Inferring Descriptive Generalisations of Formal Languages

Dominik D. Freydenberger¹ Daniel Reidenbach²

¹Goethe University, Frankfurt

 $^2 {\sf Loughborough}$ University, Loughborough

COLT 2010

/⊒ > < ∃ >

Introduction

Our goal:

Learning patterns common to a set of strings.

- pattern: word consisting of terminals $(\in \Sigma)$ and variables $(\in X)$
- $\operatorname{Pat}_{\Sigma} := (\Sigma \cup X)^+$: set of all patterns over Σ
- substitution: terminal-preserving morphism σ : Pat_Σ → Σ*
 (∀a ∈ Σ : σ(a) = a)
- language of a pattern α ∈ Pat_Σ: set of all images of α under substitutions (write: L(α))

Example $$\begin{split} &L_{\mathrm{NE},\Sigma}(x \, \mathbf{a} \, y \, x) &= \{ v \, \mathbf{a} \, w \, v \mid v, w \in \Sigma^+ \}, \\ &L_{\mathrm{E},\Sigma}(x \, \mathbf{a} \, y \, x) &= \{ v \, \mathbf{a} \, w \, v \mid v, w \in \Sigma^* \}. \end{split}$$

The classical model

Identification in the limit of indexed families from positive data (Gold '67)

- indexed family (of recursive languages): $\mathcal{L} = (L_i)_{i \in \mathbb{N}}$, where $w \in L_i$ is uniformly decidable
- text of a language L: a total function $t:\mathbb{N}\to\Sigma^*$ with $\{t(i)\mid i\in\mathbb{N}\}=L$
- set of all texts of L: text(L)
- $\mathcal{L} \in \text{LIM-TEXT}$ if there exists a computable function S such that, for every i and for every $t \in \text{text}(L_i)$, $S(t^n)$ converges to a j with $L_j = L_i$
- NE-patterns (yes, Angluin '80)
- E-patterns (not if $|\Sigma| \in \{2,3,4\}$, Reidenbach '06, '08)
- terminal-free E-patterns (only if $|\Sigma| \neq 2$, Reidenbach '06)

Descriptive patterns

Definition

- Let \mathcal{P}_{Σ} be a class of pattern languages over Σ .
- A pattern δ is \mathcal{P}_{Σ} -descriptive of a language L if

$$\begin{array}{c} \bullet \\ L(\delta) \in \mathcal{P}_{\Sigma}, \\ \bullet \\ L(\delta) \supset L \end{array}$$

(a)
$$L(\delta) \supseteq L$$
,
(b) $L(\gamma) \in \mathcal{P}_{\Sigma}$ with $L(\delta) \supset L(\gamma) \supset L$.

• We write: $\delta \in D_{\mathcal{P}_{\Sigma}}(L)$

In other words: $L(\delta)$ is (one of) the closest generalisation(s) of L in \mathcal{P}_{Σ} , and δ is (one of) the best description(s) of L.

Our approach: Learning of such generalisations.

Inferring descriptive generalisations

Definition

- Let \mathcal{P}_{Σ} be a class of pattern languages over Σ .
- Let \mathcal{L} be a class of nonempty languages over Σ .
- *L* can be *P*_Σ-descriptively generalised (*L* ∈ DG_{*P*_Σ}) if there is a computable function *S* such that, for every *L* ∈ *L* and for every *t* ∈ text(*L*), *S*(*tⁿ*) converges to a δ ∈ *D*_{*P*_Σ}(*L*).

Main conceptual differences to LIM-TEXT:

- Infer generalisations instead of exact descriptions of the languages.
- Choose hypothesis space separate from language class.

Interesting phenomenon:

- one language can have several descriptive patterns,
- one pattern can be descriptive of several languages.

Characterisation theorem (for indexed families)

Theorem

Let Σ be an alphabet, let $\mathcal{L} = (L_i)_{i \in \mathbb{N}}$ be an indexed family over Σ , and let \mathcal{P}_{Σ} be a class of pattern languages. $\mathcal{L} = (L_i)_{i \in \mathbb{N}} \in \mathrm{DG}_{\mathcal{P}_{\Sigma}}$ if and only if there are effective procedures d and f satisfying the following conditions:

- (i) For every $i \in \mathbb{N}$, there exists a $\delta_{d(i)} \in D_{\mathcal{P}_{\Sigma}}(L_i)$ such that d enumerates a sequence of patterns $d_{i,0}, d_{i,1}, d_{i,2}, \ldots$ satisfying, for all but finitely many $j \in \mathbb{N}$, $d_{i,j} = \delta_{d(i)}$.
- (ii) For every $i \in \mathbb{N}$, f enumerates a finite set $F_i \subseteq L_i$ such that, for every $j \in \mathbb{N}$ with $F_i \subseteq L_j$, if $\delta_{d(i)} \notin D_{\mathcal{P}_{\Sigma}}(L_j)$, then there is a $w \in L_j$ with $w \notin L_i$.
 - d is an enumeration of an appropriate subset of the hypothesis space
 f is similar to Angluin's telltales

Remarks

- Characterisation shows significant connection to Angluin's characterisation of indexed families in LIM-TEXT.
- Main differences:
 - Our model requires an enumeration of a subset of the hypothesis space,
 - 2 we do not need to distinguish all L_i, L_j with $L_i \neq L_j$,
 - Ithe strategy in our proof might discard a correct hypothesis.
- Our strategy does not test membership or inclusion of pattern languages, but only membership for the indexed family.

Further topics

Further directions in our paper:

- More general: Inductive inference with hypotheses validity relation (model HYP).
- 2 Less general: Consider a smaller class of patterns and a fixed strategy.

Inferring $ePAT_{tf,\Sigma}$ -descriptive patterns

- $ePAT_{tf,\Sigma}$: The class of all E-pattern languages that are generated from terminalfree patterns.
- \bullet inclusion for $\mathrm{ePAT}_{\mathrm{tf},\Sigma}$ is well understood and decidable.
- strategy Canon: For every finite set S, return the pattern $\delta \in D_{\mathrm{ePAT}_{\mathrm{tf},\Sigma}}(S)$ that is minimal w.r.t. the length-lexicographical order.
- telling set of L: A finite set $T \subseteq L$ with $D_{ePAT_{tf,\Sigma}}(T) \cap D_{ePAT_{tf,\Sigma}}(L) \neq \emptyset$.

Theorem

Let Σ be an alphabet with $|\Sigma| \ge 2$. For every language $L \subseteq \Sigma^*$, and every text $t \in \text{text}(L)$, Canon converges correctly on t if and only if L has a telling set.

Telling set languages

*TSL*_Σ: the class of all languages over Σ that have a telling set
 *TSL*_Σ ∈ DG_{ePAT_{tf} Σ}, using Canon as strategy

Some properties of \mathcal{TSL}_{Σ} :

- contains every DTF0L language \Rightarrow superfinite
- is not countable
- does not contain all of REG
- contains all $ePAT_{tf,\Sigma}$ -languages (if $|\Sigma| \neq 2$)
- does not contain all $ePAT_{tf,\Sigma}$ -languages (if $|\Sigma|=2$)