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Thank you for staying for the graveyard session



PCA - in Words

• Observe high-dimensional points
• Find least-square-error subspace approximation

• Many applications in feature-extraction and compression
• data analysis
• communication theory
• pattern recognition
• image processing
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Observe points: y = Ax + v.

Goal: Find least-square-error subspace approximation.
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PCA - in Math

• Least-square-error subspace approximation
• How: Singular value decomposition (SVD) performs

eigenvector decomposition of the sample-covariance
matrix

• Magic of SVD: solving a non-convex problem
• Cannot replace quadratic objective here.
• Consequence: Sensitive to outliers

• Even one outlier can make the output arbitrarily skewed;

• What about a constant fraction of “outliers”?
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This Talk: High Dimensions and Corruption

Two key differences to pictures shown

(A) High-dimensional regime: # observations ≤ dimensionality.

(B) A constant fraction of points arbitrarily corrupted.



Outline

1. Motivation: PCA, High dimensions, corruption
2. Where things get tricky: usual tools fail
3. HR-PCA: the algorithm
4. The Proof Ideas (and some details)
5. Conclusion



High-Dimensional Data

• What is high-dimensional data:
#dimensionality ≈# observations.

• Why high-dimensional data analysis:
• Many practical examples: DNA microarray,

financial data, semantic indexing, images, etc

• Networks: user-behavior-aware network
algorithms (Cognitive Networks)?

• The kernel trick generates high-dimensional
data

• Traditional statistical tools do not work

Figure:
MicroArray:
24,401 dim.
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Corrupted Data

Figure: No Outliers Figure: With Outliers

• Some observations about the corrupted points:
•
•
•
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• Some observations about the corrupted points:
• They have a large magnitude.
• They have a large (Mahalanobis) distance.
• They increase the volume of the smallest containing

ellipsoid.
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Our Goal: Robust PCA

• Want robustness to arbitrarily corrupted data.

• One measure: Breakdown point

• Instead: bounded error measure between true PCs and
output PCs.

• Bound will depend on:
• Fraction of outliers.
• Tails of true distribution.



Problem Setup

• “Authentic Samples” z1, · · · , zt ∈ Rm: zi = Axi + ni ,

• xi ∈ Rd . xi ∼ µ,
• ni ∈ Rm. ni ∼ N (0, Im),
• A ∈ Rd×m and µ unknown. µ mean zero, covariance I.

• The “Outliers” o1, · · · ,on−t ∈ Rm: generated arbitrarily.

• Observe: Y , {y1 · · · ,yn} = {z1, · · · , zt}
⋃
{o1, · · · ,on−t}.

• Regime of interest:
• n ≈ m >> d
• σ = ||A>A|| >> 1 (scales slowly).

• Objective: Retrieve A
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4. The Proof Ideas (and some details)
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Features of the High Dimensional regime

• Noise Explosion in High Dimensions: noise magnitude
scales faster than the signal noise;

• SNR goes to zero
• If n ∼ N(0, Im), then E||n||2 =

√
m, with very sharp

concentration.
• Meanwhile: E||Ax ||2 ≤ σ

√
d .

• Consequences:
• Magnitude of true samples may be much bigger than outlier

magnitude.

• The direction of each sample will be approximately
orthogonal to the direction of the signal;



Features of the High Dimensional regime: Pictures
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Figure: Recall low-dimensional regime
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Features of the High Dimensional regime: Pictures

Figure: Every point equidistant from origin and from other points!



Features of the High Dimensional regime: Pictures

Figure: And every point perpendicular to signal space



Trouble in High Dimensions

• Some approaches that will not work:

• Leave-one-out (more generally, subsample, compare):

• Either sample size very small: problem

or

• Have many corrupted points in each subsample: problem

• Standard Robust PCA: PCA on a robust estimation of the
covariance

• Consistency requires #(observations)� #(dimension)
• Not enough observations in high-dimensional case
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Trouble in High Dimensions
• Some more approaches that will not work:

• Removing points with large magnitude

• Remove points with large Mahalanobis distance
• Same example: All λn corrupted points: aligned, length

O(σ) <<
√

m.
• Very large impact on PCA output.
• But: Mahalanobis distance of outliers very small.

• Remove points with large Stahel-Donoho distance

ui , sup
‖w‖=1

|w>yi −medj(w>yj)|
medk |w>yk −medj(w>yj)|

.

• Same example: impact large, but Stahel-Donoho
outlyingness small.
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Trouble in High Dimensions

• For these reasons: Some robust covariance estimators
have breakdown point = O(1/m), m = dimensions.

• M-estimator,
• Convex peeling, Ellipsoidal Peeling,
• Classical outlier rejection
• Iterative deletion, iterative trimming,
• and others...

• These approaches cannot work in high-dimensional
regime.



Trouble in High Dimensions

• Algorithmic Tractability

• Minimum volume ellipsoid; Minimum covariance
determinant:

• Ill-posed: many zero-volume ellipsoids containing data
• Intractable: removing a fraction of points combinatorial.

• Projection pursuit – maximize univariate estimator
• Problems are non-convex: Intractable.

• Choosing subset of directions generated by points:
authentic points ⊥ to signal space, hence no good in high
dimensions.
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High-dimensional Robust PCA: Main Idea

• Get candidate directions from standard PCA (get w).
• Project, and use a robust variance estimator: variance of

points nearer origin.
• Outliers can be near origin. But: impact controlled.

• Random removal of “strange" points.

• Desired properties of an algorithm:
• Tractable (same complexity as standard PCA);
• Robust to outliers: performance guarantees;
• Asymptotically optimal: t = o(n) perfect recovery.
• Easily kernelizable;
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Problem Setup

• “Authentic Samples” z1, · · · , zt ∈ Rm: zi = Axi + ni ,
• xi ∈ Rd . xi ∼ µ,
• ni ∈ Rm. ni ∼ N (0, Im),
• A ∈ Rd×m and µ unknown. µ mean zero, covariance I.

• The “Outliers” o1, · · · ,on−t ∈ Rm: generated arbitrarily.

• Observe: Y , {y1 · · · ,yn} = {z1, · · · , zt}
⋃
{o1, · · · ,on−t}.

• Assumptions:
• n,m scale to infinity together;
• σ = ||A>A|| “big” (scales to infinity slowly);
• µ: spherically symmetric; abs continuous; exponential tails.



Objective & Performance Measurement

• For output PCs w1, · · · ,wd , “Expressed Variance” w.r.t.
wtrue

1 , · · · ,wtrue
d

EV (w1, · · · ,wd ) ,

∑d
i=1 w>i AA>wi∑d

i=1(wtrue
i )>AA>wtrue

i

≤ 1.

• EV = 1 if the subspace spanned by true PCs is recovered.

• For d = 1, EV (w1) = cos2(∠w1,wtrue
1 ).



A Robust Variance Estimator

• Robust Variance Estimator: V t̂ (w) , 1
n
∑t̂

i=1 |w>y|2(i).

• Order statistics: α1, . . . , αn ∈ R, then
α(1) ≤ α(2) ≤ · · · ≤ α(n).

• Idea: If outliers small, their impact is controlled.



The HR-PCA Algorithm

(1) Perform PCA on empirical covariance.

(2) If robust variance estimate in PC directions highest yet,
record it, and PCs.

(3) Randomly remove a point in proportion to its variance
along PCs.

(4) Repeat until “enough" points removed.

(5) Output the last PCs recorded.



The HR-PCA Algorithm

(1) Perform PCA on empirical covariance: {w1, . . . ,wd}.

(2) Compute b = RVE({w1, . . . ,wd}). If b > b∗,
• Update b∗ = b
• Update {w∗1, . . . ,w∗d} = {w1, . . . ,wd}.

(3) Randomly remove a point in proportion to its variance
along PCs.

(4) Repeat until all points removed.

(5) Output the last PCs recorded: {w∗1, . . . ,w∗d}.



The HR-PCA Algorithm: Pitfalls

• Things that can go wrong:

∗ Remove authentic points

∗ May not ultimately report “best outcome.”

∗ Corrupted points may contribute to ultimately reported
PCs.

• But: we show the error due to all such factors is controlled.
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The Guarantees: Finite Sample + Asymptotic

• Results will depend on:

• Fraction of outliers: λ.
• Tails of µ.

• Define: V : [0,1]→ [0,1]

V(α) =

∫ cα

−cα

x2µ(dx).



The Guarantees: Finite Sample + Asymptotic

Theorem: The following holds in probability (n,m, σ scale):

E.V.(output) ≥ max
κ

V
(

1− λ∗(1+κ)
(1−λ∗)κ

)
(1 + κ)

×
V

(
t̂
t −

λ∗

1−λ∗
)

V
(

t̂
t

)
 .

• The Bound:
• Term 1: May not remove all outliers, and some authentic

points may be removed.

• Term 2: May have small outliers that alter PC directions.

• If t = o(n), RHS = 1: optimal recovery.

• Breakdown point: 1/2.
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Asymptotic Performance Guarantee

E.V. is lower bounded by

If the proportion of outliers goes to zero: the Expressed
Variance equals 1.



Proof Idea

(1) “Blessing of dimensionality”: empirical covariance
estimates good, even for high-dimensional regime;

(2) Random removal: have a “good” solution, or outlier is
removed with large probability;

(3) Therefore: at some early iteration, algorithm finds a “good”
solution.

(4) Output of algorithm has higher robust variance estimate
than the “good” solution. We show output must then also
be (almost as) “good.”



Proof Idea - Step 1

With high probability:

(1.a) Largest eigenvalue of the empirical noise covariance
matrix is bounded:

sup
w∈Sm

1
n

t∑
i=1

(w>ni)
2 ≤ c.

(1.b) Largest eigenvalue of the signals in original space
converges to 1:

sup
w∈Sd

|1
t

t∑
i=1

(w>xi)
2 − 1| ≤ ε.



Proof Idea - Step 1

(1.c) RVE is a valid variance estimator for the d−dimensional
signals x:

sup
w∈Sd

∣∣1
t

t̂∑
i=1

|w>x|2(i) − V

(
t̂
t

)∣∣ ≤ ε.
(1.d) RVE is a valid estimator of the variance of the authentic

samples, z = Ax + n: uniformly over all w ∈ Sm,

(1− ε)‖w>A‖2V
(

t ′

t

)
− c‖w>A‖ ≤ 1

t

t ′∑
i=1

|w>z|2(i) ≤

(1 + ε)‖w>A‖2V
(

t ′

t

)
+ c‖w>A‖.



Proof - Step 1.a - details
(1.a) Largest eigenvalue of the variance of noise matrix is

bounded:

sup
w∈Sm

1
n

t∑
i=1

(w>ni)
2 ≤ c.

• Two keys: “blessing of dimensionality” and uniform laws of
large numbers.

• Step 1 (a): Need basic Lemma:
• Lemma: For Γ a m × t matrix (m ≤ t), Γij ∼ N (0,1), i.i.d.:

Pr
(
σmax(Γ) >

√
m +

√
t +
√

tε
)
≤ exp(−tε2/2).

• Observation:

sup
w∈Sm

1
t

t∑
i=1

(w>ni)
2 = λmax(ΓΓ>)/t = σ2

max(Γ)/t .
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Proof - Step 1.a - An Aside

• Where do these results come from:

• Basic idea: dimension-free concentration of measure
• Theorem: Let F be L-Lipschitz w.r.t. Euclidean norm,

X ∼ N(0, I) standard Gaussian measure. MF the mean of
F (X ). Then

P(F (X ) ≥ MF + ξ) ≤ e−ξ
2/2L2

.

• Basic observation: σmax(·) : Rn1×n2 −→ R is 1-Lipschitz.

• Two nice references: (a) Davidson and Szarek: Operators,
Random Matrices & Banach Spaces; (b) Matousek:
Lectures on Discrete Geometry.



Proof Idea

(1) “Blessing of dimensionality”: empirical covariance
estimates good, even for high-dimensional regime;

(2) Random removal: have a “good” solution, or outlier is
removed with large probability;

(3) Therefore: at some early iteration, algorithm finds a “good”
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(4) Output of algorithm has higher robust variance estimate
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be (almost as) “good.”



Proof Idea - Step 2

• Let Z(s), O(s) be remaining authentic/outlier points.
• Fix κ > 0 and call step s a “Good Event”, G(s) if:

• This means: variance on the direction of found PCs is
mostly due to the authentic samples.

• Hence: {w1, . . . ,wd} must be close to true PCs.
• Theorem: If Gc(s) — step s is not good — then next point

removed is an outlier with probability at least κ
1+κ .
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mostly due to the authentic samples.

• Hence: {w1, . . . ,wd} must be close to true PCs.
• Theorem: If Gc(s) — step s is not good — then next point

removed is an outlier with probability at least κ
1+κ .
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Proof Idea

(1) “Blessing of dimensionality”: empirical covariance
estimates good, even for high-dimensional regime;

(2) Random removal: have a “good” solution, or outlier is
removed with large probability;

(3) Therefore: at some early iteration, algorithm finds a “good”
solution.

(4) Output of algorithm has higher robust variance estimate
than the “good” solution. We show output must then also
be (almost as) “good.”



Proof Idea - Step 3

• Theorem: With high probability, we have a “good event” by
time at most s0 > λn[(1 + κ)/κ].

• Intuition: Suppose subsequent steps were independent.
• Since, “expected number of corrupted points removed each

step” is κ/(1 + κ).

• After M steps, expected corrupted points removed is M κ
1+κ .

• Therefore: All the outliers removed after M = λn 1+κ
κ (1 + ε)

steps, with exponentially high probability.

• The Problem: not i.i.d.

• The Fix: use martingales and Azuma-Hoeffding.
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Proof Idea - Step 3 - details

• Let T = min{s|G(s) is true}.

• Define the random variable (w.r.t. natural filtration Fs):

Xs =

{
|O(T − 1)|+ κ

1+κ · (T − 1), if T ≤ s;

|O(s)|+ κ
1+κ · s, if T > s.

Note: X0 = λn.
• Lemma: {Xs,Fs} is a supermartingale.

• Now we have: for s0 = λn[(1 + κ)/κ](1 + ε)

P (T > s0) ≤ P
(

Xs0 ≥
κs0

1 + κ

)
= P (Xs0 ≥ (1 + ε)λn)

• Azuma-Hoeffding completes the proof.
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Proof Idea - Step 4
• Putting it all together:

• An early iteration produces directions ŵ1, . . . , ŵd that have
“most of” the variance.

• Bound quality on these directions:

EV (ŵ1, · · · , ŵd ) ,

∑d
i=1 ŵ>i AA>ŵi∑d

i=1(wtrue
i )>AA>wtrue

i

.

• The final algorithm only produces directions w∗1, . . . ,w
∗
d

with biggest robust variance estimator.

• Bound quality on these directions:

EV (w∗1, · · · ,w∗d ) ,

∑d
i=1(w∗i )>AA>w∗i∑d

i=1
∑d

i=1 ŵ>i AA>ŵi
.



Kernelization

• Using a kernel function k(·, ·) to represent a feature
mapping Υ(·)

• PCA can be kernelized using Kernel PCA, with output in a
form vq =

∑n−s
i=1 αi(q)Υ(ŷi), q = 1, · · · ,d .

• HR-PCA Algorithm requires:
• Computing PCA;
• Computing Robust Variance Estimator;

• Both steps can be done.



Conclusion

• Methodology for handling dimensionality reduction when:
1. #(Observation) ∼ #(Dimension)
2. #(Outliers) is “large"

• The key idea: verify projections statistics behave in a
certain way, if not - probabilistic point removal

• Works well in simulations

On the todo list:
• Generalize to other identification problems with outliers:

when a probabilistic model is available
• Extend to stochastic programming with corrupted sampled

data
• Looking for an online algorithm.
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