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A Conjecture

Let f be a t-term DNF formula. i
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Sparse
%

Approximators

Thm: If VT € C has an s-sparse ¢-approx p,

then there is a uniform distribution MQ PAC
learner for C that runs in time poly(n,s,&™).

/ )
MC = PAC-learning DNF




The Harmonic Sieve

A MQ PAC-learner for 2
(A) (A (A)
poly(n)-term DNF formulas e@é@ o‘@‘@ ee‘Q

over the uniform distribution.

e Didn’t prove MC.
e Used weak-approximator + boosting.



...and a decade
passed.



Sparse
Approximators

Thm: If VT € C has an s-sparse ¢-approx p, then
there is a uniform distribution MQ agnostic
learner for C that runs in time poly(n,s,&™).

4 N
MC = agnostic-learning DNF
(& )




Agnostic Learning

e farbitrary Boolean function
e opt =min__Pr [c(x) = f(x)]

An ggnostic learner is given MQ to f

w.h.p. outputs h s.t.

Pr [h(x)=f(x)] < opt+c¢



Previous Results
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fa t-term DNF formula; F¢-approx p with:

e degree O(log(t/c)?)

o O(loglog tlog(1/2)) terms

e degree O(log(t/c))



Our Results
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Jc-approx p with t0008(/9)) terms for

e fat-term random DNF formula

e fat-termread-k DNF formula

(and gives agnostic learners)



Outline

2. How we didn’t prove it.

3. How we did prove it.

a) Read-once DNF formulas
b) Random DNF formulas
c) Read-k DNF formulas

4. Pseudorandomness



How we didn’t prove
Mansour’s Conjecture 1

Every f has a unique real polynomial
representation with coeffs f(5)

(the Fourier representation).

Analyze the large coeffs using Hastad’s
random restriction machinery



How we didn’t prove
Mansour’s Conjecture 2

Entropy-Influence Conjecture: E(f)=0(I(f))

[25?(5 2= 1 }

(=3 - Tog(fY)

El = MC ['(f) EDNENE: }




Outline

3. How we did prove it.

a) Read-once DNF formulas
b) Random DNF formulas
c) Read-k DNF formulas

4. Pseudorandomness



Polynomial Interpolation
f=TVT,V:--VT,

Lety.(:) =T +T,+---+T,
(# of terms satisfied by x.)

Interpolate the values 1
of fon {x:y{(x) < d} ';

1 2 d



The Polynomial

P = (IO G2 () 1

*P,(0)=0

B ()=, Y=o /

o [P, ()|<(), y>d 1
amum




The Polynomial

P =)D () () +1

o P (y{x)) has t°(9) terms.

o P (yAx))=f(x) when x satisfies at most
terms.

e Need to show that x satisfies more

terms with small probability.



Read-once DNF Formulas

Read-once: each var appears at most once

X XsXg V X, X X gX5, V X, X,

— terms are satisfied independently.

How do we show that sums of independent
variables are concentrated in a narrow
range?



Chernoff Bounds

oT=3_T (i.rv.s T=1w.p. 1)

o M = E}:1Mi — E[T]
e Can assume

u <log(1/e), or f=1. /1

Chernoff: Pr{ T =] ] < (eu/))




MC is true for RO DNFs

% o Py (0)=11 (Po(yi () (2))?
<Sa(edfy (<

for d=log(1/¢).



Outline

b) Random DNF formulas
c) Read-k DNF formulas

4. Pseudorandomness



MC is true for random DNFs

Our model: choose each term of a t-term
DNF from the set of all terms of length

log ().

Show that w.h.p. random DNFs behave like
RO DNFs using the method of bouded
differences.



Outline

c) Read-k DNF formulas
4. Pseudorandomness



Read-k DNF Formulas

Read-k: each var appears at most k times

X XsXg V XX XX, V XX,

Terms are no longer independent!



The Modified Construction

f = T1 \V T2 VoeeoV Tt (ordered from longest to shortest)

Let z(x) = A+A+ - - A
Ai=T; A (/\jwi,jgi_'Tj)

(# of ind. terms sat. by x) 1J7———__Z

Interpolate the values
of fon {x:z(x) < d}



The Polynomial

@)= () ) () () 1

e P (z4(x)) has t°0) terms.

o P (zAx))=f(x) when x satisfies < d ind.
terms.

e Need to show that x satisfies more
indep. terms with small probability.



Concentration for Read-k

el arer.v.’s1w.p. L
t
*u= Ei=1 Wi
* A = Eit=1Ai (Ai - Ti/\(/\i ~i,j <i ﬁTJ))

oPrlA=]]< E|s|:jHiESTi < (eu/j)

AN



Janson Bounds

e T.arer.v.’s1w.p. W

* U= E;cﬂ Wi

o A\ = Ei~j E[ TiTj]

o Pr[ T=0] < exp(-1?/A)

By Janson, can assume
< 16“log(1/¢), or f=1.




Recap
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Ac-approx p with t000g0/)) terms for
f a t-term random DNF formula w.h.p.

Jc-approx p with t006 108(/%)) terms for
f a t-term read-k DNF formula



Outline

4. Pseudorandomness



Pseudorandomness

A distribution X ¢-fools Cif Vf € C
[E[FOO] - E[f(U)]| < 0

Seed length is # of random bits used by X.



PRGs against DNFs

Seed length for pseudorandom
generators against t-term DNF formulas:

O(log#(tn/0))
O(log(n)log2(t/0)) *H
O(log(n) + |Og2(t/(|))loglog(t/q)))




The Sandwich Bound

If 3 s(¢)-sparse g & h s.t.

", () < F(4) < h(x)
3 E[h(x) - f(x)] < ¢, E[f(x)-g(x)] < ¢ )

Then d dist. that ¢-fools f with seed
length O(log n + log s(0))



The Polynomial

P = (IO G2 () 1

o P (y)>1, y>d, d odd
o P (y)<0, y>d, d even

1V
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PRGs against DNFs

-term random DNFs are fooled by PRGs
w/ seed length

O(log(n) + log (t)log(1/d)) w.h.p.

-term read-k DNFs are fooled by PRGs
w/ seed length

O(log(n) +log(t)16“log(1/9))

showed O(log(n) + log (t)log(1/d)) for RO DNFs)



Open Problems

e Prove Mansour’s Conjecture for all t-term
DNF formulas.

e Show PRGs against DNFs with seed length
O(log (t)log(1/0)).



The End



