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Multiarmed bandit problem

* Model of a gambler playing a slot machine with multiple arms
« Example of a dilemma between exploration and exploitation

« K-armed stochastic bandit problem

— Burnates-Katehakis derived an asymptotic bound
of the regret

« Model of reward distributions with support in [0,1]
— UCB policies by Auer et al. are widely used practically

— Bound-achieving policies have not been known

—We propose DMED policy, which achieves the bound



Notation

A . family of distributions with support in [0,1]
F; € A :probability distributionofarm:=1,--- | K
u; = E(F;) : expectation of arm ¢
( E(F): expectation of distribution )
1" = max u; : maximum expectation of arms

T,,;(ﬁ) . # of times that arm 7 has been pulled
through the first @ rounds

Goal: minimize the regret

Y (W= p)Ti(n)

v < p
by reducing each T;(n) for suboptimal arm




Asymptotic bound
Burnetas and Katehakis (1996)

* Under any policy satisfying a mild condition (consistency),

forall F = (Fy,- -, Fg) € A% and suboptimal ¢

Er[Ti(n)] > (Dmin(lFi ) — O(l)) logn

where

Doin(F. 1) = i D(F||H
(Fw) =, _min _ D(F||H)

D(F||H) = Epllog S—Z] . Kullback-Leibler divergence



Visualization of D,y

Diin (F, _ ' D(F||H
(Fop) =, min  D(FI[H)

{H e A:E(H) > u}

.
.

E(H) large
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DMED policy

* Deterministic Minimum Empirical Divergence policy

For each loop, DMED chooses arms to pull in this way:

1. For each arm 7, check the condition

(empirical distribution of arm 7 at the n-th roun@

Al
T;(n) Dmin (F3(n), i (n)) < logn

(maximum sample mean at the n-th round)

(The condition is always true for the currently best arm)

2. Pull all of arms such that the condition is true



Main theorem
Under DMED policy, for all suboptimal arm ¢,

Er|T;(n)] < (Dmin(le',,u*) + O(l)) logn

/Asymptotic bound :

1
min(Fia ,u*

Ex(Ti0)] = ( 5 -~ o(1) ) logn

\—

DMED is asymptotically optimal




Intuitive interpretation (1)

e Assume K = 2 and consider the event

+ fi(n) < fia(n) = @*(n)

° T1 (n) < TQ (n)

* How likely is arm 1 actually the best?
- p2 = [i2 is far more likely than p; ~ ji;

« How likely is the hypothesis 1 > fio ?



Intuitive interpretation (2)

« By Sanov’s theorem in the large deviation theory,

Plempirical distribution from Fj come close to F 1]

~ exp(—T1(n)

D(F1||F1))

number of samples

D(F1[|F)



Intuitive interpretation (2)

« By Sanov’s theorem in the large deviation theory,

Plempirical distribution from Fj come close to E 1]

~ exp(—11 (n)D(FluFl))

« Maximum likelihood of w1 > " is

max  exp(—T1(n)D(E1||H))

HeAE(H)>nx

- —T i D(F,||H
o (~Tim) ,_mn DUEH))

= exp(=T1 (1) Dmin (F1, i)




Intuitive interpretation (3)

« Maximum likelihood that arm ¢ is actually the best:

exp(—T;(n) Dmin(Fi, 1))
* In DMED policy, arm 1 is pulled when
T;(n) Dyin (Fy, 1) < logn
— Arm ¢ is pulled if
» the maximum likelihood is large

» round number n is large
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Proof of the optimality

» Assume K =2 and p2 < g1 = ¢~ (arm 1 is the best)

« Two events are essential for the proof:

A,,: Estimators E;(n), fi;(n) are already close to Fj, j;

By fi2(n) = p2 | but fi1(n) < pe (< p1) (arm 1 seems inferior)

“Arm 2 is pulled at the n-th round”

V) = Y (17, =2)

A An] +1[{J, = 2} N By]

Carm pulled at the n.-th rouncD +I{J, =2} N A, N Bc])




Proof of the optimality

» Assume K =2 and p2 < g1 = ¢~ (arm 1 is the best)

« Two events are essential for the proof:
A,,: Estimators E;(n), fi;(n) are already close to Fj, j;

By fi2(n) = p2 | but fi1(n) < pe (< p1) (arm 1 seems inferior)
logn
Dmin(F27,u1) O(l)
& |

To(N) =Y (I[{Jn —2Y N A,] +1[{J, =2} N B,]

n=1

FI[{J, =2} N A° N BC]>
|
O(1)



After the convergence
+ Arm 2 is pulled when T5(n) Duin (Fa(n), i*(n)) < logn

+ Ontheevent A,,, Dpnin(Fa(n), i*(n)) & Dmin(Fs, 1*) holds
because D, (F, u) is continuous

= If A, is true, arm 2 is pulled only while

logn
T <
2(”) ™~ Dmin<F27 ,u*)

IS true.

‘ I[{Jn — 2} A An] 5 D

n=1

log N
min(F27 ,u*)




E

Before the convergence (1)

* By iz = pzand i < po (< py)
« We will show

> I[{J, =2} N B,




Before the convergence (1)

* By e = pugand iy < pg (< )

A
« We will show /_F.\
E(H) = [z /

E [ 1[B.]| =0(1)

« Focus on I} (n) of the event B,

 Ais compact (w.r.t. Lévy distance)



Before the convergence (1)

By, e = pzand fi1 < po (< p1)
We will show

E [ 1[B.]| =0(1)

Focus on F;(n) of the event B,,

A is compact (w.r.t. Lévy distance)




Before the convergence (1)

* By iz = pzand i < po (< py)
« We will show

E [ 1[Bn]| =0(1)

e-ball witﬁ center G

« Focus on I} (n) of the event B,

 Ais compact (w.r.t. Lévy distance)
= It is sufficient to show for arbitrary G € A s.t. E(G) < o

E Z 2 N{Fi(n) e G| =0(1)




Before the convergence (1)

* By iz = pzand i < po (< py)
« We will show

E [ 1[B.]| =0(1)

n=1 i
 Focus on4 %f the event B,, e-ball with center &
[ A iS Compa /] r'|' I f’\\l\l A:nl'r\nr\r\\

. .| | Take the summation over finite balls |,
‘ It IS SUffICI CTU OTTUvW TUT aroTaary O T 77U 9-C .I_J\J

E Z 2 N{Fi(n) e G| =0(1)




Before the convergence (2)

* B,: p2 = pzand i1 < po (< pr)

« We will show

E [ Y 1[B,N{Fi(n) € G} | =0(1)

n=1

[
S B |S 1B {Fi(n) € G0 {Ti(n) = t)]

t=1 |l n=1




Before the convergence (3)

e We WI|| show

ZE ZI ﬂ{Fl EGG}H{Tl(TL):t}] :O(l)

B |3 1B, 0 {Fi(n) € G0 {Ta(n) = 1)]

< P [{F1(n) € G} N {T1(n) = t}]

xmaX{ZI ﬂ{F1 EGG}H{Tl(n)_t}]}

< exp  — t(Duin(G. 1) — Disin (G 12) )



[ N

2.

| n=1

Before the convergence (4)

I[B, N{F(n) € GY}N{Ti(n) = t}]

< exp ( — t(Dumin(G, 1) = Dmin(G"uz)))




Before the convergence (4)

> 1B, N{Fi(n) € G} N {Ti(n) = t}]

| n=1

< exp ( — t(Dumin(G, 1) = Dmin(G"uz)))

< exp(—tC)




Before the convergence (4)

B3 1B, 0 {Fi(n) € G {Ti(n) = 1}]

| n=1

< exp ( — t(Dumin(G, 1) = Dmin(G"uZ)))

< exp(—tC)

« By taking the summation over ¢, / JIC \

[ N

Y 1B, N{Fi(n) € G| =

| n=1
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Computation of Dpyin

* Dunin(Fi(n),*(n)) has to be computed at each round
* D IS represented as

Din (F, 1) min D(F||G)

He A:E(H)>u

= max Epgl|log(l — (X — p)v)]

0<1/<1L
- —l1—u

— univariate convex optimization problem
— efficiently computable by e.g. Newton’s method
— v,,_1is a good approximation of current v/}
A
(The optimal solution for the n — 1-st round)
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Simulation 1
e K =5, beta distributions

Fl F2 F3 F4 F5
Be(0.9,0.1) Be(7,3) Be(0.5,0.5) Be(3,7) Be(0.1,0.9)

1 A A |

M1 — 0.9 Mo — 0.7 M3 — 0.5 Ha = 0.3 Uy — 0.1

simple distributions on [0,1]



Simulation result 1

5 UCB2
regret: o DMED |
* 1 v ™ v
Z (1* — i) Ti(n) o Jes .
Vi <p* X

3 - -+ UCB-tuned
o e 1 Asymptotic

A" bound

DMED

1 10 100 1000 10000 100000
plays
« Asymptotic slope of the regret is always larger than or

equal to that of “Asymptotic bound”

« DMED seems to be achieving the asymptotic bound



Simulation 2

K =2, example where the best arm is hard to distinguish

Fi(0)=0.99, F(1)=0.01, E(F)=0.01
F5(0.008) = 0.5, F5(0.009) = 0.5, E(F) = 0.0085

Fl F2
1y = 0.01 115 = 0.0085

(Arm 2 seems to be best with high probability)



Simulation result 2

8 !
—o— DMED | —1 UCB2
Q - | UCB-tuned C A
- UCB2 -
--- Dmin x|
o . UCB-tuned
5 e
& X _
/ Asymptotic
bound
DMED
1 10 100 1000 10000 100000
plays

« DMED distinguishes the best arm quickly
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Conclusion

* Proposed DMED policy and proved its asymptotic
optimality.

* Showed that the minimization of KL divergence is solvable
efficiently by a convex optimization technique.

« Confirmed by simulations that DMED achieves the regret
near the asymptotic bound in finite time.

Thank you!



