Robust PCA for High-Dimensional Data

Huan Xu, Constantine Caramanis and Shie Mannor

Talk by Shie Mannor, The Technion
Department of Electrical Engineering

June 2010

Thank you for staying for the graveyard session



PCA - in Words

e Observe high-dimensional points
e Find least-square-error subspace approximation

e Many applications in feature-extraction and compression
o data analysis
e communication theory
e pattern recognition
e image processing



PCA - in Pictures

Observe points: y = AX + v.
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PCA - in Pictures

Observe points: y = AX + v.




PCA - in Pictures

Observe points: y = AX + v.
Goal: Find least-square-error subspace approximation.
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PCA - in Math

o Least-square-error subspace approximation

e How: Singular value decomposition (SVD) performs
eigenvector decomposition of the sample-covariance
matrix
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PCA - in Math

Least-square-error subspace approximation

How: Singular value decomposition (SVD) performs
eigenvector decomposition of the sample-covariance
matrix

Magic of SVD: solving a non-convex problem
Cannot replace quadratic objective here.

Consequence: Sensitive to outliers
e Even one outlier can make the output arbitrarily skewed;

e« What about a constant fraction of “outliers”?



This Talk: High Dimensions and Corruption

Two key differences to pictures shown
(A) High-dimensional regime: # observations < dimensionality.

(B) A constant fraction of points arbitrarily corrupted.
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Outline

Motivation: PCA, High dimensions, corruption
Where things get tricky: usual tools fail

HR-PCA: the algorithm

The Proof Ideas (and some details)

Conclusion



High-Dimensional Data

e What is high-dimensional data:
#dimensionality ~# observations.
o Why high-dimensional data analysis:

e Many practical examples: DNA microarray,
financial data, semantic indexing, images, etc

Figure:
MicroArray:
24,401 dim.
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High-Dimensional Data

e What is high-dimensional data:
#dimensionality ~# observations.
o Why high-dimensional data analysis:

Many practical examples: DNA microarray,
financial data, semantic indexing, images, etc
Networks: user-behavior-aware network
algorithms (Cognitive Networks)?

The kernel trick generates high-dimensional
data

Traditional statistical tools do not work

Figure:
MicroArray:
24,401 dim.



Corrupted Data
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Figure: No Outliers Figure: With Outliers
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Corrupted Data

Figure: No Outliers

Figure: With Qutliers

e Some observations about the corrupted points:
e They have a large magnitude.
e They have a large (Mahalanobis) distance.

e They increase the volume of the smallest containing

ellipsoid



Corrupted Data

A A N
. A A N .,
. e -
oo e
e R
AR o5
[ “2 2 & | :.J'.- -
e . ®
o [22° a
. o|e e R
N e _‘l
. P e e®%o
...... ° ..~.
.
.

Figure: No Outliers Figure: With Qutliers

e Some observations about the corrupted points:
o They-have-alarge-magnitude.
o They-have-alarge-(Mahalanobis)-distance.
. , -
”I'.e’ f e_ case-the-volume-of-the-smallest-containing



Our Goal: Robust PCA

Want robustness to arbitrarily corrupted data.
One measure: Breakdown point

Instead: bounded error measure between true PCs and
output PCs.

Bound will depend on:

e Fraction of outliers.
e Tails of true distribution.
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Problem Setup

“Authentic Samples” z¢,--- ,z; € R™: z; = AX; + n;,
e X; € R X ~ p,
e n; c R™. n; ~ N(0, I),
e A c RIMand u unknown. 1 mean zero, covariance /.

The “Outliers” 01,--- ,0,_; € R™: generated arbitrarily.

Observe: y £ {y1 7yf7} = {217' o 7zf} U{o17” ' ,On_t}-

Regime of interest:
e nxm>>d
e o0 =||ATA|| >> 1 (scales slowly).

Objective: Retrieve A
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Motivation

Where things get tricky

HR-PCA: the algorithm

The Proof Ideas (and some details)
Conclusion



Features of the High Dimensional regime

¢ Noise Explosion in High Dimensions: noise magnitude
scales faster than the signal noise;

e SNR goes to zero
e If n~ N(0, In), then E||n||2 = v/m, with very sharp

concentration.
o Meanwhile: E||Ax]||2 < oV/d.

e Consequences:
e Magnitude of true samples may be much bigger than outlier

magnitude.

e The direction of each sample will be approximately
orthogonal to the direction of the signal;



Features of the High Dimensional regime: Pictures

Figure: Recall low-dimensional regime
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Features of the High Dimensional regime: Pictures

Figure: Every point equidistant from origin and from other points!



Features of the High Dimensional regime: Pictures

Figure: And every point perpendicular to signal space
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e Some approaches that will not work:

e Leave-one-out (more generally, subsample, compare):

o Either sample size very small: problem
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Trouble in High Dimensions

e Some approaches that will not work:

e Leave-one-out (more generally, subsample, compare):

o Either sample size very small: problem

or

e Have many corrupted points in each subsample: problem

e Standard Robust PCA: PCA on a robust estimation of the
covariance

o Consistency requires #(observations) > #(dimension)
¢ Not enough observations in high-dimensional case
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Trouble in High Dimensions

Some more approaches that will not work:

Removing points with large magnitude

Remove points with large Mahalanobis distance
e Same example: All An corrupted points: aligned, length

O(o) << v/m.
e Very large impact on PCA output.
¢ But: Mahalanobis distance of outliers very small.

Remove points with large Stahel-Donoho distance

U2 sup | y% med;( y/T)| ‘
wj=1 medx|W "y, — med;(Wy;)|

e Same example: impact large, but Stahel-Donoho
outlyingness small.



Trouble in High Dimensions

e For these reasons: Some robust covariance estimators
have breakdown point = O(1/m), m = dimensions.

M-estimator,

Convex peeling, Ellipsoidal Peeling,
Classical outlier rejection

Iterative deletion, iterative trimming,
and others...

e These approaches cannot work in high-dimensional
regime.
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Trouble in High Dimensions

e Algorithmic Tractability

e Minimum volume ellipsoid; Minimum covariance
determinant:
e lll-posed: many zero-volume ellipsoids containing data
¢ Intractable: removing a fraction of points combinatorial.
e Projection pursuit — maximize univariate estimator
e Problems are non-convex: Intractable.
e Choosing subset of directions generated by points:
authentic points | to signal space, hence no good in high
dimensions.
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High-dimensional Robust PCA: Main Idea

e Get candidate directions from standard PCA (get w).

¢ Project, and use a robust variance estimator: variance of
points nearer origin.

e Outliers can be near origin. But: impact controlled.
e Random removal of “strange” points.



High-dimensional Robust PCA: Main Idea

Get candidate directions from standard PCA (get w).

Project, and use a robust variance estimator: variance of
points nearer origin.

e Outliers can be near origin. But: impact controlled.
Random removal of “strange" points.

Desired properties of an algorithm:
¢ Tractable (same complexity as standard PCA);
e Robust to outliers: performance guarantees;
o Asymptotically optimal: t = o(n) perfect recovery.
o Easily kernelizable;



Problem Setup

“Authentic Samples” z4,--- ,2z; € R™: z; = AX; + n,,
e X; € RI. Xx; ~ p,
e n; € R™. n; ~ N(0, Ip),
e Ac R and p unknown. ;. mean zero, covariance /.

The “Outliers” 01, --- ,0,_; € R™: generated arbitrarily.

Observe: y = {y1 T »yn} = {z'la e azt} U{O'Ia to ,Onft}-
Assumptions:

e n, mscale to infinity together;

e o= ||ATA|| “big” (scales to infinity slowly);

e 4 spherically symmetric; abs continuous; exponential tails.



Objective & Performance Measurement

e For output PCs wy, - -- , Wy, “Expressed Variance” w.r.t.
wt.i'ue7 . ’wt&ue
d wTaaT
A 2'21 w; AA W,
EV(W-],"',Wd): : I

27:1 (wtirue)TAAthirue -
e Ey =1 if the subspace spanned by true PCs is recovered.

o Ford =1, Ey(Wy) = cos?(Zwy, wi™).



A Robust Variance Estimator

» Robust Variance Estimator: Vy(w) £ 10, (wTy[?,.

e Order statistics: a1,...,an € R, then
Q1) < Q(2) <-.- < Q(n)-

e |dea: If outliers small, their impact is controlled.



The HR-PCA Algorithm

(1) Perform PCA on empirical covariance.

(2) If robust variance estimate in PC directions highest yet,
record it, and PCs.

(38) Randomly remove a point in proportion to its variance
along PCs.

(4) Repeat until “enough” points removed.

(5) Output the last PCs recorded.



The HR-PCA Algorithm

(1) Perform PCA on empirical covariance: {wy,...,Wq}.

(2) Compute b = RVE({wy,...,Wg}). If b > b*,
e Update b* = b
e Update {w7,...,wj;} = {wy,...,wWg}.

(3) Randomly remove a point in proportion to its variance
along PCs.

(4) Repeat until all points removed.

(5) Output the last PCs recorded: {wj, ..., wj}.



The HR-PCA Algorithm: Pitfalls

e Things that can go wrong:
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The HR-PCA Algorithm: Pitfalls

Things that can go wrong:
Remove authentic points
May not ultimately report “best outcome.”

Corrupted points may contribute to ultimately reported
PCs.

But: we show the error due to all such factors is controlled.



The Guarantees: Finite Sample + Asymptotic

¢ Results will depend on:

e Fraction of outliers: M.
o Tails of p.

e Define: V: [0,1] — [0,1]



The Guarantees: Finite Sample + Asymptotic

Theorem: The following holds in probability (n, m, o scale):

L), ol

=
(14 k) V(%)

E.V.(output) > max



The Guarantees: Finite Sample + Asymptotic

Theorem: The following holds in probability (n, m, o scale):

L), ol

=
(14 k) V(%)

E.V.(output) > max

e The Bound:
e Term 1: May not remove all outliers, and some authentic

points may be removed.

e Term 2: May have small outliers that alter PC directions.
e If t = o(n), RHS = 1: optimal recovery.

o Breakdown point: 1/2.



Asymptotic Performance Guarantee

E.V. is lower bounded by

Lower bound on Asymptotic Performance
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If the proportion of outliers goes to zero: the Expressed
Variance equals 1.



Proof Idea

(1) “Blessing of dimensionality”: empirical covariance
estimates good, even for high-dimensional regime;

(2) Random removal: have a “good” solution, or outlier is
removed with large probability;

(3) Therefore: at some early iteration, algorithm finds a “good”
solution.

(4) Output of algorithm has higher robust variance estimate
than the “good” solution. We show output must then also
be (almost as) “good.”



Proof Idea - Step 1
With high probability:

(1.a) Largest eigenvalue of the empirical noise covariance
matrix is bounded:

sup — Z (w'n;)?

WGSm

(1.b) Largest eigenvalue of the signals in original space
converges to 1:

t

1
sup |+ > wix)?-1|<e

WESq © =y



Proof Idea - Step 1

(1.c) RVE is a valid variance estimator for the d—dimensional
signals x:

sup\—Dw x[% ()Ke

weSy i—1

(1.d) RVE is a valid estimator of the variance of the authentic
samples, z = Ax + n: uniformly over all w € S,

t 1¢
(1= oW ARy ()~ clwT Al < § 3wz, <
i=1

(140w A2 v( >+c||wTA||



Proof - Step 1.a - details

(1.a) Largest eigenvalue of the variance of noise matrix is

bounded: t

1 Th )2
sup — w'n))° <c.
wegn n ,z_;( i) <
e Two keys: “blessing of dimensionality” and uniform laws of
large numbers.
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bounded: t

1 T2
sup — w n;)° <c.
weSn n g( I)

e Two keys: “blessing of dimensionality” and uniform laws of
large numbers.

e Step 1 (a): Need basic Lemma:

e Lemma: For'a m x t matrix (m < t), ['j ~ N(0,1), i.i.d.:

Pr(omax(T) > VM + Vit + Vite) < exp(—teé?/2).



Proof - Step 1.a - details

(1.a) Largest eigenvalue of the variance of noise matrix is

bounded: t

1 T2
sup — w n;)° <c.
weSn n ,z_;( I)

Two keys: “blessing of dimensionality” and uniform laws of
large numbers.

Step 1 (a): Need basic Lemma:
Lemma: For ' a m x t matrix (m < t), ['; ~ N(0,1), i.i.d.:

Pr(omax(T) > VM + Vit + Vite) < exp(—teé?/2).

Observation:

sup - ZW Ni)? = Amax(TT ")/t = ol (1)/1.

WGSm



Proof - Step 1.a - An Aside
Where do these results come from:

Basic idea: dimension-free concentration of measure

Theorem: Let F be L-Lipschitz w.r.t. Euclidean norm,
X ~ N(O, /) standard Gaussian measure. Mg the mean of
F(X). Then

P(F(X) > Mg+ ¢) < e /28,
Basic observation: omax(+) : R"*"™ — R is 1-Lipschitz.
Two nice references: (a) Davidson and Szarek: Operators,

Random Matrices & Banach Spaces; (b) Matousek:
Lectures on Discrete Geometry.
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(1) “Blessing of dimensionality”: empirical covariance
estimates good, even for high-dimensional regime;

(2) Random removal: have a “good” solution, or outlier is
removed with large probability;

(3) Therefore: at some early iteration, algorithm finds a “good”
solution.

(4) Output of algorithm has higher robust variance estimate
than the “good” solution. We show output must then also
be (almost as) “good.”
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e Let Z(s), O(s) be remaining authentic/outlier points.
e Fix x > 0 and call step s a “Good Event”, G(s) if

d d
S OY (wi(s)'z _12 S (wi(s)Te)?).

j=12z;€Z(s-1) =1 0,e0(s—1)

3
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This means: variance on the direction of found PCs is
mostly due to the authentic samples.

Hence: {wy,...,wg} must be close to true PCs.



Proof Idea - Step 2

Let Z(s), O(s) be remaining authentic/outlier points.
Fix x > 0 and call step s a “Good Event”, G(s) if

d
Z Z (wj(s)" Z >
j=1 Z(s—1) j 1 0;€0(s— 1)

vV
variance of authentic pts variance of corrupted pts

This means: variance on the direction of found PCs is
mostly due to the authentic samples.
Hence: {wy,...,wg} must be close to true PCs.

Theorem: If G°(s) — step s is not good — then next point

removed is an outlier with probability at least 7.



Proof Idea

(1) “Blessing of dimensionality”: empirical covariance
estimates good, even for high-dimensional regime;

(2) Random removal: have a “good” solution, or outlier is
removed with large probability;

(8) Therefore: at some early iteration, algorithm finds a “good
solution.

(4) Output of algorithm has higher robust variance estimate
than the “good” solution. We show output must then also
be (almost as) “good.”
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e Theorem: With high probability, we have a “good event” by
time at most sp > An[(1 + &) /x].
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e Theorem: With high probability, we have a “good event” by
time at most sp > An[(1 + &) /x].

e Intuition: Suppose subsequent steps were independent.

e Since, “expected number of corrupted points removed each
step”is k/(1 + ).

o After M steps, expected corrupted points removed is M.

e Therefore: All the outliers removed after M = An”T"U +e)
steps, with exponentially high probability.



Proof |dea - Step 3

e Theorem: With high probability, we have a “good event” by
time at most sp > An[(1 + &) /x].

e Intuition: Suppose subsequent steps were independent.

Since, “expected number of corrupted points removed each
step”is k/(1 + ).

After M steps, expected corrupted points removed is M+%..

Therefore: All the outliers removed after M = An”T"U +e)
steps, with exponentially high probability.

The Problem: not i.i.d.

The Fix: use martingales and Azuma-Hoeffding.
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Proof Idea - Step 3 - details
e Let T = min{s|G(s) is true}.
e Define the random variable (w.r.t. natural filtration Fs):

s 1OT =D+ (T=1), it T<s;
s 0(s)| + % - s, if T>s.

Note: Xo = An.



Proof Idea - Step 3 - details

e Let T = min{s|G(s) is true}.
e Define the random variable (w.r.t. natural filtration Fs):
X — O(T -]+ 155 - (T=1), fT<s;
ST 106) + 5 - s it T>s.

Note: Xo = An.
e Lemma: {X;, Fs} is a supermartingale.



Proof Idea - Step 3 - details

Let T = min{s|G(s) is true}.
Define the random variable (w.r.t. natural filtration Fs):

X~ { 10T Dl it (T, i T o
|O(s )\+1+K if T>s.

Note: Xo = An.
Lemma: {Xs, Fs} is a supermartingale.
Now we have: for so = An[(1 + &)/&](1 + €)

P(T > sp) < (Xso > 1/{30 > =P (X5, > (1+¢€)An)




Proof Idea - Step 3 - details

Let T = min{s|G(s) is true}.
Define the random variable (w.r.t. natural filtration Fs):
X — O(T -]+ 155 - (T=1), fT<s;
ST 106) + 5 - s it T>s.

Note: Xo = An.
Lemma: {Xs, Fs} is a supermartingale.

Now we have: for so = An[(1 + &)/&](1 + €)

KSp

P(T>so)§IP’<Xsoz ] >:]P’(X502(1+e)>\n)

+ K

Azuma-Hoeffding completes the proof.



Proof Idea

(1) “Blessing of dimensionality”: empirical covariance
estimates good, even for high-dimensional regime;

(2) Random removal: have a “good” solution, or outlier is
removed with large probability;

(3) Therefore: at some early iteration, algorithm finds a “good”
solution.

(4) Output of algorithm has higher robust variance estimate
than the “good” solution. We show output must then also
be (almost as) “good.”



Proof Idea - Step 4
Putting it all together:

An early iteration produces directions Wy, ..., W4 that have
“most of” the variance.

Bound quality on these directions:
S W AATW,
251:1 (wtl_rue)TAAthirue )

EV(W‘Iv"' ,Wd) é

The final algorithm only produces directions wj, ..., Wy
with biggest robust variance estimator.

Bound quality on these directions:
A Z/ 1( )TAATW

EV(WTV" ,WZ) .
Zi:1 Zi:1 W AATW;




Kernelization

Using a kernel function k(- -) to represent a feature
mapping T(:)
PCA can be kernelized using Kernel PCA, with output in a
form Vq = 27;13 Oé,'(Q)T(y,'), q= 17 Tty d.
HR-PCA Algorithm requires:

e Computing PCA;

e Computing Robust Variance Estimator;

Both steps can be done.



Conclusion

¢ Methodology for handling dimensionality reduction when:

1. #(Observation) ~ #(Dimension)
2. #(Outliers) is “large”

e The key idea: verify projections statistics behave in a
certain way, if not - probabilistic point removal

e Works well in simulations
On the todo list:

e Generalize to other identification problems with outliers:
when a probabilistic model is available

¢ Extend to stochastic programming with corrupted sampled
data

e Looking for an online algorithm.
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