Given a clustering function F that satisfies the 
properties, define a linkage function l so that the 
linkage-based clustering based on l coincides with F 
(for every X, d and k).

Sketch of proof
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• Define an operator <F : (A,B,d1) <F (C,D,d2) if there 
exists d that extends d1 and d2  such that when we 
run F on , A and B are merged 
before C and D.
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Sketch of proof (continued…)
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Sketch of proof (continued…)
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• Define an operator <F : (A,B,d1) <F (C,D,d2) if there 
exists d that extends d1 and d2  such that when we 
run F on , A and B are merged 
before C and D.
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Sketch of proof (continued…)
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• Prove that <F can be 
extended to a partial 
ordering 

• Use the ordering to 

define l
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• Define an operator <F : (A,B,d1) <F (C,D,d2) if there 
exists d that extends d1 and d2  such that when we 
run F on , A and B are merged 
before C and D.

),( dDCBA 



Sketch of proof continue:

Show that <F is a partial ordering
We show that <F is cycle-free.

Lemma: Given a function F that is hierarchical, local, 
outer-consistent and satisfies extended richness, 
there are no
so that
and
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• By the above Lemma, the transitive closure of 

<F is a partial ordering.

• This implies that there exists an order 
preserving function l that maps pairs of data 
sets to R (since <F is defined over a countable set).  

• It can be shown that l satisfies the properties 
of a linkage function. 

Sketch of proof (continued…)
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• We introduced new meaningful properties of 
clustering algorithms. 

• Prove they characterize linkage-based 
algorithms. 

• Whenever all these properties are desirable, a 
linkage-based algorithm should be used. 

Conclusions
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